Visible-Light-Driven Room Temperature NO2 Gas Sensor Based on Localized Surface Plasmon Resonance: The Case of Gold Nanoparticle Decorated Zinc Oxide Nanorods (ZnO NRs)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sensor Preparation
2.2. Materials Characterization
2.3. Gas Measurement
3. Results
3.1. Active Material Characteristic
3.2. Sensor Measurement
4. Discussion
Light-Activated and Sensing Mechanism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Casals, O.; Markiewicz, N.; Fabrega, C.; Gràcia, I.; Cané, C.; Wasisto, H.S.; Waag, A.; Prades, J.D. A Parts Per Billion (Ppb) Sensor for NO2 with Microwatt (ΜW) Power Requirements Based on Micro Light Plates. ACS Sens. 2019, 4, 822–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinh, N.D.; Hien, T.T.; Do Van, L.; Hieu, N.M.; Quang, N.D.; Lee, S.-M.; Kim, C.; Kim, D. Adsorption/Desorption Kinetics of Nitric Oxide on Zinc Oxide Nano Film Sensor Enhanced by Light Irradiation and Gold-Nanoparticles Decoration. Sens. Actuators B Chem. 2019, 281, 262–272. [Google Scholar] [CrossRef]
- Barsan, N.; Koziej, D.; Weimar, U. Metal Oxide-Based Gas Sensor Research: How To? Sens. Actuators B Chem. 2007, 121, 18–35. [Google Scholar] [CrossRef]
- Park, S.; An, S.; Mun, Y.; Lee, C. UV-Enhanced NO2 Gas Sensing Properties of SnO2-Core/ZnO-Shell Nanowires at Room Temperature. ACS Appl. Mater. Interfaces 2013, 5, 4285–4292. [Google Scholar] [CrossRef]
- Fabbri, B.; Gaiardo, A.; Giberti, A.; Guidi, V.; Malagù, C.; Martucci, A.; Sturaro, M.; Zonta, G.; Gherardi, S.; Bernardoni, P. Chemoresistive Properties of Photo-Activated Thin and Thick ZnO Films. Sens. Actuators B Chem. 2016, 222, 1251–1256. [Google Scholar] [CrossRef]
- Zhang, Q.; Xie, G.; Xu, M.; Su, Y.; Tai, H.; Du, H.; Jiang, Y. Visible Light-Assisted Room Temperature Gas Sensing with ZnO-Ag Heterostructure Nanoparticles. Sens. Actuators B Chem. 2018, 259, 269–281. [Google Scholar] [CrossRef]
- Zhang, C.; Geng, X.; Li, J.; Luo, Y.; Lu, P. Role of Oxygen Vacancy in Tuning of Optical, Electrical and NO2 Sensing Properties of ZnO1−x Coatings at Room Temperature. Sens. Actuators B Chem. 2017, 248, 886–893. [Google Scholar] [CrossRef]
- Chakrabarty, P.; Banik, M.; Gogurla, N.; Santra, S.; Ray, S.K.; Mukherjee, R. Light Trapping-Mediated Room-Temperature Gas Sensing by Ordered ZnO Nano Structures Decorated with Plasmonic Au Nanoparticles. ACS Omega 2019, 4, 12071–12080. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Wang, J.; Xia, Y.; Xiang, L. Near Infrared Light Enhanced Room-Temperature NO2 Gas Sensing by Hierarchical ZnO Nanorods Functionalized with PbS Quantum Dots. Sens. Actuators B Chem. 2018, 255, 2538–2545. [Google Scholar] [CrossRef]
- Brunelli, D.; Rossi, M. CH4 Monitoring with Ultra-Low Power Wireless Sensor Network. In Applications in Electronics Pervading Industry, Environment and Society; De Gloria, A., Ed.; Springer International Publishing: Cham, Switzerland, 2014; Volume 289, pp. 13–25. ISBN 978-3-319-04369-2. [Google Scholar]
- Fàbrega, C.; Casals, O.; Hernández-Ramírez, F.; Prades, J.D. A Review on Efficient Self-Heating in Nanowire Sensors: Prospects for Very-Low Power Devices. Sens. Actuators B Chem. 2018, 256, 797–811. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-H.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Low Power-Consumption CO Gas Sensors Based on Au-Functionalized SnO2-ZnO Core-Shell Nanowires. Sens. Actuators B Chem. 2018, 267, 597–607. [Google Scholar] [CrossRef]
- Markiewicz, N.; Casals, O.; Fabrega, C.; Gràcia, I.; Cané, C.; Wasisto, H.S.; Waag, A.; Prades, J.D. Micro Light Plates for Low-Power Photoactivated (Gas) Sensors. Appl. Phys. Lett. 2019, 114, 053508. [Google Scholar] [CrossRef] [Green Version]
- Monereo, O.; Casals, O.; Prades, J.D.; Cirera, A. A Low-Cost Approach to Low-Power Gas Sensors Based on Self-Heating Effects in Large Arrays of Nanostructures. Procedia Eng. 2015, 120, 787–790. [Google Scholar] [CrossRef] [Green Version]
- Prades, J.D.; Jimenez-Diaz, R.; Hernandez-Ramirez, F.; Barth, S.; Cirera, A.; Romano-Rodriguez, A.; Mathur, S.; Morante, J.R. Ultralow Power Consumption Gas Sensors Based on Self-Heated Individual Nanowires. Appl. Phys. Lett. 2008, 93, 123110. [Google Scholar] [CrossRef]
- Qomaruddin; Casals, O.; Šutka, A.; Granz, T.; Waag, A.; Wasisto, H.S.; Prades, J.D.; Fàbrega, C. Visible Light-Driven P-Type Semiconductor Gas Sensors Based on CaFe2O4 Nanoparticles. Sensors 2020, 20, 850. [Google Scholar] [CrossRef] [Green Version]
- Qomaruddin; Fàbrega, C.; Waag, A.; Šutka, A.; Casals, O.; Wasisto, H.S.; Prades, J.D. Visible Light Activated Room Temperature Gas Sensors Based on CaFe2O4 Nanopowders. Proceedings 2018, 2, 834. [Google Scholar] [CrossRef] [Green Version]
- Franke, M.E.; Koplin, T.J.; Simon, U. Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter? Small 2006, 2, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Lv, H.-F.; Wu, S.-Y.; Ho, H.-P. Light-Activated Gas Sensing Activity of ZnO Nanotetrapods Enhanced by Plasmonic Resonant Energy from Au Nanoparticles. Sens. Actuators B Chem. 2018, 259, 709–716. [Google Scholar] [CrossRef]
- Fallah, H.; Asadishad, T.; Shafiei, M.; Shokri, B.; Javadianaghezi, S.; Mohammed, W.S.; Hamidi, S.M. Utilizing ZnO Nanorods for CO Gas Detection by SPR Technique. Opt. Commun. 2020, 463, 125490. [Google Scholar] [CrossRef]
- Kwon, D.-K.; Porte, Y.; Ko, K.Y.; Kim, H.; Myoung, J.-M. High-Performance Flexible ZnO Nanorod UV/Gas Dual Sensors Using Ag Nanoparticle Templates. ACS Appl. Mater. Interfaces 2018, 10, 31505–31514. [Google Scholar] [CrossRef]
- Lupan, O.; Postica, V.; Wolff, N.; Su, J.; Labat, F.; Ciofini, I.; Cavers, H.; Adelung, R.; Polonskyi, O.; Faupel, F.; et al. Low-Temperature Solution Synthesis of Au-Modified ZnO Nanowires for Highly Efficient Hydrogen Nanosensors. ACS Appl. Mater. Interfaces 2019, 11, 32115–32126. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Xu, X.-H.N. Synthesis and Characterization of Tunable Rainbow Colored Colloidal Silver Nanoparticles Using Single-Nanoparticle Plasmonic Microscopy and Spectroscopy. J. Mater. Chem. 2010, 20, 9867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, Q.; Wang, T.H.; Zhao, J.C. Enhanced Photocatalytic Activity of ZnO Nanotetrapods. Appl. Phys. Lett. 2005, 87, 083105. [Google Scholar] [CrossRef]
- Khan, R.; Yun, J.-H.; Bae, K.-B.; Lee, I.-H. Enhanced Photoluminescence of ZnO Nanorods via Coupling with Localized Surface Plasmon of Au Nanoparticles. J. Alloys Compd. 2016, 682, 643–646. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, J.; Sun, B.; Blakesley, J.C.; Greenham, N.C. Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles. Nano Lett. 2008, 8, 1649–1653. [Google Scholar] [CrossRef] [PubMed]
- Prades, J.D.; Jimenez-Diaz, R.; Manzanares, M.; Hernandez-Ramirez, F.; Cirera, A.; Romano-Rodriguez, A.; Mathur, S.; Morante, J.R. A Model for the Response towards Oxidizing Gases of Photoactivated Sensors Based on Individual SnO2 Nanowires. Phys. Chem. Chem. Phys. 2009, 11, 10881–10889. [Google Scholar] [CrossRef] [PubMed]
- Bora, T.; Zoepfl, D.; Dutta, J. Importance of Plasmonic Heating on Visible Light Driven Photocatalysis of Gold Nanoparticle Decorated Zinc Oxide Nanorods. Sci. Rep. 2016, 6, 26913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, J.; Li, Y.; Deng, Y. UV and Visible Light Controllable Depletion Zone of ZnO-Polyaniline p–n Junction and Its Application in a Photoresponsive Sensor. Phys. Chem. Chem. Phys. 2010, 12, 14864–14867. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Li, X.; Wang, J.; Tang, Z. UV Activated Hollow ZnO Microspheres for Selective Ethanol Sensors at Low Temperatures. Sens. Actuators B Chem. 2016, 232, 158–164. [Google Scholar] [CrossRef]
- Cui, J.; Shi, L.; Xie, T.; Wang, D.; Lin, Y. UV-Light Illumination Room Temperature HCHO Gas-Sensing Mechanism of ZnO with Different Nanostructures. Sens. Actuators B Chem. 2016, 227, 220–226. [Google Scholar] [CrossRef]
- Comini, E.; Faglia, G.; Sberveglieri, G. UV Light Activation of Tin Oxide Thin Films for NO2 Sensing at Low Temperatures. Sens. Actuators B Chem. 2001, 78, 73–77. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Q.; Pan, H.; Xie, G.; Su, Y.; Tai, H.; Du, X. Visible Light-Activated Room Temperature NO2 Sensing with Au-ZnO Nanorod Array Thin Films. In Proceedings of the 2019 IEEE SENSORS, Montreal, QC, Canada, 27–30 October 2019; pp. 1–4. [Google Scholar]
- Zhu, Q.; Lu, J.; Wang, Y.; Qin, F.; Shi, Z.; Xu, C. Burstein-Moss Effect Behind Au Surface Plasmon Enhanced Intrinsic Emission of ZnO Microdisks. Sci. Rep. 2016, 6, 36194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Pan, X.; He, H.; Chen, W.; Chen, C.; Dai, W.; Zhang, H.; Ding, P.; Huang, J.; Lu, B.; et al. Enhanced Photoluminescence of Nonpolar P-Type ZnO Film by Surface Plasmon Resonance and Electron Transfer. Opt. Lett. OL 2015, 40, 649–652. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Brinzari, V.; Cho, B.K. Conductometric Gas Sensors Based on Metal Oxides Modified with Gold Nanoparticles: A Review. Microchim. Acta 2016, 183, 1033–1054. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Q.; Xie, G.; Yao, M.; Pan, H.; Du, H.; Tai, H.; Du, X.; Su, Y. Enhancing Visible Light-Activated NO2 Sensing Properties of Au NPs Decorated ZnO Nanorods by Localized Surface Plasmon Resonance and Oxygen Vacancies. Mater. Res. Express 2020, 7, 015924. [Google Scholar] [CrossRef]
- Fan, J.; Fábrega, C.; Zamani, R.; Shavel, A.; Güell, F.; Carrete, A.; Andreu, T.; López, A.M.; Morante, J.R.; Arbiol, J.; et al. Solution-Growth and Optoelectronic Properties of ZnO:Cl@ZnS Core–Shell Nanowires with Tunable Shell Thickness. J. Alloys Compd. 2013, 555, 213–218. [Google Scholar] [CrossRef]
- Khan, A.; Jadwisienczak, W.M.; Kordesch, M.E. From Zn Microspheres to Hollow ZnO Microspheres: A Simple Route to the Growth of Large Scale Metallic Zn Microspheres and Hollow ZnO Microspheres. Phys. E Low-Dimens. Syst. Nanostruct. 2006, 33, 331–335. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Zhang, Y.; Dong, Z.; Zhang, T. Preparation of Zinc Oxide Nanoparticle–Reduced Graphene Oxide–Gold Nanoparticle Hybrids for Detection of NO2. RSC Adv. 2015, 5, 91760–91765. [Google Scholar] [CrossRef]
- Rai, P.; Kim, Y.-S.; Song, H.-M.; Song, M.-K.; Yu, Y.-T. The Role of Gold Catalyst on the Sensing Behavior of ZnO Nanorods for CO and NO2 Gases. Sens. Actuators B Chem. 2012, 165, 133–142. [Google Scholar] [CrossRef]
- Wongrat, E.; Chanlek, N.; Chueaiarrom, C.; Samransuksamer, B.; Hongsith, N.; Choopun, S. Low Temperature Ethanol Response Enhancement of ZnO Nanostructures Sensor Decorated with Gold Nanoparticles Exposed to UV Illumination. Sens. Actuators A Phys. 2016, 251, 188–197. [Google Scholar] [CrossRef]
- Barsan, N.; Weimar, U. Conduction Model of Metal Oxide Gas Sensors. J. Electroceram. 2001, 7, 143–167. [Google Scholar] [CrossRef]
- Liao, Z.-M.; Liu, K.-J.; Zhang, J.-M.; Xu, J.; Yu, D.-P. Effect of Surface States on Electron Transport in Individual ZnO Nanowires. Phys. Lett. A 2007, 367, 207–210. [Google Scholar] [CrossRef]
- Barry, T.I.; Stone, F.S.; Tompkins, F.C. The Reactions of Oxygen at Dark and Irradiated Zinc Oxide Surfaces. Proc. R. Soc. Ser. A. Math. Phys. Eng. Sci. 1960, 255, 124–144. [Google Scholar] [CrossRef]
Materials | Target Gas | Operating Condition * | Sensitivity (%) | Ref |
---|---|---|---|---|
Au/ZnO thin film | NO2—10 ppm | RT, λblue = 439 nm, 0.76 mW/cm2 | ~10.00 | [2] |
ZnO/Au NPs | NOx—6 ppm | RT, white light (~400 μW/cm2) | 130.00 | [8] |
ZnO-rGO-Au | NO2—100 ppm | 80 °C | 32.55 | [40] |
Au/ZnO NRs | CO—1000 ppm NO2—50 ppm | 150 °C 300 °C | 12.00 4.14 | [41] |
ZnO:Au NPs | Ethanol—1000 ppm | RT, UV = 254 nm, 4.1 mW/cm2 125 °C, UV = 254 nm, 4.1 mW/cm2 | 1.46 6.30 | [42] |
Au-ZnO NRs array films | NO2—1–5 ppm | RT, λ = 495 nm, 50 mW/cm2 | 1.25 | [37] |
ZnO NRs/Au NPs | NO2—10 ppm | RT, vis-light (465–640 nm), 10 mW/cm2 | 891.00 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qomaruddin; Casals, O.; Wasisto, H.S.; Waag, A.; Prades, J.D.; Fàbrega, C. Visible-Light-Driven Room Temperature NO2 Gas Sensor Based on Localized Surface Plasmon Resonance: The Case of Gold Nanoparticle Decorated Zinc Oxide Nanorods (ZnO NRs). Chemosensors 2022, 10, 28. https://doi.org/10.3390/chemosensors10010028
Qomaruddin, Casals O, Wasisto HS, Waag A, Prades JD, Fàbrega C. Visible-Light-Driven Room Temperature NO2 Gas Sensor Based on Localized Surface Plasmon Resonance: The Case of Gold Nanoparticle Decorated Zinc Oxide Nanorods (ZnO NRs). Chemosensors. 2022; 10(1):28. https://doi.org/10.3390/chemosensors10010028
Chicago/Turabian StyleQomaruddin, Olga Casals, Hutomo Suryo Wasisto, Andreas Waag, Joan Daniel Prades, and Cristian Fàbrega. 2022. "Visible-Light-Driven Room Temperature NO2 Gas Sensor Based on Localized Surface Plasmon Resonance: The Case of Gold Nanoparticle Decorated Zinc Oxide Nanorods (ZnO NRs)" Chemosensors 10, no. 1: 28. https://doi.org/10.3390/chemosensors10010028
APA StyleQomaruddin, Casals, O., Wasisto, H. S., Waag, A., Prades, J. D., & Fàbrega, C. (2022). Visible-Light-Driven Room Temperature NO2 Gas Sensor Based on Localized Surface Plasmon Resonance: The Case of Gold Nanoparticle Decorated Zinc Oxide Nanorods (ZnO NRs). Chemosensors, 10(1), 28. https://doi.org/10.3390/chemosensors10010028