Multi-Endpoint Toxicity Tests and Effect-Targeting Risk Assessment of Surface Water and Pollution Sources in a Typical Rural Area in the Yellow River Basin, China
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Sites and Sample Collection
2.2. Sample Pretreatment for Toxicity Analysis
2.3. Acute Toxicity Analysis
2.4. Estrogenic Activity Analysis
2.5. Neurotoxicity Analysis
2.6. Genotoxicity Analysis
2.7. Ecological Risk Assessment
3. Results and Discussion
3.1. Acute Toxicity Assessment with Vibrio fischeri
3.2. Estrogenic Toxicity Assessment by YES
3.3. Neurotoxicity Assessment
3.4. Genotoxicity Assessment
3.5. Risk Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ellis, F.; Biggs, S. Evolving Themes in Rural Development 1950s–2000s. Dev. Policy Rev. 2001, 19, 437–448. [Google Scholar] [CrossRef]
- Tian, T.; Speelman, S. Pursuing Development behind Heterogeneous Ideologies: Review of Six Evolving Themes and Narratives of Rural Planning in China. Sustainability 2021, 13, 9846. [Google Scholar] [CrossRef]
- Withers, P.J.A.; Neal, C.; Jarvie, H.P.; Doody, D.G. Agriculture and Eutrophication: Where Do We Go from Here? Sustainability 2014, 6, 5853–5875. [Google Scholar] [CrossRef] [Green Version]
- Ongley, E.D.; Xiaolan, Z.; Tao, Y. Current status of agricultural and rural non-point source Pollution assessment in China. Environ. Pollut. 2010, 158, 1159–1168. [Google Scholar] [CrossRef]
- Bhagirath, B.; Reddy, V.R. Environment and Accountability: Impact of Industrial Pollution on Rural Communities. Econ. Political Wkly. 2002, 37, 257–265. [Google Scholar]
- Li, X.; Zheng, W.; Kelly, W.R. Occurrence and removal of pharmaceutical and hormone contaminants in rural wastewater treatment lagoons. Sci. Total Environ. 2013, 445–446, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Jiao, X.-C.; Gai, N.; Li, X.-J.; Wang, X.-C.; Lu, G.-H.; Piao, H.-T.; Rao, Z.; Yang, Y.-L. Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China. Environ. Pollut. 2016, 211, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Wen, X.; Du, C.; Jiang, J.; Wu, L.; Zhang, Y.; Hu, Z.; Hu, S.; Feng, Z.; Zhou, Z.; et al. Comparison of the abundance of microplastics between rural and urban areas: A case study from East Dongting Lake. Chemosphere 2020, 244, 125486. [Google Scholar] [CrossRef]
- Geping, Q.; Jinchang, L. Population and the Environment in China; Rienner: Boulder, CO, USA, 1994. [Google Scholar]
- Walker, D.H. Decision support, learning and rural resource management. Agric. Syst. 2002, 73, 113–127. [Google Scholar] [CrossRef]
- Su, Y.; Qi, Y.; Xiao, Z.; Wei, Y. Contributing institutional factors of rural environmental pollution in the process of modernization in China —In the perspective of the efficiency of environmental management system. Front. Environ. Sci. Eng. China 2009, 3, 75–90. [Google Scholar] [CrossRef]
- Tan, J.; Liu, L.; Li, F.; Chen, Z.; Chen, G.Y.; Fang, F.; Guo, J.; He, M.; Zhou, X. Screening of Endocrine Disrupting Potential of Surface Waters via an Affinity-Based Biosensor in a Rural Community in the Yellow River Basin, China. Environ. Sci. Technol. 2022, 56, 14350–14360. [Google Scholar] [CrossRef] [PubMed]
- Do Nascimento, M.T.L.; de Oliveira Santos, A.D.; Felix, L.C.; Gomes, G.; de Oliveira e Sá, M.; da Cunha, D.L.; Vieira, N.; Hauser-Davis, R.A.; Baptista Neto, J.A.; Bila, D.M. Determination of water quality, toxicity and estrogenic activity in a nearshore marine environment in Rio de Janeiro, Southeastern Brazil. Ecotoxicol. Environ. Saf. 2018, 149, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Huang, Y.; Yan, G.; Yin, H.; Huang, Z. DNA damage, immunotoxicity, and neurotoxicity induced by deltamethrin on the freshwater crayfish, Procambarus clarkii. Environ. Toxicol. 2021, 36, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Esteban, S.; Gorga, M.; Petrovic, M.; González-Alonso, S.; Barceló, D.; Valcárcel, Y. Analysis and occurrence of endocrine-disrupting compounds and estrogenic activity in the surface waters of Central Spain. Sci. Total Environ. 2014, 466–467, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Surujlal-Naicker, S.; Gupta, S.K.; Bux, F. Evaluating the Acute Toxicity of Estrogen Hormones and Wastewater Effluents Using Vibrio fischeri. Hum. Ecol. Risk Assess. Int. J. 2015, 21, 1094–1108. [Google Scholar] [CrossRef]
- Suthar, S.; Sharma, J.; Chabukdhara, M.; Nema, A.K. Water quality assessment of river Hindon at Ghaziabad, India: Impact of industrial and urban wastewater. Environ. Monit. Assess. 2010, 165, 103–112. [Google Scholar] [CrossRef]
- ISO I. 11348-3; Water Quality-Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio Fischeri (Luminescent Bacteria Test)-Part 3: Method Using Freeze-Dried Bacteria. International Organization for Standardization: London, UK, 2007.
- Routledge, E.J.; Sumpter, J.P. Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ. Toxicol. Chem. 1996, 15, 241–248. [Google Scholar] [CrossRef]
- Rehmann, K.; Schramm, K.-W.; Kettrup, A.A. Applicability of a yeast oestrogen screen for the detection of oestrogen-like activities in environmental samples. Chemosphere 1999, 38, 3303–3312. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Guilhermino, L.; Lopes, M.C.; Carvalho, A.P.; Soared, A.M.V.M. Inhibition of acetylcholinesterase activity as effect criterion in acute tests with juvenile Daphnia Magna. Chemosphere 1996, 32, 727–738. [Google Scholar] [CrossRef]
- Li, G.-M. Mechanisms and functions of DNA mismatch repair. Cell Res. 2008, 18, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Sancar, A.; Lindsey-Boltz, L.A.; Ünsal-Kaçmaz, K.; Linn, S. Molecular Mechanisms of Mammalian DNA Repair and the DNA Damage Checkpoints. Annu. Rev. Biochem. 2004, 73, 39–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, J.; Rahman, S.M.; Gou, N.; Jiang, T.; Plewa, M.J.; Alshawabkeh, A.; Gu, A.Z. Genotoxicity Assessment of Drinking Water Disinfection Byproducts by DNA Damage and Repair Pathway Profiling Analysis. Environ. Sci. Technol. 2018, 52, 6565–6575. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.; Gou, N.; Rahman, S.M.; Gao, C.; He, M.; Gu, A.Z. A Quantitative Toxicogenomics Assay for High-throughput and Mechanistic Genotoxicity Assessment and Screening of Environmental Pollutants. Environ. Sci. Technol. 2016, 50, 3202–3214. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.; Gou, N.; Gao, C.; He, M.; Gu, A.Z. Comparative and Mechanistic Genotoxicity Assessment of Nanomaterials via a Quantitative Toxicogenomics Approach across Multiple Species. Environ. Sci. Technol. 2014, 48, 12937–12945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, S.; Lan, J.; North, M.; Loguinov, A.; Zhang, L.; Smith, M.; Gu, A.; Vulpe, C. Genome-Wide Functional and Stress Response Profiling Reveals Toxic Mechanism and Genes Required for Tolerance to Benzo[a]pyrene in S. cerevisiae. Front. Genet. 2013, 3, 316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commissions. Technical Guidance Document on Risk Assessmen; In Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for Existing Substances, and Directive 98/8/EC of the European Parliament and of the Council Concerning the Placing of Biocidal Products on the Market; European Commission: Brussels, Belgium, 2003. [Google Scholar]
- Lu, S.; Lin, C.; Lei, K.; Xin, M.; Wang, B.; Ouyang, W.; Liu, X.; He, M. Endocrine-disrupting chemicals in a typical urbanized bay of Yellow Sea, China: Distribution, risk assessment, and identification of priority pollutants. Environ. Pollut. 2021, 287, 117588. [Google Scholar] [CrossRef]
- Huang, L.; Xi, Y.; Zha, C.; Zhao, L.; Wen, X. Effects of dieldrin and 17β-estradiol on life history characteristics of freshwater rotifer Brachionus calyciflorus Pallas. J. Freshw. Ecol. 2012, 27, 381–392. [Google Scholar] [CrossRef]
- Caldwell, D.J.; Mastrocco, F.; Anderson, P.D.; Länge, R.; Sumpter, J.P. Predicted-no-effect concentrations for the steroid estrogens estrone, 17β-estradiol, estriol, and 17α-ethinylestradiol. Environ. Toxicol. Chem. 2012, 31, 1396–1406. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wu, J.; Wang, B.; Duan, L.; Zhang, Y.; Zhao, W.; Wang, F.; Sui, Q.; Chen, Z.; Xu, D.; et al. Occurrence, source and ecotoxicological risk assessment of pesticides in surface water of Wujin District (northwest of Taihu Lake), China. Environ. Pollut. 2020, 265, 114953. [Google Scholar] [CrossRef] [PubMed]
- Vlastos, D.; Antonopoulou, M.; Lavranou, A.; Efthimiou, I.; Dailianis, S.; Hela, D.; Lambropoulou, D.; Paschalidou, A.K.; Kassomenos, P. Assessment of the toxic potential of rainwater precipitation: First evidence from a case study in three Greek cities. Sci. Total Environ. 2019, 648, 1323–1332. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Liu, X.; Sheng, L.; Zhang, D.; Li, L.; Wang, A. Study on the pollution status and control measures for the livestock and poultry breeding industry in northeastern China. Environ. Sci. Pollut. Res. 2018, 25, 4435–4445. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ying, G.-G.; Chen, F.; Zhang, L.-J.; Zhao, J.-L.; Lai, H.-J.; Chen, Z.-F.; Tao, R. Monitoring of selected estrogenic compounds and estrogenic activity in surface water and sediment of the Yellow River in China using combined chemical and biological tools. Environ. Pollut. 2012, 165, 241–249. [Google Scholar] [CrossRef]
- Song, W.T.; Wang, Z.J. Occurrence and Biological Effects of Endocrine Disrupting Chemicals in the Yellow River (Zhengzhou Section). Bull. Environ. Contam. Toxicol. 2016, 97, 763–769. [Google Scholar] [CrossRef]
- Khanal, S.K.; Xie, B.; Thompson, M.L.; Sung, S.; Ong, S.-K.; van Leeuwen, J. Fate, Transport, and Biodegradation of Natural Estrogens in the Environment and Engineered Systems. Environ. Sci. Technol. 2006, 40, 6537–6546. [Google Scholar] [CrossRef]
- Hanselman, T.A.; Graetz, D.A.; Wilkie, A.C. Manure-Borne Estrogens as Potential Environmental Contaminants: A Review. Environ. Sci. Technol. 2003, 37, 5471–5478. [Google Scholar] [CrossRef] [PubMed]
- Palme, R.; Fischer, P.; Schildorfer, H.; Ismail, M.N. Excretion of infused 14C-steroid hormones via faeces and urine in domestic livestock. Anim. Reprod. Sci. 1996, 43, 43–63. [Google Scholar] [CrossRef]
- Yao, B.; Li, R.; Yan, S.; Chan, S.-A.; Song, W. Occurrence and estrogenic activity of steroid hormones in Chinese streams: A nationwide study based on a combination of chemical and biological tools. Environ. Int. 2018, 118, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cavallin, J.E.; Durhan, E.J.; Evans, N.; Jensen, K.M.; Kahl, M.D.; Kolpin, D.W.; Kolodziej, E.P.; Foreman, W.T.; LaLone, C.A.; Makynen, E.A.; et al. Integrated assessment of runoff from livestock farming operations: Analytical chemistry, in vitro bioassays, and in vivo fish exposures. Environ. Toxicol. Chem. 2014, 33, 1849–1857. [Google Scholar] [CrossRef]
- Alvarez, D.A.; Shappell, N.W.; Billey, L.O.; Bermudez, D.S.; Wilson, V.S.; Kolpin, D.W.; Perkins, S.D.; Evans, N.; Foreman, W.T.; Gray, J.L.; et al. Bioassay of estrogenicity and chemical analyses of estrogens in streams across the United States associated with livestock operations. Water Res. 2013, 47, 3347–3363. [Google Scholar] [CrossRef] [PubMed]
- Qiang, Z.; Dong, H.; Zhu, B.; Qu, J.; Nie, Y. A comparison of various rural wastewater treatment processes for the removal of endocrine-disrupting chemicals (EDCs). Chemosphere 2013, 92, 986–992. [Google Scholar] [CrossRef] [PubMed]
- Olson, D.L.; Christensen, G.M. Effects of water pollutants and other chemicals on fish acetylcholinesterase (in vitro). Environ. Res. 1980, 21, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Neale, P.A.; Escher, B.I. Coextracted dissolved organic carbon has a suppressive effect on the acetylcholinesterase inhibition assay. Environ. Toxicol. Chem. 2013, 32, 1526–1534. [Google Scholar] [CrossRef]
- Yuan, L.; Qian, L.; Qian, Y.; Liu, J.; Yang, K.; Huang, Y.; Wang, C.; Li, Y.; Mu, X. Bisphenol F-Induced Neurotoxicity toward Zebrafish Embryos. Environ. Sci. Technol. 2019, 53, 14638–14648. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-l.; Liu, F.-m.; Jin, S.-h.; Jiang, S.-r. Dissipation of propisochlor and residue analysis in rice, soil and water under field conditions. Food Control 2007, 18, 731–735. [Google Scholar] [CrossRef]
- Xiao, J.-J.; Wang, F.; Ma, J.-J.; Xu, X.; Liao, M.; Fang, Q.-K.; Cao, H.-Q. Acceptable risk of fenpropathrin and emamectin benzoate in the minor crop Mugua (Chaenomeles speciosa) after postharvest processing. Environ. Pollut. 2021, 276, 116716. [Google Scholar] [CrossRef]
- Matioli, T.F.; da Silva, M.R.; de Bastos Pazini, J.; Barroso, G.; Vieira, J.G.; Yamamoto, P.T. Risk Assessment of Insecticides Used in Tomato to Control Whitefly on the Predator Macrolophus basicornis (Hemiptera: Miridae). Insects 2021, 12, 1092. [Google Scholar] [CrossRef]
- Russo, J.; Russo, I.H. Genotoxicity of steroidal estrogens. Trends Endocrinol. Metab. 2004, 15, 211–214. [Google Scholar] [CrossRef]
- Balabanič, D.; Filipič, M.; Krivograd Klemenčič, A.; Žegura, B. Genotoxic activity of endocrine disrupting compounds commonly present in paper mill effluents. Sci. Total Environ. 2021, 794, 148489. [Google Scholar] [CrossRef]
- Martínez-Paz, P.; Morales, M.; Martínez-Guitarte, J.L.; Morcillo, G. Genotoxic effects of environmental endocrine disruptors on the aquatic insect Chironomus riparius evaluated using the comet assay. Mutat. Res. Genet. Toxicol. Environ. Mutagenes. 2013, 758, 41–47. [Google Scholar] [CrossRef]
- Cavalieri, E.L.; Rogan, E.G. Unbalanced metabolism of endogenous estrogens in the etiology and prevention of human cancer. J. Steroid Biochem. Mol. Biol. 2011, 125, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Jolibois, B.; Guerbet, M. Evaluation of industrial, hospital and domestic wastewater genotoxicity with the Salmonella fluctuation test and the SOS chromotest. Mutat. Res. Genet. Toxicol. Environ. Mutagenes. 2005, 565, 151–162. [Google Scholar] [CrossRef] [PubMed]
- White, P.A.; Rasmussen, J.B. The genotoxic hazards of domestic wastes in surface waters1Summary of material presented at the workshop Sources, Effects and Potential Hazards of Genotoxic Complex Mixtures in the Environment held at the annual meeting of the Environmental Mutagen Society, April 20, 1997, Minneapolis, MN.1. Mutat. Res. Rev. Mutat. Res. 1998, 410, 223–236. [Google Scholar] [CrossRef]
- Hercog, K.; Maisanaba, S.; Filipič, M.; Sollner-Dolenc, M.; Kač, L.; Žegura, B. Genotoxic activity of bisphenol A and its analogues bisphenol S, bisphenol F and bisphenol AF and their mixtures in human hepatocellular carcinoma (HepG2) cells. Sci. Total Environ. 2019, 687, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Ågerstrand, M.; Rudén, C. Evaluation of the accuracy and consistency of the Swedish Environmental Classification and Information System for pharmaceuticals. Sci. Total Environ. 2010, 408, 2327–2339. [Google Scholar] [CrossRef] [PubMed]
- Coe, T.S.; Hamilton, P.B.; Hodgson, D.; Paull, G.C.; Stevens, J.R.; Sumner, K.; Tyler, C.R. An Environmental Estrogen Alters Reproductive Hierarchies, Disrupting Sexual Selection in Group-Spawning Fish. Environ. Sci. Technol. 2008, 42, 5020–5025. [Google Scholar] [CrossRef] [PubMed]
- Lahnsteiner, F.; Berger, B.; Kletzl, M.; Weismann, T. Effect of 17β-estradiol on gamete quality and maturation in two salmonid species. Aquat. Toxicol. 2006, 79, 124–131. [Google Scholar] [CrossRef] [PubMed]
Code | Sites | Types | Date |
---|---|---|---|
SW1 | Yellow River diversion gate, headstream of River 1/2 | Surface water | 26 September |
SW2-7 | Main stream of River 2 | 26 September | |
SW8-15 | Tributary of River 2 | 26 September | |
SW16-19 | Tributary of River 2 adjacent to a goose farm | 26 September | |
SW20 | River 1 | 26 September | |
WSL | Reservoir on River 1 | Surface water | 26 September |
WPS1 | Chemical industrial park | Rainwater | 27 September |
WPS2 | Planting farmland | Ditch water | 27 September |
WPS3 | Duck farm | Fecal sewage | 27 September |
WPS4 | Cattle farm | 27 September | |
WPS5 | Swine farm | Urine sewage | 27 September |
WPS6 | sewage treatment plant | Effluent | 27 September |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Tan, J.; Yang, Q.; He, M.; Yu, R.; Liu, C.; Zhou, X. Multi-Endpoint Toxicity Tests and Effect-Targeting Risk Assessment of Surface Water and Pollution Sources in a Typical Rural Area in the Yellow River Basin, China. Chemosensors 2022, 10, 502. https://doi.org/10.3390/chemosensors10120502
Li F, Tan J, Yang Q, He M, Yu R, Liu C, Zhou X. Multi-Endpoint Toxicity Tests and Effect-Targeting Risk Assessment of Surface Water and Pollution Sources in a Typical Rural Area in the Yellow River Basin, China. Chemosensors. 2022; 10(12):502. https://doi.org/10.3390/chemosensors10120502
Chicago/Turabian StyleLi, Fangxu, Jisui Tan, Qian Yang, Miao He, Ruozhen Yu, Chun Liu, and Xiaohong Zhou. 2022. "Multi-Endpoint Toxicity Tests and Effect-Targeting Risk Assessment of Surface Water and Pollution Sources in a Typical Rural Area in the Yellow River Basin, China" Chemosensors 10, no. 12: 502. https://doi.org/10.3390/chemosensors10120502
APA StyleLi, F., Tan, J., Yang, Q., He, M., Yu, R., Liu, C., & Zhou, X. (2022). Multi-Endpoint Toxicity Tests and Effect-Targeting Risk Assessment of Surface Water and Pollution Sources in a Typical Rural Area in the Yellow River Basin, China. Chemosensors, 10(12), 502. https://doi.org/10.3390/chemosensors10120502