Au Nanoparticles Decorated Graphene-Based Hybrid Nanocomposite for As(III) Electroanalytical Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Exfoliation and Functionalization of RGO with PCA
2.3. Synthesis of PCA-RGO/Au NPs Hybrid Nanocomposite
2.4. Synthesis of DMBT-Coated Au NPs
2.5. Characterization Techniques
2.6. Preparation of the Electrodes Modified by PCA-RGO/Au NPs Hybrid Pellet, PCA-RGO and DMBT-Au NPs
2.7. Electrochemical Characterizations
2.8. Electroanalytical Applications
3. Results and Discussion
3.1. Synthesis and Characterization of the PCA-RGO/AuNPs Hybrid Nanocomposite
3.2. Electrochemical Characterization of the PCA-RGO/Au NPs Hybrid Nanocomposite
3.3. Electroanalytical Applications of PCA-RGO/AuNPs Hybrid Nanocomposite
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Ingrosso, C.; Petrella, A.; Curri, M.L.; Striccoli, M.; Cosma, P.; Cozzoli, P.D.; Agostiano, A. Photoelectrochemical properties of Zn(II) phthalocyanine/ZnO nanocrystals heterojunctions: Nanocrystal surface chemistry effect. Appl. Surf. Sci. 2005, 246, 367–371. [Google Scholar] [CrossRef]
- Kumunda, C.; Adekunle, A.S.; Mamba, B.B.; Hlongwa, N.W.; Nkambule, T.T.I. Electrochemical Detection of Environmental Pollutants Based on Graphene Derivatives: A Review. Front. Mater. 2021, 7, 616787. [Google Scholar] [CrossRef]
- Mondal, A.; Prabhakaran, A.; Gupta, S.; Subramanian, V.R. Boosting Photocatalytic Activity Using Reduced Graphene Oxide (RGO)/Semiconductor Nanocomposites: Issues and Future Scope. ACS Omega 2021, 6, 8734–8743. [Google Scholar] [CrossRef] [PubMed]
- Ingrosso, C.; Corricelli, M.; Disha, A.; Fanizza, E.; Bianco, G.V.; Depalo, N.; Panniello, A.; Agostiano, A.; Striccoli, M.; Curri, M.L. Solvent dispersible nanocomposite based on Reduced Graphene Oxide in situ decorated with gold nanoparticles. Carbon 2019, 152, 777–787. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef] [Green Version]
- Susan, A.; Rajendran, K.; Sathyasivam, K.; Krishnan, U.M. An overview of plant-based interventions to ameliorate arsenic toxicity. Biomed. Pharmacother. 2019, 109, 838–852. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, X.; Zhang, A.; Liao, C. Preparation of Fe-co based MOF-74 and its effective adsorption of arsenic from aqueous solution. J. Environ. Sci. 2019, 80, 197–207. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Analytical Methods Support Document for Arsenic in Drinking Water. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=2000JT4N.txt (accessed on 19 December 2021).
- Ghaedi, M.; Ahmadi, F.; Shokrollahi, A. Simultaneous Preconcentration and Determina-tion of Copper, Nickel, Cobalt and Lead Ions Content by Flame Atomic Absorption Spectrometry. J. Hazard. Mater. 2007, 142, 272–278. [Google Scholar] [CrossRef]
- Huang, C.; Hu, B. Silica-Coated Magnetic Nanoparticles Modified with γ-Mercaptopropyltrimethoxysilane for Fast and Selective Solid Phase Extraction of Trace Amounts of Cd, Cu, Hg, and Pb in Environmental and Biological Samples Prior to Their Determination by Inductively Coupled plasma mass spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2008, 63, 437–444. [Google Scholar] [CrossRef]
- Faraji, M.; Yamini, Y.; Saleh, A.; Rezaee, M.; Ghambarian, M.; Hassani, R. A Nanoparticle-Based Solid-Phase Extraction Procedure Followed by Flow Injection Inductively Coupled Plasma-Optical Emission Spectrometry to Determine Some Heavy Metal Ions in Water Samples. Anal. Chim. Acta 2010, 659, 172–177. [Google Scholar] [CrossRef]
- Aragay, G.; Merkoçi, A. Nanomaterials Application in Electrochemical Detection of Heavy Metals. Electrochim. Acta 2012, 84, 49–61. [Google Scholar] [CrossRef]
- Palchetti, I.; Upjohn, C.; Turner, A.P.F.; Mascini, M. Disposable screen-printed electrodes (SPE) mercury-free for the lead detection. Anal. Lett. 2000, 33, 1231–1246. [Google Scholar] [CrossRef]
- Bansod, B.K.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A Review on Various Electrochemical Techniques for Heavy Metal Ions Detection with Different Sensing Platforms. Biosens. Bioelectron. 2017, 94, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, S.; Dumée, L.F.; Guptaf, M.; Singha, B.R.; Yang, W. Nano–Enabled sensors for detection of arsenic in water. Water Res. 2021, 188, 116538–116550. [Google Scholar] [CrossRef] [PubMed]
- Jijana, A.N.; Mphuthi, N.; Shumbula, P.; Vilakazi, S.; Sikhwivhilu, L. The Ultra-sensitive Electrochemical Detection of As(III) in Ground Water Using Disposable L-cysteine/Lipoic Acid Functionalised Gold Nanoparticle Modified Screen-Printed Electrodes. Electrocatalysis 2021, 12, 310–325. [Google Scholar] [CrossRef]
- Morales-Narváez, E.; Baptista, P.; Luis, M.; Zamora, G.A.; Merkoçi, A. Graphene-based biosensors: Going simple. Adv. Mater. 2017, 29, 1604905–1604912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramanian, S.; Elaiyappillai, E.; Asir, O.; Arulappan, D.; Palanisamy, S.; Princy, M.J.; Subramanian, R.; Samuel, V.J. Electrochemical Detection of Trace Amounts of Arsenic (III) in Poultry Using a Graphene Oxide-Bis(2-(4,5-diphenyl-1Himidazol-2-yl)phenoxy)Cobalt Composite Modified Electrode. Electron. Mater. 2019, 48, 4498–4506. [Google Scholar] [CrossRef]
- Srikant, S.; Kumar, S.P.; Kumar, S.A. Gold Nano Particle and Reduced Graphene Oxide. Composite Modified Carbon Paste Electrode for the Ultra Trace Detection of Arsenic (III). Electroanalysis 2017, 29, 1400–1409. [Google Scholar]
- Zhang, X.; Zeng, T.; Hu, C.; Hu, S.; Tian, Q. Studies on fabrication and application of arsenic electrochemical sensors based on titanium dioxide nanoparticle modified gold strip electrodes. Anal. Methods 2016, 8, 1162–1169. [Google Scholar] [CrossRef]
- Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R.J. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. Chem. Soc. Chem. Commun. 1994, 7, 801–802. [Google Scholar] [CrossRef]
- Chua, C.K.; Pumera, M. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 2014, 43, 291–312. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zheng, X.; Wang, J.; Sun, Q.; Xu, Q. Solvent-Exfoliated and Functionalized Graphene with Assistance of Supercritical Carbon Dioxide. ACS Sustain. Chem. Eng. 2013, 1, 144–151. [Google Scholar] [CrossRef]
- Zhuo, Q.; Ma, Y.; Gao, J.; Zhang, P.; Xia, Y.; Tian, Y.; Sun, X.; Zhong, J.; Sun, X. Facile synthesis of graphene/metal nanoparticle composites via self-catalysis reduction at room temperature. Inorg. Chem. 2013, 52, 3141–3147. [Google Scholar] [CrossRef] [PubMed]
- Ghosh S., K.; Nath, S.; Kundu, S.; Esumi, K.; Pal, T. Solvent and Ligand Effects on the Localized Surface Plasmon Resonance (LSPR) of Gold Colloids. J. Phys. Chem. B 2004, 108, 13963–13971. [Google Scholar] [CrossRef]
- Ingrosso, C.; Corricelli, M.; Bettazzi, F.; Konstantinidou, E.; Bianco, G.V.; Depalo, N.; Striccoli, M.; Agostiano, A.; Curri, M.L.; Palchetti, I. Au nanoparticle in situ decorated RGO nanocomposites for highly sensitive electrochemical genosensors. J. Mater. Chem. B 2019, 7, 768–777. [Google Scholar] [CrossRef]
- Ambrosi, A.; Pumera, M. Electrochemistry at CVD Grown Multilayer Graphene Transferred onto Flexible Substrates. J. Phys. Chem. C 2013, 117, 2053–2058. [Google Scholar] [CrossRef]
- Liu, L.; Ryu, S.; Tomasik, M.R.; Stolyarova, E.; Jung, N.; Hybertsen, M.S.; Steigerwald, M.L.; Brus, L.E.; Flynn, G.W. Seed/catalyst-free growth of zinc oxide nanostructures on multilayer graphene by thermal evaporation. Nano Lett. 2008, 8, 1965–1970. [Google Scholar] [CrossRef] [Green Version]
- Bettazzi, F.; Ingrosso, C.; Pifferi, V.; Falciola, L.; Curri, M.L.; Palchetti, I. Gold Nano-particles Modified Graphene Platforms for Highly Sensitive Electrochemical Detection of Vitamin C in infant Food and Formulae. Food Chem. 2021, 334, 128692–128700. [Google Scholar] [CrossRef]
- Cumba, L.R.; Foster, C.W.; Brownson, D.A.C.; Smith, J.P.; Iniesta, J.; Thakur, B.; do Carmo, D.R.; Banks, C.E. Can the mechanical activation (polishing) of screen-printed electrodes enhance their electroanalytical response? Analyst 2016, 141, 2791–2799. [Google Scholar] [CrossRef] [Green Version]
- Compton, R.G.; Banks, C.E. Understanding Voltammetry; Imperial College Press: London, UK, 2011. [Google Scholar]
- Brownson, D.A.C.; Kampouris, D.K.; Banks, C.E. Graphene electrochemistry: Fundamental concepts through to prominent applications. Chem. Soc. Rev. 2012, 41, 6944–6976. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cong, R.; Cao, L.; Liu, S.; Cui, H. The structure, morphology and photocatalytic activity of graphene–TiO2 multilayer films and charge transfer at the interface. New J. Chem. 2014, 38, 2362–2367. [Google Scholar] [CrossRef]
- Vasudevan, S.; Lakshmi, J. The Adsorption of Phosphate by Graphene from Aqueous Solution. RSC Adv. 2012, 2, 5234–5242. [Google Scholar] [CrossRef]
- Lo Presti, L.; Pifferi, V.; Di Liberto, G.; Cerrato, G.; Ceotto, M. Direct measurement and modeling of spontaneous charge migration across anatase-brookite nanoheterojunctions. J. Mater. Chem. A 2021, 9, 7782–7790. [Google Scholar] [CrossRef]
- Orazem, M.E.; Tribollet, B. Electrochemical Impedance Spectroscopy; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
NaClO4 | KCl | PBS | |||||
---|---|---|---|---|---|---|---|
E/V | j/(mA cm−2) | log(i) vs. log(v) Slope | E/V | j/(mA cm−2) | E/V | j/(mA cm−2) | |
PCA-RGO/Au NPs | 0.28 | 0.750 | (0.39 ± 0.01) | 0.28 | 0.599 | 0.28 | 0.546 |
Au NPs | 0.34 | 0.482 | (0.47 ± 0.02) | 0.35 | 0.355 | 0.43 | 0.300 |
PCA-RGO | 0.33 | 0.496 | (0.412 ± 0.005) | 0.35 | 0.408 | 0.52 | 0.318 |
PCA-RGO@Au NPs | 0.35 | 0.472 | (0.47 ± 0.02) | 0.33 | 0.402 | 0.42 | 0.309 |
Electrode | RΩ/Ω cm2 | CPEm/(mF cm−2sα−1) | αm | Rm/ (Ω cm2) | CPEdl/(µF cm−2sα−1) | αdl | Rct/(Ω cm2) | Zw/(Ω cm2) | αW | τw (s) |
---|---|---|---|---|---|---|---|---|---|---|
PCA-RGO/Au NPs | 31.16 | 2.78 | 0.55 | 3.48 | 684.16 | 0.86 | 126 | 2.55 | 0.38 | 422 |
Au NPs | 32.71 | - | - | - | 29.85 | 0.92 | 260 | 3.04 | 0.50 | 42 |
PCA-RGO | 31.55 | - | - | - | 18.46 | 0.93 | 676 | 1.50 | 0.47 | 18 |
PCA-RGO@Au NPs | 31.85 | - | - | - | 29.09 | 0.92 | 334 | 1.42 | 0.46 | 24 |
E = −0.2 (SCE) | E = +0.4 (SCE) | |||||||
---|---|---|---|---|---|---|---|---|
Electrode | S/ (A cm−2 ppm−1) | R2 | LOD/ ppb | LOQ/ Ppb | S/ (A cm−2 ppm−1) | R2 | LOD/ ppb | LOQ/ ppb |
PCA-RGO/Au NPs | 1.8 × 10−2 | 0.98 | 26 | 80 | 1.4 × 10−2 | 0.98 | 19 | 58 |
Au NPs | 3.5 × 10−3 | 0.99 | 25 | 76 | 7.7 × 10−3 | 0.95 | 22 | 67 |
PCA-RGO@Au NPs | 5.2 × 10−4 | 0.97 | 270 | 820 | 1.1 × 10−3 | 0.96 | 480 | 1500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pifferi, V.; Testolin, A.; Ingrosso, C.; Curri, M.L.; Palchetti, I.; Falciola, L. Au Nanoparticles Decorated Graphene-Based Hybrid Nanocomposite for As(III) Electroanalytical Detection. Chemosensors 2022, 10, 67. https://doi.org/10.3390/chemosensors10020067
Pifferi V, Testolin A, Ingrosso C, Curri ML, Palchetti I, Falciola L. Au Nanoparticles Decorated Graphene-Based Hybrid Nanocomposite for As(III) Electroanalytical Detection. Chemosensors. 2022; 10(2):67. https://doi.org/10.3390/chemosensors10020067
Chicago/Turabian StylePifferi, Valentina, Anna Testolin, Chiara Ingrosso, Maria Lucia Curri, Ilaria Palchetti, and Luigi Falciola. 2022. "Au Nanoparticles Decorated Graphene-Based Hybrid Nanocomposite for As(III) Electroanalytical Detection" Chemosensors 10, no. 2: 67. https://doi.org/10.3390/chemosensors10020067
APA StylePifferi, V., Testolin, A., Ingrosso, C., Curri, M. L., Palchetti, I., & Falciola, L. (2022). Au Nanoparticles Decorated Graphene-Based Hybrid Nanocomposite for As(III) Electroanalytical Detection. Chemosensors, 10(2), 67. https://doi.org/10.3390/chemosensors10020067