Recent Progress in the Core-Shell Nanostructures of the NiMoO4-Based Composite Materials for Supercapacitor Applications: A Comprehensive Review
Abstract
:1. Introduction
2. Properties of NiMoO4
2.1. Crystal Structure
2.2. Electrical Conductivity
2.3. Morphology
3. Synthesis
3.1. Hydrothermal Method
3.2. Microwave-Assisted Method
3.3. Electrodeposition Method
4. Composites of NiMoO4 Core-Shell Nanostructures for Use as Electrode Materials
4.1. NiMoO4-Metal Oxide Composite
Core-Shell Structure | Role of NiMoO4 | Morphology of NiMoO4 | Surface Area (m2g−1) | Specific Capacity/Specific Capacitance | Cycling Stability | Rate Capability | Energy-density (Whkg−1) | Power-density (Wkg−1) | Ref. |
---|---|---|---|---|---|---|---|---|---|
MoO3-NiMoO4 | shell | nanobelt | 26 | 1307 Fg−1 (1 mVs−1) and 748 Fg−1 (0.5 Ag−1) | 171% (10,000 cycles) | 186 Fg−1 (50 Ag−1) | 37.5 | 425 | [49] |
CuO-NiMoO4 | shell | nanowire | - | 2600 Fg−1 (3.9 Fcm−2) at 3 mAcm−2 | 87.3% (5000 cycles) | 1829.3 Fg−1 (40 mAcm−2) | 42.28 | 631.57 | [50] |
SnO2-NiMoO4 | shell | nanosheet | 90.67 | 0.65 mAhcm−2 (5 mAcm−2) | 84.2% (5000 cycles) | 57.9% (50 mAcm−2) | 78.4 | 895 | [51] |
NiMoO4-MnO2 | core | nanowire | - | 3.9 Fcm−2 (8 mAcm−2) | 90.5% (4000 cycles) | 3.07 Fcm−2 (32 mAcm−2) | - | - | [52] |
NiMoO4-MnO2 | core | nanosheet | - | 976 Fg−1 (1 Ag−1) | 90.9% (3000 cycles) | 732 Fg−1 (15 Ag−1) | - | - | [53] |
α-NiMoO4-δ-MnO2 | core | nanorod | - | 1136 Fg−1 (2 Ag−1) | 101.9% (5000 cycles) | 580 Fg−1 (20 Ag−1) | - | - | [54] |
MnO2-NiMoO4 | shell | nanoflake | - | 582.2 Fg−1 (1 Ag−1) | 115.5% (5000 cycles) | 322.2 Fg−1 (10 Ag−1) | 32.5 | 750 | [55] |
NiMoO4-Co3O4 | core | nanosheet | - | 1722.3 Fg−1 (1 Ag−1) | 91% (6000 cycles) | 80.8% (10 Ag−1) | 37.1 | 798.0 | [58] |
Co3O4-MMoO4 (M = Ni) | shell | - | - | 2041 Fg−1 (0.5 Ag−1) | 72% (3000 cycles) | 1540 Fg−1 (8 Ag−1) | 41.9 | 298 | [59] |
Co3O4-NiMoO4 | shell | nanosheet | 10.28 | 1526 Fg−1 (3 mAcm−2) | 70% (1000 cycles) | 72% (30 mAcm−2) | 37.8 | 482 | [60] |
Co3O4-NiMoO4 | shell | nanosheet | 251.2 | 3.61 Fcm−2 (3 mAcm−2) | 77.4% (3000 cycles) | 2.96 Fcm−2 (15 mAcm−2) | - | - | [61] |
Co3O4-NiMoO4 | shell | nanosheet | - | 636.8 Cg−1 (5 mAcm−2) | 84.1% (2000 cycles) | 280.2 Cg−1 (40 mAcm−2) | 58.5 | 389 | [62] |
Co3O4-NiMoO4 | shell | nanosheet | - | 3.61 Fcm−2 (2 mAcm−2) | 101.3% (9000 cycles) | 44% (30 mAcm−2) | - | - | [63] |
Co3O4-NiMoO4 | shell | nanosheet | - | 1476 Fg−1 (1 Ag−1) | 96% (2000 cycles) | 1200 Fg−1 (20 Ag−1) | - | - | [64] |
Co3O4-NiMoO4 | shell | nanosheet | - | 2.3 Fcm−2 (1 mAcm−2) | 80% (4000 cycles) | 73% (20 Acm−2) | 0.249 mWh cm−2 | 1.6 mW cm−2 | [65] |
Co3O4-NiMoO4 | shell | nanosheet | 243.4 | 998.05 Fg−1 (0.5 Ag−1) | 89.9% (3000 cycles) | 880 Fg−1 (20 Ag−1) | - | - | [66] |
Co3O4-NiMoO4/CoMoO4 | NiMoO4/ CoMoO4 as shell | nanoflake | 253.5 | 272.2 mAhg−1 (1 Ag−1) | 84.5% (1000 cycles) | 114.9 mAhg−1 (25 Ag−1) | 53.9 | 1000 | [67] |
NiCo2O4-NiMoO4 | shell | nanofilm | - | 685.7 Cg−1 (1 Ag−1) | 100% (10000 cycles) | 621 Cg−1 (10 Ag−1) | 96.3 | 4050 | [71] |
NiCo2O4-NiMoO4 | shell | nanosheet | - | 5.80 Fcm−2 (10 mAcm−2) | 81.8% (5000 cycles) | 4.85 Fcm−2 (80 mAcm−2) | 21.7 | 157 | [72] |
NiCo2O4-NiMoO4 | shell | nanoflake | 121.9 | 1242 Fg−1 (10 mAcm−2) | 84% (5000 cycles) | 987 Fg−1 (80 mAcm−2) | - | - | [73] |
NiCo2O4-NiMoO4 | shell | nanosheet | - | 1770.95 Cg−1 (3 mAcm−2) | 102.78% (5000 cycles) | 1334.18 Cg−1 (40 mAcm−2) | 30.57 | 676.06 | [74] |
NiCo2O4-NiMoO4 | shell | nanoplate | - | 1974 Fg−1 (5 mAcm−2) | 76% (5000 cycles) | 1117 Fg−1 (100 mAcm−2) | 47 | 400 | [75] |
NiCo2O4-NiMoO4 | shell | nanosheet | - | 2806 Fg−1 (5 Ag−1) | 87.7% (5000 cycles) | 1408 Fg−1 (30 Ag−1) | 64.2 | 750 | [76] |
NiCo2O4-NiMoO4 | shell | nanosheet | 91.97 | 2.917 Fcm−2 (2 mAcm−2) | 90.6% (2000 cycles) | 1.608 Fcm−2 (40 mAcm−2) | - | - | [77] |
NiCo2O4-NiMoO4 | shell | nanosheet | NiCo2O4-NiMoO4/NF = 70.06 NiCo2O4-NiMoO4/CC = 74.34 | NF = 1.294 Fcm−2 CC = 0.443 Fcm−2 (50 mVs−1) | 80% (3000 cycles) | - | NF = 11.90 CC = 5.06 | 800 | [78] |
NiCo2O4-NiMoO4 | shell | nanosheet | 100.3 | 2474 Fg−1 (1 Ag−1) | 95% (1000 cycles) | 2080 Fg−1 (20 Ag−1) | 42.1 | 175 | [79] |
NiCo2O4-NiMoO4 | shell | nanoflake | - | 6.29 Fcm−2 (5 mAcm−2) | 87% (5000 cycles) | 3.58 Fcm−2 (100 mAcm−2) | - | - | [80] |
NiCo2O4-NiMoO4 | shell | nanosheet | - | 7.29 Fcm−2 (2 mAcm−2) | 82.2% (5000 cycles) | 84.1% (60 mAcm−2) | 52.6 | 332.4 | [81] |
NiCo2O4-NiMoO4 | shell | nanosheet | 30.56 | 2522 mFcm−2 (1 mAcm−2) | 89.8% (5000 cycles) | - | 53.3 | 750 | [82] |
NiCo2O4-NiMoO4 | shell | nanosheet | NiCo2O4-NiMoO4/NF = 14.52 (NH4F) NiCo2O4-NiMoO4/CC = 74.34 (urea) | NiCo2O4-NiMoO4/NF = 4.05 Fcm−2 (NH4F) NiCo2O4-NiMoO4/CC = 1.62 Fcm−2 (urea) | NiCo2O4-NiMoO4/NF = 80% (5000 cycles) (NH4F) | - | 70.78 | 3250 | [83] |
NiCo2O4-NiMoO4 | shell | nanoparticle | - | 3705 Fg−1 (1.5 Ag−1) | 94.6% (5000 cycles) | 3525 Fg−1 (30 Ag−1) | 76.45 | 370 | [84] |
NiCo2O4-NiMoO4/rGO | shell | nanoflake | 79.7 | 9.41 Fcm−2 (10 mAcm−2) | 75% (2000 cycles) | 6.02 Fcm−2 (50 mAcm−2) | - | - | [85] |
NiMoO4-NiCo2O4 | core | honeycomb nanostructure | - | 2695 Fg−1 (20 mAg−2) | 98.9% (3000 cycles) | 1527 Fg−1 (28 mAg−2) | 61.2 | 371.5 | [86] |
rZnCo2O4-NiMoO4·H2O | shell | nanosheet | - | 3.53 Fcm−2 (1 mAcm−2) | 95.4% (5000 cycles) | - | 2.55 mWhcm−3 | 0.033 Wcm−3 | [88] |
ZnCo2O4-NiMoO4 | shell | nanosheet | 156.52 | 1480.48 Fg−1 (2 mAcm−2) | 90.6% (15000 cycles) | 959.04 Fg−1 (50 mAcm−2) | 48.6 | 2820 | [89] |
ZnCo2O4-NiMoO4 | shell | nanosheet | - | 1912 Fg−1 (1 Ag−1) | 84.1% (10000 cycles) | 1040 Fg−1 (20 Ag−1) | 57.5 | 900 | [90] |
ZnCo2O4-NiMoO4 | shell | nanosheet | - | 1238.1 Cg−1 (3 mAcm−2) | 103.4% (5000 cycles) | 932.8 Cg−1 (40 mAcm−2) | 25.3 | 787.9 | [91] |
CuCo2O4-NiMoO4 | shell | nanosheet | - | 2207 Fg−1 (1.25 Ag−1) | 95.6% (5000 cycles) | 1560.35 Fg−1 (25 Ag−1) | 40 | - | [92] |
CuCo2O4-NiMoO4 | shell | nanosheet | - | 276 mAhg−1 (1 Ag−1) | 98.3% (8000 cycles) | 133 mAhg−1 (10 Ag−1) | 44.8 | 374.2 | [93] |
MnCo2O4-NiMoO4 | shell | nanosheet | 119.2 | 1244 Fg−1 (1 Ag−1) | 81% (2500 cycles) | 1132 Fg−1 (10 Ag−1) | 42 | 852.3 | [94] |
MnCo2O4-NiMoO4 | shell | nanoflake | - | 1718 Fg−1 (1 Ag−1) | 84% (6000 cycles) | 1200 Fg−1 (8 Ag−1) | 42.3 | 797 | [95] |
MgCo2O4-NiMoO4 | shell | nanosheet | - | 1775 Fg−1 (1 Ag−1) | 74.7% (5000 cycles) | 1191 Fg−1 (20 Ag−1) | 37.5 | 480 | [96] |
MgCo2O4-MMoO4 (M = Ni) | shell | nanosheet | - | 1111.57 Cg−1 (1 mAcm−2) | 90.04% (5000 cycles) | 788.09 Cg−1 (20 mAcm−2) | 23.46 | 102.6 | [97] |
NiCoMn-O -NiMoO4-C | shell | nanolayer | - | 2189.5 Fg−1 (0.25 Ag−1) | 81.6% (1500 cycles) | 1361.1 Fg−1 (20 Ag−1) | 59.9 | 214.1 | [98] |
ZnNiCo-O-NiMoO4 | shell | nanowire/ nanosheet | 185 | 338.5 mAhg−1 (3 mAcm−2) | 86% (10,000 cycles) | 71% (25 mAcm−2) | 35.3 | 5115.1 | [99] |
CoMoO4-NiMoO4·xH2O | shell | nanosheet | 100.79 | 1582 Fg−1 (1 Ag−1) | 97.1% (3000 cycles) | 1050 Fg−1 (15 Ag−1) | 41.8 | 700 | [100] |
CoMoO4-NiMoO4.xH2O | shell | nanorod | 17.0 | 1039 Fg−1 (2.5 mAcm−2) | 75.1% (1000 cycles) | 750 Fg−1 (100 mAcm−2) | - | - | [101] |
CoMoO4-NiMoO4 | shell | nanosheet | 31.77 | 1639.8 Fg−1 (10 mAcm−2) | 95% (3000 cycles) | 1106.9 Fg−1 (60 mAcm−2) | 28.7 | 267 | [102] |
NiMoO4-CoMoO4 | core | nanorod | - | 1445 Fg−1 (1 Ag−1) | 78.8% (3000 cycles) | 815 Fg−1 (10 Ag−1) | - | - | [103] |
NiMoO4-CoMoO4 | core | nanorod | - | 1164 Fg−1 (2 Ag−1) | 75% (3000 cycles) | 974 Fg−1 (20 Ag−1) | 23.1 | 375 | [104] |
NiMoO4-CoMoO4 | core | nanowire | - | 5.4 Fcm−2 (2 mAcm−2) | 82.6% (8000 cycles) | 3.1 Fcm−2 (40 mAcm−2) | 49.3 | 630 | [105] |
NiMoO4-Co3V2O8 | core | nanorod | 54.1 | 357 Cg−1 (1 Ag−1) | 89.7% (5000 cycles) | 77.8% (5 Ag−1) | 48.5 | 839.1 | [106] |
NiMoO4-NiWO4 | core | nanoflake | - | 1290 Fg−1 (2 Ag−1) | 93.1% (3000 cycles) | 101.3 Fg−1 (18 Ag−1) | - | - | [56] |
Zn-doped NiMoO4-AWO4 (A = Co or Mg) | Zn-doped NiMoO4 core | nanoneedle | - | 6.41 Fcm−2 (Zn-NiMoO4-MgWO4) 7.12 Fcm−2 (Zn-NiMoO4-CoWO4) at 2 mAcm−2 | 96% (1000 cycles) | - | - | - | [107] |
ZnFe2O4-NiMoO4 | shell | nanosheet | - | 1854 Fg−1 (1 Ag−1) | 91.6% (7000 cycles) | 1220 Fg−1 (20 Ag−1) | 58.6 | 799 | [108] |
NiMoO4-NiMoO4 | core/ shell | nanowire/nanosheet | 33.2 | 413 mAhg−1 (1 Ag−1) | 361.2 mAhg−1 (3000 cycles) | 220 mAhg−1 (20 Ag−1) | 47.2 | 1380 | [109] |
NiMoO4-NiMoO4.xH2O | NiMoO4 as core NiMoO4.xH2O as shell | NiMoO4 as nanorod and NiMoO4.xH2O as nanosheet | - | 6.34 Fcm−2 (4 mAcm−2) | 89% (5000 cycles) | 3.13 Fcm−2 (70 mAcm−2) | 141 mWhcm−2 | 0.38 mWcm−2 | [110] |
4.2. NiMoO4-Metal Hydroxide Composite
4.3. NiMoO4-Metal Chalcogenide Composite
Core-Shell Structure | Role of NiMoO4 | Morphology of NiMoO4 | Surface Area (m2g−1) | Specific Capacity/Specific Capacitance | Cycling Stability | Rate Capability | Energy Density (Whkg−1) | Power Density (Wkg−1) | Ref. |
---|---|---|---|---|---|---|---|---|---|
NiMoO4-metal hydroxide composite | |||||||||
NiMoO4-Ni(OH)2 | core | nanorod | - | 7.43 Fcm−2 (4 mAcm−2) | 72% (1000 cycles) | 3.06 Fcm−2 (112 mAcm−2) | - | - | [113] |
NiMoO4-Co(OH)2 | core | nanowire | - | 2.335 Fcm−2 (5 mAcm−2) | 83% (5000 cycles) | 0.909 Fcm−2 (50 mAcm−2) | - | - | [114] |
Ni-Co LDH-NiMoO4 | shell | nanosheet | 100.6 | 2100 Fg−1 (1 Ag−1) | 91% (5000 cycles) | 780 Fg−1 (10 Ag−1) | 538.3 | 2522 | [116] |
NiMoO4-Ni-Co LDH-NiCo2O4 | shell | nanosheet | - | 1035 Cg−1 (2587.5 Fg−1) at 1 Ag−1 | 80.6% (5000 cycles) | 688 Cg−1 (20 Ag−1) | 66.8 | 900 | [117] |
P-CoCH-NiMoO4 | core | nanosheet | - | 5.08 Fcm−2 (2 mAcm−2) | 82.7% (2000 cycles) | 3.27 Fcm−2 (20 mAcm−2) | - | - | [118] |
NiMoO4-metal chalcogenide composite | |||||||||
NiMoO4-Co3S4 | core | nanosheet | 62.04 | 359.31 mAhg−1 (0.5 Ag−1) | 82.9% (10000 cycles) | 56.94 mAhg−1 (10 Ag−1) | 33.4 | 387.50 | [121] |
NiMoO4-MoS2 | core | nanorod | 58.8 | 2246.7 Fg−1 (1 Ag−1) | 88.4% (5000 cycles) | 1200.4 Fg−1 (20 Ag−1) | 47.5 | 440 | [122] |
NiMoO4-Ni3S2 | core | nanorod | - | 2.3 Fcm−2 (1 mAcm−2) | 84.4% (6000 cycles) | 69.6% (40 mAcm−2) | 158.4 mWhcm−2 | 2.199 Wcm−2 | [124] |
Ni3S2-NiMoO4 | shell | nanosheet | - | 1327.3 μAhcm−2 (2 mAcm−2) | 96.7% (6000 cycles) | 900.9 μAhcm−2 (40 mAcm−2) | 121.5 | 2.285 kW kg−1 | [125] |
NiMoO4-NiS2/MoS2 | core | nanowire | 27.5 | 970 Fg−1 (5 Ag−1) | - | 711 Fg−1 (20 Ag−1) | 26.8 | 700 | [126] |
NiMoO4-Ni9S8/MoS2 | core | nanorod | 27.96 | 488.9 Fg−1 (1 Ag−1) | 81% (10000 cycles) | 52.9 Fg−1 (20 Ag−1) | - | - | [127] |
NiMoO4-C-Ni3S2 | core | nanowire | - | 7.9 Fcm−2 (5 mAcm−2) | 78.9% (3000 cycles) | 1.57 Fcm−2 (50 mAcm−2) | 1.29 mWhcm−3 | 13.99 Wcm−3 | [128] |
NiCo2S4-NiMoO4·xH2O | shell | nanosheet | - | 830.2 Fg−1 (2 Ag−1) | 89.9% (5000 cycles) | 380.9 Fg−1 (20 Ag−1) | 19.3 | 795.7 | [129] |
NiCo2S4-NiMoO4 | shell | nanosheet | - | 1487.6 Fg−1 (1 Ag−1) | 89.7% (8000 cycles) | 1154.3 Fg−1 (20 Ag−1) | 53.2 | 560 | [130] |
NiCo2S4-NiMoO4 | shell | nanosheet | - | 2006 Fg−1 (5 mAcm−2) | 75% (2000 cycles) | 1305 Fg−1 (50 mAcm−2) | 21.4 | 58 | [131] |
NiCo2S4-NiMoO4 | shell | nanosheet | 95 | 1714 Fg−1 (1 Ag−1) | 96% (5000 cycles) | 1314 Fg−1 (20 Ag−1) | 29.1 | 172 | [132] |
NiCo2S4-NiMoO4 | shell | nanosheet | 10.08 | 673.3 μAhcm−2 (5 mAcm−2) | 84.2% (2000 cycles) | 636.7 μAhcm−2 (100 mAcm−2) | 33.1 | 219 | [133] |
NiCo2OxSy-NiMoO4 | shell | nanosheet | - | 17.75 Fcm−2 (1345 Fg−1) at 10mAcm−2 | 69.3% (2000 cycles) | 43% (50 mAcm−2) | 5.28 | 329 | [134] |
NiMoO4-Ni-Co-S | core | nanorod | - | 1892 Fg−1 (5 mAcm−2) | 91.7% (6000 cycles) | 842 Fg−1 (40 mAcm−2) | 2.45 mWh cm−3 | 0.131 Wcm−3 | [135] |
NiMoO4/CoMoO4-Ni-Co-S | NiMoO4/CoMoO4 core | nanorod | - | 778.1 Fg−1 (0.5 Ag−1) | 98% (5000 cycles) | 648.4 Fg−1 (4 Ag−1) | 33.1 | 199.6 | [123] |
rGO-NiMoO4-Ni-Co-S | core | NiMoO4 hollow nanotube | - | 318 mAhg−1 (1 Ag−1) | 88.87% (10000 cycles) | 212 mAhg−1 (20 Ag−1) | 57.24 | 801.8 | [136] |
Ni-Co-Se-NiMoO4 | shell | nanosheet | 114 | 396.1 mAhg−1 (1 Ag−1) | 87.6% (8000 cycles) | 283.3 mAhg−1 (20 Ag−1) | 63.1 | 799.8 | [137] |
NiMoO4-NiMoS4 | core | nanorod | 18.6 | 832.3 Fg−1 (5 A g−1) | 81.4% (1000 cycles) | 555 Fg−1 (15 Ag−1) | 22.84 | 3750 | [138] |
NiMoO4-carbon material composite | |||||||||
C-NiMoO4 | shell | nanograin | - | 268.8 Fg−1 (0.5 Ag−1) | 88.4% (2000 cycles) | 168.4 Fg−1 (10 Ag−1) | - | - | [139] |
Carbon nanofiber-NiMoO4 | shell | nanosheet | 280 | 1840 Fg−1 (1 Ag−1) | 78.3% (10000 cycles) | 78% (20 Ag−1) | 23.9 | 750 | [140] |
N-C-NiMoO4 | shell | nanosheet | 258.2 | 1242 Fg−1 (1 Ag−1) | 82.9% (2000 cycles) | 581 Fg−1 (20 Ag−1) | 44.6 | 250.4 | [141] |
XMoO4-carbon submicrofiber (X = Ni, Co) | shell | nanosheet | 75.722 | 1600 Fg−1 (1 Ag−1) | 90.7% (3000 cycles) | 1166 Fg−1 (10 Ag−1) | 55.33 | 999.89 | [142] |
NiMoO4-CNTs-CuO | shell | nanosheet | 7.08 | 23.40 Fcm−2 (2 mAcm−2) | 82.53% (10000 cycles) | 12.9 Fcm−2 (22 mAcm−2) | 96.40 mWhcm−3 | 0.4 Wcm−3 | [143] |
NiMoO4/V2CTx-rGO | NiMoO4/ V2CTx as yolk | nanoparticle | 100.74 | 1022 Fg−1 (1 Ag−1) | 88.9% (3000 cycles) | 827 Fg−1 (10 Ag−1) | 56.1 | 800 | [144] |
NiMoO4-conductive polymer structures | |||||||||
NiMoO4-PANI | core | nanorod | 56.14 | 1214 Fg−1 (1 Ag−1) | 80.7% (2000 cycles) | 813 Fg−1 (20 Ag−1) | 33.07 | 240 | [145] |
PPy-NiMoO4 | core | nanowire | - | 3.4 Fcm−2 (5 mAcm−2) | 94% (5000 cycles) | 2.30 Fcm−2 (50 mAcm−2) | 0.5 mWcm−2 | 3.7 mWhcm−2 | [146] |
NiCo2O4-NiMoO4/PANI | shell | nanoplate | - | 2.38 Fcm−2 (1 mAcm−2) | 92.36% (5000 cycles) | 1.508 Fcm−2 (10 mAcm−2) | 90 | 443.2 | [147] |
NiO-NiMoO4-PPy | NiMoO4 and PPy as shell | porous spherical nanostructure | 170.10 | 1645.1 Fg−1 (1 Ag−1) | 77.1% (30000 cycles) | 843.2 Fg−1 (20 Ag−1) | - | - | [148] |
4.4. NiMoO4-Carbon Material Composite
4.5. NiMoO4-Conductive Polymer Composite
5. Conclusions
6. Future Perspectives
- The porous structure of the core-shell-based devices possesses the advantages of the enhancement of the electrode-electrolyte contact area and the shortened distance of electron/ion diffusion from the active medium to the current collector. The morphological feature of the porous core-shell structure is nearly independent of the choice of substrate used to grow the NiMoO4 composite through the hydrothermal method. Those advantages can lead to superior specific capacitance rate capability and long cycling stability. However, its poor crystallinity that possibly occurs may pose the challenge of inadequate electrical conductivity. This possible shortcoming can be compensated for by the use of the proper substrate. Additional focus can be placed on the substrate for optimizing the SCs’ performances;
- When compared with other synthesis methods, the hydrothermal approach offers a direct and efficient way to synthesize distinctive core-shell composites based on NiMoO4 and to get improved electrochemical performances by modifying the temperature, reaction time, type, and concentration of surfactants. This method plays a crucial role in the morphology of the composite material. For example, when the reaction time exceeds that required, the shell thickness becomes increased and disordered, with the consequence of distorting/collapsing the original structure and eventually producing cracks. This would, in turn, result in poor electrolyte infiltration. Moreover, mass loading should be optimized as it affects the specific capacitance and energy storage capacity. Future research needs to focus on such parameter optimization for better SCs performance;
- The choice of electrolyte based on conductivity and ionic mobility is crucial for good supercapacitive performance. Generally, aqueous electrolytes have higher conductivity than non-aqueous and solid electrolytes due to their low dynamic viscosity. Aqueous electrolytes, such as alkali metal-based hydroxy (KOH, NaOH) and sulfate electrolytes (Na2SO4, H2SO4), are commonly used for supercapacitors. The KOH electrolyte is the most popular among all due to its smaller hydrated ions (ionic radius~3.31 Å), therefore often used in all types of the core-shell structures of the NiMoO4-based composites;
- Various morphologies for the core-shell structures of the NiMoO4-based composite materials have been investigated, such as the nanosheets, the nanowires, the nanorods, and the nanoflakes. Among those reported, the nanosheets exhibited a higher specific capacitance than the others due to a large SSA. They could also facilitate fast electron/ion transport with increasing conductive channels and hold up their volume during the long charge/discharge cycles. These merits can lead nanosheets to gather more research interests for finding SCs applications;
- The combination of Ni-Co-based oxides with NiMoO4 has often been reported in the literature. When compared to all other core-shell composites, Ni-Co-based sulfides coupled with NiMoO4 for the core-shell structures showed superior electrochemical performance due to the participation of Ni2+/Ni3+ and Co2+/Co3+ in redox reactions. Moreover, cobalt sulfides, as opposed to their oxide counterparts, have a more varied crystal structure, high electrical conductivity, and good electrochemical activity;
- To date, only a few reports are available on NiMoO4-based core-shell composites consisting of metal sulfides, carbon materials, and conductive polymers. Therefore, other types of mixed transition metal oxides (metal tungstates, metal vanadates)/sulfides can be exploited with NiMoO4 for core-shell composites to achieve a higher reversible redox activity and specific capacitance than the single metal oxides/sulfides;
- Compact and flexible energy storage devices can be developed for advanced thin and wearable electronics. The complex, hollow, and branched core-shell nanostructured composites can be designed to fit the future supercapacitor.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Singh, S.; Jain, S.; Venkateswaran, P.S.; Tiwari, A.K.; Nouni, M.R.; Pandey, J.K.; Goel, S. Hydrogen: A sustainable fuel for future of the transport sector. Renew. Sustain. Energy Rev. 2015, 51, 623–633. [Google Scholar] [CrossRef]
- Liu, X.; Chen, S.; Xiong, Z.; Li, K.; Zhang, Y. Tungsten oxide-based nanomaterials for supercapacitors: Mechanism, fabrication, characterization, multifunctionality, and electrochemical performance. Prog. Mater. Sci. 2022, 130, 100978. [Google Scholar] [CrossRef]
- Huang, S.; Zhu, X.; Sarkar, S.; Zhao, Y. Challenges and opportunities for supercapacitors. APL Mater. 2019, 7, 100901. [Google Scholar] [CrossRef] [Green Version]
- Swain, N.; Saravanakumar, B.; Kundu, M.; Schmidt-Mende, L.; Ramadoss, A. Recent trends in template assisted 3D porous materials for electrochemical supercapacitors. J. Mater. Chem. A 2021, 9, 25286–25324. [Google Scholar] [CrossRef]
- Borenstein, A.; Hanna, O.; Attias, R.; Luski, S.; Brousse, T.; Aurbach, D. Carbon-based composite materials for supercapacitor electrodes: A review. J. Mater. Chem. A 2017, 5, 12653–12672. [Google Scholar] [CrossRef]
- Sun, J.; Huang, Y.; Sea, Y.N.S.; Xue, Q.; Wang, Z.; Zhu, M.; Li, H.; Tao, X.; Zhi, C.; Hu, H. Recent progress of fiber-shaped asymmetric supercapacitors. Mater. Today Energy 2017, 5, 1–14. [Google Scholar] [CrossRef]
- Kour, S.; Tanwar, S.; Sharma, A. A review on challenges to remedies of MnO2 based transition-metal oxide, hydroxide, and layered double hydroxide composites for supercapacitor applications. Mater. Today Commun. 2022, 32, 104033. [Google Scholar] [CrossRef]
- Low, W.H.; Khiew, P.S.; Lim, S.S.; Siong, C.W.; Ezeigwe, E.R. Recent development of mixed transition metal oxide and graphene/mixed transition metal oxide based hybrid nanostructures for advanced supercapacitors. J. Alloys Compd. 2018, 775, 1324–1356. [Google Scholar] [CrossRef]
- Francis, M.K.; Bhargav, P.B.; Ramesh, A.; Ahmed, N.; Balaji, C. Electrochemical performance analysis of NiMoO4/α-MoO3 composite as anode material for high capacity lithium-ion batteries. Appl. Phys. A 2022, 128, 132. [Google Scholar] [CrossRef]
- Deng, W.; Ji, X.; Chen, Q.; Banks, C.E. Electrochemical capacitors utilising transition metal oxides: An update of recent developments. RSC Adv. 2011, 1, 1171–1178. [Google Scholar] [CrossRef]
- Maksoud, M.I.A.A.; Reheem, A.M.A.; Waly, S.A.; Fahim, R.A.; Ahour, A.H. Tuning the structure, optical, and magnetic properties of nanostructured NiMoO4 by nitrogen plasma treatment. Appl. Phys. A 2022, 128, 300. [Google Scholar] [CrossRef]
- Ray, S.K.; Joshi, B.; Ramani, S.; Park, S.; Hur, J. Multicolor and white light upconversion luminescence in α-NiMoO4:Yb3+/Ln3+ (Ln = Tm, Ho, Tm/Ho) nanoparticles. J. Alloys Compd. 2021, 892, 162101. [Google Scholar] [CrossRef]
- Yang, L.; Wang, J.; Wan, Y.; Li, Y.; Xie, H.; Cheng, H.; Seo, H.J. Structure and effective visible-light-driven photocatalytic activity of α-NiMoO4 for degradation of methylene blue dye. J. Alloys Compd. 2015, 664, 756–763. [Google Scholar] [CrossRef]
- Jeseentharani, V.; Dayalan, A.; Nagaraja, K. Nanocrystalline composites of transition metal molybdate (Ni1−xCoxMoO4; x = 0, 0.3, 0.5, 0.7, 1) synthesized by a co-precipitation method as humidity sensors and their photoluminescence properties. J. Phys. Chem. Solids 2018, 115, 75–83. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, H.-L.; Jia, X.-D.; Wang, S.-W.; Yan, J.; Luo, H.-W.; Gao, K.-Z.; Fang, H.; Zhang, A.-Q.; Wang, L.-Z. NiMoO4 nanorods supported on nickel foam for high-performance supercapacitor electrode materials. J. Renew. Sustain. Energy 2018, 10, 054101. [Google Scholar] [CrossRef]
- Murugan, E.; Govindaraju, S.; Santhoshkumar, S. Hydrothermal synthesis, characterization and electrochemical behavior of NiMoO4 nanoflower and NiMoO4/rGO nanocomposite for high-performance supercapacitors. Electrochim. Acta 2021, 392, 138973. [Google Scholar] [CrossRef]
- Seevakan, K.; Manikandan, A.; Devendran, P.; Shameem, A.; Alagesan, T. Microwave combustion synthesis, magneto-optical and electrochemical properties of NiMoO4 nanoparticles for supercapacitor application. Ceram. Int. 2018, 44, 13879–13887. [Google Scholar] [CrossRef]
- Moosavifard, S.E.; Shamsi, J.; Ayazpour, M. 2D high-ordered nanoporous NiMoO4 for high-performance supercapacitors. Ceram. Int. 2015, 41, 1831–1837. [Google Scholar] [CrossRef]
- Jiang, L.-B.; Yuan, X.-Z.; Liang, J.; Zhang, J.; Wang, H.; Zeng, G.-M. Nanostructured core-shell electrode materials for electrochemical capacitors. J. Power Sources 2016, 331, 408–425. [Google Scholar] [CrossRef]
- Peng, S.; Li, L.; Bin Wu, H.; Madhavi, S.; Lou, X.W. Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv. Energy Mater. 2014, 5, 1401172. [Google Scholar] [CrossRef]
- Minakshi, M.; Watcharatharapong, T.; Chakraborty, S.; Ahuja, R. A combined theoretical and experimental approach of a new ternary metal oxide in molybdate composite for hybrid energy storage capacitors. APL Mater. 2018, 6, 047701. [Google Scholar] [CrossRef] [Green Version]
- Eda, K.; Kato, Y.; Ohshiro, Y.; Sugitani, T.; Whittingham, M.S. Synthesis, crystal structure, and structural conversion of Ni molybdate hydrate NiMoO4·nH2O. J. Solid State Chem. 2010, 183, 1334–1339. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Hanson, J.C.; Chaturvedi, S.; Maiti, A.; Brito, J.L. Phase transformations and electronic properties in mixed-metal oxides: Experimental and theoretical studies on the behavior of NiMoO4 and MgMoO4. J. Chem. Phys. 2000, 112, 935–945. [Google Scholar] [CrossRef]
- Cao, Z.; Liu, C.; Huang, Y.; Gao, Y.; Wang, Y.; Li, Z.; Yan, Y.; Zhang, M. Oxygen-vacancy-rich NiCo2O4 nanoneedles electrode with poor crystallinity for high energy density all-solid-state symmetric supercapacitors. J. Power Sources 2020, 449, 227571. [Google Scholar] [CrossRef]
- Padmanathan, N.; Shao, H.; Razeeb, K.M. Honeycomb micro/nano-architecture of stable β-NiMoO4 electrode/catalyst for sustainable energy storage and conversion devices. Int. J. Hydrogen Energy 2020, 45, 30911–30923. [Google Scholar] [CrossRef]
- Ma, X.-J.; Zhang, W.-B.; Kong, L.-B.; Luo, Y.-C.; Kang, L. NiMoO4-modified MnO2 hybrid nanostructures on nickel foam: Electrochemical performance and supercapacitor applications. New J. Chem. 2015, 39, 6207–6215. [Google Scholar] [CrossRef]
- Sharma, P.; Minakshi, M.; Whale, J.; Jean-Fulcrand, A.; Garnweitner, G. Effect of the Anionic Counterpart: Molybdate vs. Tungstate in Energy Storage for Pseudo-Capacitor Applications. Nanomaterials 2021, 11, 580. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Javed, M.S.; Asim, S.; Shaheen, A.; Khan, A.J.; Abbas, Y.; Ullah, N.; Iqbal, A.; Wang, M.; Qiao, G.; et al. Novel gravel-like NiMoO4 nanoparticles on carbon cloth for outstanding supercapacitor applications. Ceram. Int. 2020, 46, 6406–6412. [Google Scholar] [CrossRef]
- Zhang, S.-W.; Yin, B.-S.; Liu, C.; Wang, Z.-B.; Gu, D.-M. NiMoO4 nanowire arrays and carbon nanotubes film as advanced electrodes for high-performance supercapacitor. Appl. Surf. Sci. 2018, 458, 478–488. [Google Scholar] [CrossRef]
- Hao, Y.; Huang, H.; Wang, Q.; Wang, Q.; Zhou, G. Nitrogen-doped carbon/NiMoO4 nanospheres assembled by nanosheets and ultrasmall nanoparticles for supercapacitors. Chem. Phys. Lett. 2019, 728, 215–223. [Google Scholar] [CrossRef]
- Lin, L.; Liu, T.; Liu, J.; Sun, R.; Hao, J.; Ji, K.; Wang, Z. Facile synthesis of groove-like NiMoO4 hollow nanorods for high-performance supercapacitors. Appl. Surf. Sci. 2016, 360, 234–239. [Google Scholar] [CrossRef]
- Raj, C.J.; Manikandan, R.; Yu, K.H.; Nagaraju, G.; Park, M.-S.; Kim, D.-W.; Park, S.Y.; Kim, B.C. Engineering thermally activated NiMoO4 nanoflowers and biowaste derived activated carbon-based electrodes for high-performance supercapatteries. Inorg. Chem. Front. 2020, 7, 369–384. [Google Scholar] [CrossRef]
- Qing, C.; Yang, C.; Chen, M.; Li, W.; Wang, S.; Tang, Y. Design of oxygen-deficient NiMoO4 nanoflake and nanorod arrays with enhanced supercapacitive performance. Chem. Eng. J. 2018, 354, 182–190. [Google Scholar] [CrossRef]
- Cai, D.; Wang, D.; Liu, B.; Wang, Y.; Liu, Y.; Wang, L.; Li, H.; Huang, H.; Li, Q.; Wang, T. Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications. ACS Appl. Mater. Interfaces 2013, 5, 12905–12910. [Google Scholar] [CrossRef]
- Abbas, Y.; Yun, S.; Javed, M.S.; Chen, J.; Tahir, M.F.; Wang, Z.; Yang, C.; Arshad, A.; Hussain, S. Anchoring 2D NiMoO4 nano-plates on flexible carbon cloth as a binder-free electrode for efficient energy storage devices. Ceram. Int. 2020, 46, 4470–4476. [Google Scholar] [CrossRef]
- Cai, D.; Liu, B.; Wang, D.; Liu, Y.; Wang, L.; Li, H.; Wang, Y.; Wang, C.; Li, Q.; Wang, T. Enhanced performance of supercapacitors with ultrathin mesoporous NiMoO4 nanosheets. Electrochim. Acta 2014, 125, 294–301. [Google Scholar] [CrossRef]
- Chen, C.; He, S.; Dastafkan, K.; Zou, Z.; Wang, Q.; Zhao, C. Sea urchin-like NiMoO4 nanorod arrays as highly efficient bifunctional catalysts for electrocatalytic/photovoltage-driven urea electrolysis. Chin. J. Catal. 2022, 43, 1267–1276. [Google Scholar] [CrossRef]
- Cai, D.; Liu, B.; Wang, D.; Liu, Y.; Wang, L.; Li, H.; Wang, Y.; Wang, C.; Li, Q.; Wang, T. Facile hydrothermal synthesis of hierarchical ultrathin mesoporous NiMoO4 nanosheets for high performance supercapacitors. Electrochim. Acta 2014, 115, 358–363. [Google Scholar] [CrossRef]
- Huang, L.; Xiang, J.; Zhang, W.; Chen, C.; Xu, H.; Huang, Y. 3D interconnected porous NiMoO4 nanoplate arrays on Ni foam as high-performance binder-free electrode for supercapacitors. J. Mater. Chem. A 2015, 3, 22081–22087. [Google Scholar] [CrossRef]
- Hong, J.; Lee, Y.-W.; Hou, B.; Ko, W.; Lee, J.; Pak, S.; Hong, J.; Morris, S.M.; Cha, S.; Sohn, J.I.; et al. Solubility-Dependent NiMoO4 Nanoarchitectures: Direct Correlation between Rationally Designed Structure and Electrochemical Pseudokinetics. ACS Appl. Mater. Interfaces 2016, 8, 35227–35234. [Google Scholar] [CrossRef]
- Feng, X.; Ning, J.; Wang, D.; Zhang, J.; Xia, M.; Wang, Y.; Hao, Y. Heterostructure arrays of NiMoO4 nanoflakes on N-doping of graphene for high-performance asymmetric supercapacitors. J. Alloys Compd. 2020, 816, 152625. [Google Scholar] [CrossRef]
- Keshari, A.S.; Dubey, P. Rapid microwave-assisted vs. hydrothermal synthesis of hierarchical sheet-like NiO/NiMoO4 hybrid nanostructures for high performance extrinsic pseudocapacitor application. J. Energy Storage 2021, 40, 102629. [Google Scholar] [CrossRef]
- Ajay, A.; Paravannoor, A.; Joseph, J.; Amruthalakshmi, V.; Anoop, S.S.; Nair, S.V.; Balakrishnan, A. 2D amorphous frameworks of NiMoO4 for supercapacitors: Defining the role of surface and bulk controlled diffusion processes. Appl. Surf. Sci. 2015, 326, 39–47. [Google Scholar] [CrossRef]
- Kumbhar, V.S.; Nguyen, V.Q.; Lee, Y.R.; Lokhande, C.D.; Kim, D.-H.; Shim, J.-J. Electrochemically growth-controlled honeycomb-like NiMoO4 nanoporous network on nickel foam and its applications in all-solid-state asymmetric supercapacitors. New J. Chem. 2018, 42, 14805–14816. [Google Scholar] [CrossRef]
- Ho, K.-C.; Lin, L.-Y. A review of electrode materials based on core–shell nanostructures for electrochemical supercapacitors. J. Mater. Chem. A 2019, 7, 3516–3530. [Google Scholar] [CrossRef]
- Ghosh Chaudhuri, R.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373–2433. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Yao, D.; Jiang, L.; Tao, Y.; Che, J.; He, G.; Chen, H. Mn-Doped NiMoO4 Mesoporous Nanorods/Reduced Graphene Oxide Composite for High-Performance All-Solid-State Supercapacitor. ACS Appl. Energy Mater. 2020, 3, 1794–1803. [Google Scholar] [CrossRef]
- Guo, D.; Luo, Y.; Yu, X.; Li, Q.; Wang, T. High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 2014, 8, 174–182. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, L.; Guo, X. Ultrathin mesoporous NiMoO4-modified MoO3 core/shell nanostructures: Enhanced capacitive storage and cycling performance for supercapacitors. Chem. Eng. J. 2018, 353, 615–625. [Google Scholar] [CrossRef]
- Yu, D.; Zhang, Z.; Teng, Y.; Meng, Y.; Wu, Y.; Liu, X.; Hua, Y.; Zhao, X.; Liu, X. Fabrication of CuO@NiMoO4 core-shell nanowire arrays on copper foam and their application in high-performance all-solid-state asymmetric supercapacitors. J. Power Sources 2019, 440, 227164. [Google Scholar] [CrossRef]
- Zeng, Y.; Liao, J.; Wei, B.; Huang, Z.; Zhu, W.; Zheng, J.; Liang, H.; Zhang, Y.; Wang, Z. Tuning the electronic structure of NiMoO4 by coupling with SnO2 for high-performance hybrid supercapacitors. Chem. Eng. J. 2020, 409, 128297. [Google Scholar] [CrossRef]
- Guo, D.; Ren, W.; Chen, Z.; Mao, M.; Li, Q.; Wang, T. NiMoO4 nanowire@MnO2 nanoflake core/shell hybrid structure aligned on carbon cloth for high-performance supercapacitors. RSC Adv. 2015, 5, 10681–10687. [Google Scholar] [CrossRef]
- Chen, H.; Yu, L.; Zhang, J.M.; Liu, C.P. Construction of hierarchical NiMoO4@MnO2 nanosheet arrays on titanium mesh for supercapacitor electrodes. Ceram. Int. 2016, 42, 18058–18063. [Google Scholar] [CrossRef]
- Pang, M.; Jiang, S.; Ji, Y.; Zhao, J.; Xing, B.; Pan, Q.; Yang, H.; Qu, W.; Gu, L.; Wang, H. Comparison of α-NiMoO4 nanorods and hierarchical α-NiMoO4@δ-MnO2 core-shell hybrid nanorod/nanosheet aligned on Ni foam for supercapacitors. J. Alloys Compd. 2017, 708, 14–22. [Google Scholar] [CrossRef]
- Wang, X.; Xia, H.; Gao, J.; Shi, B.; Fang, Y.; Shao, M. Enhanced cycle performance of ultraflexible asymmetric supercapacitors based on a hierarchical MnO2@NiMoO4 core–shell nanostructure and porous carbon. J. Mater. Chem. A 2016, 4, 18181–18187. [Google Scholar] [CrossRef]
- Reddy, A.E.; Anitha, T.; Gopi, C.V.V.M.; Rao, S.S.; Kim, H.-J. NiMoO4@NiWO4 honeycombs as a high performance electrode material for supercapacitor applications. Dalton Trans. 2018, 47, 9057–9063. [Google Scholar] [CrossRef]
- Hao, J.; Wu, W.; Wang, Q.; Yan, D.; Liu, G.; Peng, S. Effect of grain size on electrochemical performance and kinetics of Co3O4 electrode materials. J. Mater. Chem. A 2020, 8, 7192–7196. [Google Scholar] [CrossRef]
- Xuan, H.; Wang, R.; Yang, J.; Zhang, G.; Liang, X.; Li, Y.; Xie, Z.; Han, P. Synthesis of NiMoO4@Co3O4 hierarchical nanostructure arrays on reduced graphene oxide/Ni foam as binder-free electrode for asymmetric supercapacitor. J. Mater. Sci. 2021, 56, 9419–9433. [Google Scholar] [CrossRef]
- Ma, X.-J.; Kong, L.-B.; Zhang, W.-B.; Liu, M.-C.; Luo, Y.-C.; Kang, L. Design and synthesis of 3D Co3O4@MMoO4 (M = Ni, Co) nanocomposites as high-performance supercapacitor electrodes. Electrochim. Acta 2014, 130, 660–669. [Google Scholar] [CrossRef]
- Hong, W.; Wang, J.; Gong, P.; Sun, J.; Niu, L.; Yang, Z.; Wang, Z.; Yang, S. Rational construction of three dimensional hybrid Co3O4@NiMoO4 nanosheets array for energy storage application. J. Power Sources 2014, 270, 516–525. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Jian, J.; Fan, Y.; Yu, L.; Cheng, G.; Zhou, J.; Sun, M. Design of three dimensional hybrid Co3O4@NiMoO4 core/shell arrays grown on carbon cloth as high-performance supercapacitors. RSC Adv. 2016, 6, 13957–13963. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Mao, L.; Cheng, D.; Zhan, Z.; Xiong, J. Growth of three-dimensional hierarchical Co3O4@NiMoO4 core-shell nanoflowers on Ni foam as electrode materials for hybrid supercapacitors. Mater. Lett. 2016, 182, 298–301. [Google Scholar] [CrossRef]
- Yang, F.; Xu, K.; Hu, J. Hierarchical multicomponent electrode with NiMoO4 nanosheets coated on Co3O4 nanowire arrays for enhanced electrochemical properties. J. Alloys Compd. 2018, 781, 1127–1131. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, P.; Fu, W.; Ma, X.; Zhou, J.; Zhang, X.; Li, J.; Xie, E.; Pan, X. Understanding the role of Co3O4 on stability between active hierarchies and scaffolds: An insight into NiMoO4 composites for supercapacitors. Appl. Surf. Sci. 2017, 416, 160–167. [Google Scholar] [CrossRef]
- Hu, Q.; Kang, C.; Cao, S.; Zhou, C.; Liu, Q. NiMoO4 nanosheets grown on MOF-derived leaf-like Co3O4 nanosheet arrays for high-performance supercapacitors. J. Alloys Compd. 2021, 883, 160867. [Google Scholar] [CrossRef]
- Dong, T.; Li, M.; Wang, P.; Yang, P. Synthesis of hierarchical tube-like yolk-shell Co3O4@NiMoO4 for enhanced supercapacitor performance. Int. J. Hydrogen Energy 2018, 43, 14569–14577. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, S.; Deng, C.-Y.; Wei, H.-L.; Zhou, J.-H.; Chen, Z.-X.; Yang, H.; Liu, M.-J.; Gu, B.-N.; Chung, C.-C.; et al. Hierarchically Hybrid Porous Co3O4@NiMoO4/CoMoO4 Heterostructures for High-Performance Electrochemical Energy Storage. ACS Appl. Mater. Interfaces 2022, 14, 8282–8296. [Google Scholar] [CrossRef]
- Zhang, G.; Lou, X.W. General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv. Mater. 2012, 25, 976–979. [Google Scholar] [CrossRef]
- Huang, L.; Chen, D.; Ding, Y.; Feng, S.; Wang, Z.L.; Liu, M. Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 2013, 13, 3135–3139. [Google Scholar] [CrossRef]
- Gong, X.; Cheng, J.; Liu, F.; Zhang, L.; Zhang, X. Nickel–Cobalt hydroxide microspheres electrodepositioned on nickel cobaltite nanowires grown on Ni foam for high-performance pseudocapacitors. J. Power Sources 2014, 267, 610–616. [Google Scholar] [CrossRef]
- Cui, D.; Zhao, R.; Dai, J.; Xiang, J.; Wu, F. A hybrid NiCo2O4@NiMoO4 structure for overall water splitting and excellent hybrid energy storage. Dalton Trans. 2020, 49, 9668–9679. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Yang, Y.; Xie, J.; Fang, C.; Zhang, G.; Xiong, J. Hierarchical NiCo2O4@NiMoO4 core–shell hybrid nanowire/nanosheet arrays for high-performance pseudocapacitors. J. Mater. Chem. A 2015, 3, 14348–14357. [Google Scholar] [CrossRef]
- Gu, Z.; Nan, H.; Geng, B.; Zhang, X. Three-dimensional NiCo2O4@NiMoO4 core/shell nanowires for electrochemical energy storage. J. Mater. Chem. A 2015, 3, 12069–12075. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, J.; Yu, D.; Guo, C.; Liu, L.; Hua, Y.; Wang, C.; Zhao, X.; Liu, X. Design of NiCo2O4@NiMoO4 core–shell nanoarrays on nickel foam to explore the application in both energy storage and electrocatalysis. Mater. Chem. Front. 2022, 6, 1056–1067. [Google Scholar] [CrossRef]
- Xue, W.-D.; Yin, H.; Wang, W.-J.; Zhao, R. Design and Fabrication of Petal-Like NiCo2O4@NiMoO4Core/Shell Nanosheet Arrys Electrode for Asymmetric Supercapacitors. J. Electrochem. Soc. 2016, 164, A482–A489. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, Z.; Zhou, C.; Zhang, H. Tuning the morphology and size of NiMoO4 nanosheets anchored on NiCo2O4 nanowires: The optimized core-shell hybrid for high energy density asymmetric supercapacitors. Appl. Surf. Sci. 2021, 541, 148458. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, W.; Xiang, J.; Xu, H.; Li, G.; Huang, Y. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors. Sci. Rep. 2016, 6, 31465. [Google Scholar] [CrossRef] [Green Version]
- Hong, W.-L.; Lin, L.-Y. Studying the substrate effects on energy storage abilities of flexible battery supercapacitor hybrids based on nickel cobalt oxide and nickel cobalt oxide@nickel molybdenum oxide. Electrochim. Acta 2019, 308, 83–90. [Google Scholar] [CrossRef]
- Zhang, Q.; Deng, Y.; Hu, Z.; Liu, Y.; Yao, M.; Liu, P. Seaurchin-like hierarchical NiCo2O4@NiMoO4 core–shell nanomaterials for high performance supercapacitors. Phys. Chem. Chem. Phys. 2014, 16, 23451–23460. [Google Scholar] [CrossRef]
- Xue, W.-D.; Wang, W.-J.; Fu, Y.-F.; He, D.-X.; Zeng, F.-Y.; Zhao, R. Rational synthesis of honeycomb-like NiCo2O4@NiMoO4 core/shell nanofilm arrays on Ni foam for high-performance supercapacitors. Mater. Lett. 2017, 186, 34–37. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, J.; Chen, W.; Zhao, Y.; Mu, X.; Zhang, Z.; Pan, X.; Xie, E. Constructing highly-efficient electron transport channels in the 3D electrode materials for high-rate supercapacitors: The case of NiCo2O4@NiMoO4 hierarchical nanostructures. Chem. Eng. J. 2017, 307, 687–695. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, C.; Hou, H.; Ma, Y.; Yuan, S. Tuning the electrochemical performance of NiCo2O4@NiMoO4 core-shell heterostructure by controlling the thickness of the NiMoO4 shell. Chem. Eng. J. 2019, 370, 400–408. [Google Scholar] [CrossRef]
- Hong, W.-L.; Lin, L.-Y. Design of nickel cobalt oxide and nickel cobalt oxide@nickel molybdenum oxide battery-type materials for flexible solid-state battery supercapacitor hybrids. J. Power Sources 2019, 435, 226797. [Google Scholar] [CrossRef]
- Kumbhar, V.S.; Lee, W.; Lee, K. Self-assembly of NiMoO4 nanoparticles on the ordered NiCo2O4 ultra-thin nanoflakes core-shell electrode for high energy density supercapacitors and efficient oxygen evolution reaction. Ceram. Int. 2020, 46, 22837–22845. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, W.; Han, R.; Xu, J.; Sun, Z.; Liu, J.; Wu, Y. Facile Construction of 3D Packing Porous Flower-Like NiCo2O4@NiMoO4/rGO Hybrids as High-Performance Supercapacitors with Large Areal Capacitance. Energy Technol. 2018, 7, 1800940. [Google Scholar] [CrossRef]
- Yedluri, A.K.; Kim, H.-J. Wearable super-high specific performance supercapacitors using a honeycomb with folded silk-like composite of NiCo2O4 nanoplates decorated with NiMoO4 honeycombs on nickel foam. Dalton Trans. 2018, 47, 15545–15554. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, S.; He, G.; Lv, A.; Shen, Y.; Xu, W. In situ construction of dual-morphology ZnCo2O4 for high-performance asymmetric supercapacitors. Nanoscale Adv. 2019, 1, 3086–3094. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wang, S.; Luo, X.; Gao, W.; Huang, G.; Zeng, Y.; Zhu, Z. Reduced ZnCo2O4@NiMoO4·H2O heterostructure electrodes with modulating oxygen vacancies for enhanced aqueous asymmetric supercapacitors. J. Power Sources 2019, 409, 112–122. [Google Scholar] [CrossRef]
- Hong, J.; Lee, Y.-W.; Ahn, D.; Pak, S.; Lee, J.; Jang, A.-R.; Lee, S.; Hou, B.; Cho, Y.; Morris, S.M.; et al. Highly stable 3D porous heterostructures with hierarchically-coordinated octahedral transition metals for enhanced performance supercapacitors. Nano Energy 2017, 39, 337–345. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, S.; Tian, Y.; Jin, X.; Dong, J. 3D heterogeneous ZnCo2O4@NiMoO4 nanoarrays grown on Ni foam as a binder-free electrode for high-performance energy storage. J. Energy Storage 2020, 32, 101899. [Google Scholar] [CrossRef]
- Meng, Y.; Yu, D.; Teng, Y.; Qi, H.; Liu, X.; Wu, Y.; Zhao, X.; Liu, X. Coating of the NiMoO4 nanosheets on different-morphology ZnCo2O4 nanoarrays on Ni foam and their application in battery-supercapacitor hybrid devices. J. Energy Storage 2020, 29, 101195. [Google Scholar] [CrossRef]
- Lin, J.; Liang, H.; Jia, H.; Chen, S.; Cai, Y.; Qi, J.; Cao, J.; Fei, W.; Feng, J. Hierarchical CuCo2O4@NiMoO4 core–shell hybrid arrays as a battery-like electrode for supercapacitors. Inorg. Chem. Front. 2017, 4, 1575–1581. [Google Scholar] [CrossRef]
- Li, G.; Song, B.; Cui, X.; Ouyang, H.; Wang, K.; Sun, Y.; Wang, Y. Multidimensional and Binary Micro CuCo2O4/Nano NiMoO4 for High-Performance Supercapacitors. ACS Sustain. Chem. Eng. 2020, 8, 1687–1694. [Google Scholar] [CrossRef]
- Mehrez, J.A.-A.; Owusu, K.A.; Chen, Q.; Li, L.; Hamwi, K.; Luo, W.; Mai, L. Hierarchical MnCo2O4@NiMoO4 as free-standing core–shell nanowire arrays with synergistic effect for enhanced supercapacitor performance. Inorg. Chem. Front. 2019, 6, 857–865. [Google Scholar] [CrossRef]
- Chen, T.; Shi, R.; Zhang, Y.; Wang, Z. A MnCo2O4@NiMoO4Core-Shell Composite Supported on Nickel Foam as a Supercapacitor Electrode for Energy Storage. ChemPlusChem 2019, 84, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Wang, X.; Wang, G.; Hao, C.; Huang, C.; Jiang, C. Facile construction of a MgCo2O4@NiMoO4/NF core–shell nanocomposite for high-performance asymmetric supercapacitors. J. Mater. Chem. C 2019, 7, 13267–13278. [Google Scholar] [CrossRef]
- Teng, Y.; Yu, D.; Li, Y.; Meng, Y.; Xue, Y.; Liu, J.; Feng, Y.; Wang, C.; Hua, Y.; Zhao, X.; et al. Facile Synthesis of MgCo2O4@MMoO4 (M = Co, Ni) Nanosheet Arrays on Nickel Foam as an Advanced Electrode for Asymmetric Supercapacitors. Energy Fuels 2021, 35, 6272–6281. [Google Scholar] [CrossRef]
- Tang, X.; Lui, Y.H.; Zhang, B.; Hu, S. Venus flytrap-like hierarchical NiCoMn–O@NiMoO4@C nanosheet arrays as free-standing core-shell electrode material for hybrid supercapacitor with high electrochemical performance. J. Power Sources 2020, 477, 228977. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.; Saeed, G.; Kim, N.H.; Lee, J.H. Zinc-nickel-cobalt oxide@NiMoO4 core-shell nanowire/nanosheet arrays for solid state asymmetric supercapacitors. Chem. Eng. J. 2020, 384, 123357. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Liu, X.; Zhang, X.; Tian, Y.; Liu, X.; Zhao, J.; Li, Y. Assembly of flexible CoMoO4@NiMoO4·xH2O and Fe2O3 electrodes for solid-state asymmetric supercapacitors. Sci. Rep. 2017, 7, 41088. [Google Scholar] [CrossRef]
- Liu, M.-C.; Kong, L.-B.; Lu, C.; Ma, X.-J.; Li, X.-M.; Luo, Y.-C.; Kang, L. Design and synthesis of CoMoO4–NiMoO4·xH2O bundles with improved electrochemical properties for supercapacitors. J. Mater. Chem. A 2013, 1, 1380–1387. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Zhang, X.; Yu, D.; Ji, Y.; Sun, Q.; Wang, Y.; Liu, X. Facile synthesis of hierarchical CoMoO4@NiMoO4 core–shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 18578–18584. [Google Scholar] [CrossRef]
- Nti, F.; Anang, D.A.; Han, J.I. Facilely synthesized NiMoO4/CoMoO4 nanorods as electrode material for high performance supercapacitor. J. Alloys Compd. 2018, 742, 342–350. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, X.; Li, G. Fabrication of rod-like NiMoO4/CoMoO4 for application in asymmetric supercapacitors. Ionics 2020, 26, 393–401. [Google Scholar] [CrossRef]
- Chen, S.; Chandrasekaran, S.; Cui, S.; Li, Z.; Deng, G.; Deng, L. Self-supported NiMoO4@CoMoO4 core/sheath nanowires on conductive substrates for all-solid-state asymmetric supercapacitors. J. Electroanal. Chem. 2019, 846, 113153. [Google Scholar] [CrossRef]
- Hu, B.; Cen, Y.; Xu, C.; Xiang, Q.; Aslam, M.K.; Liu, L.; Li, S.; Liu, Y.; Yu, D.; Chen, C. Hierarchical NiMoO4@Co3V2O8 hybrid nanorod/nanosphere clusters as advanced electrodes for high-performance electrochemical energy storage. Nanoscale 2020, 12, 3763–3776. [Google Scholar] [CrossRef]
- Sharma, P.; Sundaram, M.M.; Watcharatharapong, T.; Jungthawan, S.; Ahuja, R. Tuning the Nanoparticle Interfacial Properties and Stability of the Core–Shell Structure in Zn-Doped NiMoO4@AWO4. ACS Appl. Mater. Interfaces 2021, 13, 56116–56130. [Google Scholar] [CrossRef]
- Acharya, J.; Pant, B.; Ojha, G.P.; Park, M. Embellishing hierarchical 3D core-shell nanosheet arrays of ZnFe2O4@NiMoO4 onto rGO-Ni foam as a binder-free electrode for asymmetric supercapacitors with excellent electrochemical performance. J. Colloid Interface Sci. 2022, 610, 863–878. [Google Scholar] [CrossRef]
- Dong, J.Y.; Xu, J.C.; Hui, K.N.; Yang, Y.; Su, S.C.; Li, L.; Zhang, X.T.; Ng, K.W.; Wang, S.P.; Tang, Z.K. Homogeneous Core/Shell NiMoO4@NiMoO4 and Activated Carbon for High Performance Asymmetric Supercapacitor. Nanomaterials 2019, 9, 1033. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhang, M.; Jiang, G.; Zhang, Z.; Zhou, X. NiMoO4 nanorods@hydrous NiMoO4 nanosheets core-shell structured arrays for pseudocapacitor application. J. Alloys Compd. 2019, 814, 152253. [Google Scholar] [CrossRef]
- Lang, J.-W.; Kong, L.-B.; Liu, M.; Luo, Y.-C.; Kang, L. Co0.56Ni0.44 Oxide Nanoflake Materials and Activated Carbon for Asymmetric Supercapacitor. J. Electrochem. Soc. 2010, 157, A1341–A1346. [Google Scholar] [CrossRef]
- Owusu, K.A.; Qu, L.; Li, J.; Wang, Z.; Zhao, K.; Yang, C.; Hercule, K.M.; Lin, C.; Shi, C.; Wei, Q.; et al. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun. 2017, 8, 14264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, G.; Zhang, M.; Li, X.; Gao, H. NiMoO4@Ni(OH)2 core/shell nanorods supported on Ni foam for high-performance supercapacitors. RSC Adv. 2015, 5, 69365–69370. [Google Scholar] [CrossRef]
- Ren, W.; Guo, D.; Zhuo, M.; Guan, B.; Zhang, D.; Li, Q. NiMoO4@Co(OH)2 core/shell structure nanowire arrays supported on Ni foam for high-performance supercapacitors. RSC Adv. 2015, 5, 21881–21887. [Google Scholar] [CrossRef]
- Yan, L.; Chen, X. Nanomaterials for Drug Delivery. In Nanocrystalline Materials, 2nd ed.; Tjong, S.C., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2013; pp. 221–268. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, X. Carbon fiber/Ni-Co layered double hydroxide@NiMoO4/graphene oxide sandwich structure flexible electrode materials: Facile synthesis and high supercapacitor performance. J. Alloys Compd. 2019, 794, 13–20. [Google Scholar] [CrossRef]
- Hu, C.; Gong, J.; Wang, J.; Zhou, T.; Xie, M.; Wang, S.; Dai, Y. Composites of NiMoO4@Ni-Co LDH@NiCo2O4 on Ni foam with a rational microscopic morphology for high-performance asymmetric supercapacitors. J. Alloys Compd. 2022, 902, 163749. [Google Scholar] [CrossRef]
- Zhu, Z.; Tian, W.; Lv, X.; Wang, F.; Hu, Z.; Ma, K.; Wang, C.; Yang, T.; Ji, J. P-doped cobalt carbonate hydroxide@NiMoO4 double-shelled hierarchical nanoarrays anchored on nickel foam as a bi-functional electrode for energy storage and conversion. J. Colloid Interface Sci. 2020, 587, 855–863. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, L. Review on recent advances in nanostructured transition-metal-sulfide-based electrode materials for cathode materials of asymmetric supercapacitors. Chem. Eng. J. 2022, 430, 132745. [Google Scholar] [CrossRef]
- Lu, L.; Xu, Q.; Chen, Y.; Zhou, Y.; Jiang, T.; Zhao, Q. Preparation of metal sulfide electrode materials derived based on metal organic framework and application of supercapacitors. J. Energy Storage 2022, 49, 104073. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, N.; Li, G.; Ma, L.; Li, T.; Tong, Z.; Li, Y.; Wang, K. Funnel-shaped hierarchical NiMoO4@Co3S4 core-shell nanostructure for enhanced supercapacitor performance. J. Energy Storage 2022, 51, 104511. [Google Scholar] [CrossRef]
- Wan, L.; Liu, J.; Li, X.; Zhang, Y.; Chen, J.; Du, C.; Xie, M. Fabrication of core-shell NiMoO4@MoS2 nanorods for high-performance asymmetric hybrid supercapacitors. Int. J. Hydrogen Energy 2020, 45, 4521–4533. [Google Scholar] [CrossRef]
- Yu, B.; Jiang, G.; Xu, W.; Cao, C.; Liu, Y.; Lei, N.; Evariste, U.; Ma, P. Construction of NiMoO4/CoMoO4 nanorod arrays wrapped by Ni-Co-S nanosheets on carbon cloth as high performance electrode for supercapacitor. J. Alloys Compd. 2019, 799, 415–424. [Google Scholar] [CrossRef]
- Xing, B.; Zhao, J.; Jiang, S.; Pang, M.; Pan, Q.; Geng, Y.; Ma, G.; Li, Z.; Han, P. NiMoO4@Ni3S2 core-shell composites grown in situ on nickel foam for applications in supercapacitors. Synth. Met. 2020, 271, 116638. [Google Scholar] [CrossRef]
- Chen, F.; Ji, S.; Liu, Q.; Wang, H.; Liu, H.; Brett, D.J.L.; Wang, G.; Wang, R. Rational Design of Hierarchically Core-Shell Structured Ni3S2 @NiMoO4 Nanowires for Electrochemical Energy Storage. Small 2018, 14, e1800791. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Lu, M.; Li, L.; Cai, D.; Li, J.; Cao, J.; Han, W. Hierarchical core–shell structural NiMoO4@NiS2/MoS2 nanowires fabricated via an in situ sulfurization method for high performance asymmetric supercapacitors. J. Mater. Chem. A 2019, 7, 21759–21765. [Google Scholar] [CrossRef]
- Chen, L.; Deng, W.; Chen, Z.; Wang, X. Hetero-architectured core–shell NiMoO4@Ni9S8/MoS2 nanorods enabling high-performance supercapacitors. J. Mater. Res. 2021, 37, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, H.; Ren, Y.; Chen, X.; Xie, K.; Sun, Y. Nanowire-core/double-shell of NiMoO4@C@Ni3S2 arrays on Ni foam: Insights into supercapacitive performance and capacitance degradation. Nanotechnology 2018, 29, 385402. [Google Scholar] [CrossRef]
- Xing, T.; Ouyang, Y.; Chen, Y.; Zheng, L.; Shu, H.; Wu, C.; Chang, B.; Wang, X. Preparation and performances of 3D hierarchical core-shell structural NiCo2S4@NiMoO4xH2O nanoneedles for electrochemical energy storage. Electrochim. Acta 2020, 351, 136447. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Z.; Zeng, W.; Chen, J.; Deng, L. Construction of NiCo2S4@NiMoO4 Core-Shell Nanosheet Arrays with Superior Electrochemical Performance for Asymmetric Supercapacitors. ChemElectroChem 2019, 6, 590–597. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Zheng, Y.; Zhang, Y.; Hu, X.; Xu, T. NiCo2S4@NiMoO4 Core-Shell Heterostructure Nanotube Arrays Grown on Ni Foam as a Binder-Free Electrode Displayed High Electrochemical Performance with High Capacity. Nanoscale Res. Lett. 2017, 12, 412. [Google Scholar] [CrossRef] [Green Version]
- Yao, M.; Hu, Z.; Liu, Y.; Liu, P. Design and synthesis of hierarchical NiCo2S4@NiMoO4core/shell nanospheres for high-performance supercapacitors. New J. Chem. 2015, 39, 8430–8438. [Google Scholar] [CrossRef]
- Wang, P.; Cai, H.; Li, X.; Yang, Y.; Li, G.; Xie, J.; Xia, H.; Sun, P.; Zhang, D.; Xiong, J. Construction of hierarchical NiCo2S4 nanotube@NiMoO4 nanosheet hybrid arrays as advanced battery-type electrodes for hybrid supercapacitors. New J. Chem. 2019, 43, 7065–7073. [Google Scholar] [CrossRef]
- Chiu, K.-L.; Lin, L.-Y. Applied potential-dependent performance of the nickel cobalt oxysulfide nanotube/nickel molybdenum oxide nanosheet core–shell structure in energy storage and oxygen evolution. J. Mater. Chem. A 2019, 7, 4626–4639. [Google Scholar] [CrossRef]
- Chen, C.; Yan, D.; Luo, X.; Gao, W.; Huang, G.; Han, Z.; Zeng, Y.; Zhu, Z. Construction of Core–Shell NiMoO4@Ni-Co-S Nanorods as Advanced Electrodes for High-Performance Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 4662–4671. [Google Scholar] [CrossRef] [PubMed]
- Acharya, J.; Ojha, G.P.; Kim, B.-S.; Pant, B.; Park, M. Modish Designation of Hollow-Tubular rGO–NiMoO4@Ni–Co–S Hybrid Core–shell Electrodes with Multichannel Superconductive Pathways for High-Performance Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2021, 13, 17487–17500. [Google Scholar] [CrossRef] [PubMed]
- Acharya, J.; Pant, B.; Ojha, G.P.; Park, M. Unlocking the potential of a novel hierarchical hybrid (Ni–Co)Se2@NiMoO4@rGO–NF core–shell electrode for high-performance hybrid supercapacitors. J. Mater. Chem. A 2022, 10, 7999–8014. [Google Scholar] [CrossRef]
- Gao, M.; Le, K.; Xu, D.; Wang, Z.; Wang, F.; Liu, W.; Yu, H.; Liu, J.; Chen, C. Controlled sulfidation towards achieving core-shell 1D-NiMoO4@2D-NiMoS4 architecture for high-performance asymmetric supercapacitor. J. Alloys Compd. 2019, 804, 27–34. [Google Scholar] [CrossRef]
- Wei, C.; Huang, Y.; Yan, J.; Chen, X.; Zhang, X. Synthesis of hierarchical carbon sphere@NiMoO4 composite materials for supercapacitor electrodes. Ceram. Int. 2016, 42, 15694–15700. [Google Scholar] [CrossRef]
- Teng, C.; Gao, X.; Zhang, N.; Jia, Y.; Li, X.; Shi, Z.; Wu, Z.; Zhi, M.; Hong, Z. Synthesis of coaxial carbon@NiMoO4 composite nanofibers for supercapacitor electrodes. RSC Adv. 2018, 8, 32979–32984. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, J.; Zhang, Y.; Yang, X.; Zhang, Y.; Shang, Y. Nitrogen-doped carbon nanotube supported double-shelled hollow composites for asymmetric supercapacitors. New J. Chem. 2018, 42, 150–160. [Google Scholar] [CrossRef]
- Yan, T.; Wang, M.; Li, K.; Ni, X.; Du, X.; Xi, M.; Chen, H.; Ju, A. Freestanding XMoO4 nanosheet arrays@hollow porous carbon submicrofiber composites for flexible all-solid-state symmetric supercapacitors. J. Alloys Compd. 2021, 898, 162834. [Google Scholar] [CrossRef]
- Yao, P.; Li, C.; Yu, J.; Zhang, S.; Zhang, M.; Liu, H.; Ji, M.; Cong, G.; Zhang, T.; Zhu, C.; et al. High performance flexible energy storage device based on copper foam supported NiMoO4 nanosheets-CNTs-CuO nanowires composites with core–shell holey nanostructure. J. Mater. Sci. Technol. 2021, 85, 87–94. [Google Scholar] [CrossRef]
- Chen, T.; Xiang, C.; Zou, Y.; Xu, F.; Sun, L. All-Solid High-Performance Asymmetric Supercapacitor Based on Yolk–Shell NiMoO4/V2CTx@Reduced Graphene Oxide and Hierarchical Bamboo-Shaped MoO2@Fe2O3/N-Doped Carbon. Energy Fuels 2021, 35, 10250–10261. [Google Scholar] [CrossRef]
- Gao, H.; Wu, F.; Wang, X.; Hao, C.; Ge, C. Preparation of NiMoO4-PANI core-shell nanocomposite for the high-performance all-solid-state asymmetric supercapacitor. Int. J. Hydrogen Energy 2018, 43, 18349–18362. [Google Scholar] [CrossRef]
- Zhu, D.; Sun, X.; Yu, J.; Liu, Q.; Liu, J.; Chen, R.; Zhang, H.; Song, D.; Li, R.; Wang, J. Three-dimensional heterostructured polypyrrole/nickel molybdate anchored on carbon cloth for high-performance flexible supercapacitors. J. Colloid Interface Sci. 2020, 574, 355–363. [Google Scholar] [CrossRef]
- Shen, J.; Wang, Q.; Zhang, K.; Wang, S.; Li, L.; Dong, S.; Zhao, S.; Chen, J.; Sun, R.; Wang, Y.; et al. Flexible carbon cloth based solid-state supercapacitor from hierarchical holothurian-morphological NiCo2O4@NiMoO4/PANI. Electrochim. Acta 2019, 320, 134578. [Google Scholar] [CrossRef]
- Yi, T.-F.; Qiu, L.-Y.; Mei, J.; Qi, S.-Y.; Cui, P.; Luo, S.; Zhu, Y.-R.; Xie, Y.; He, Y.-B. Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Sci. Bull. 2020, 65, 546–556. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Sun, J.; Qian, X.; Zhang, Y.; Yu, L.; Niu, R.; Zhao, H.; Zhu, J. 2D/2D heterostructures of nickel molybdate and MXene with strong coupled synergistic effect towards enhanced supercapacitor performance. J. Power Sources 2019, 414, 540–546. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasikumar, K.; Ju, H. Recent Progress in the Core-Shell Nanostructures of the NiMoO4-Based Composite Materials for Supercapacitor Applications: A Comprehensive Review. Chemosensors 2022, 10, 516. https://doi.org/10.3390/chemosensors10120516
Sasikumar K, Ju H. Recent Progress in the Core-Shell Nanostructures of the NiMoO4-Based Composite Materials for Supercapacitor Applications: A Comprehensive Review. Chemosensors. 2022; 10(12):516. https://doi.org/10.3390/chemosensors10120516
Chicago/Turabian StyleSasikumar, Kandasamy, and Heongkyu Ju. 2022. "Recent Progress in the Core-Shell Nanostructures of the NiMoO4-Based Composite Materials for Supercapacitor Applications: A Comprehensive Review" Chemosensors 10, no. 12: 516. https://doi.org/10.3390/chemosensors10120516
APA StyleSasikumar, K., & Ju, H. (2022). Recent Progress in the Core-Shell Nanostructures of the NiMoO4-Based Composite Materials for Supercapacitor Applications: A Comprehensive Review. Chemosensors, 10(12), 516. https://doi.org/10.3390/chemosensors10120516