Accurate Traceability of Stable C, H, O, N Isotope Ratios and Multi-Element Analysis Combined with Chemometrics for Chrysanthemi Flos ‘Hangbaiju’ from Different Origins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Preparation
2.2. Chemicals and Instruments
2.3. Stable Isotope Ratio Analysis
2.4. Multi-Element Mineral Analysis
- (1)
- Nineteen multi-elements (including V, Cr, Co, Ni, Cu, Zn, Sr, Cd, Ba, Tl, Mo, Li, Be, Ga, Ge, Rb, Nb, Cs, and Th) and 16 rare earth elements (including La, Ce, Nd, Y, Sc, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) were determined by ICP-MS;
- (2)
- ICP-OES detected a total of seven elements of Al, Ca, Fe, K, Mg, Mn, and Na;
- (3)
- Four milliliters of the solution was dispensed into a colorimetric tube, one milliliter of hydrochloric acid was added, the solution was well-shaken, and Se was finally measured using AFS. Following that, another 4 mL of solution was dispensed into a colorimetric tube, along with hydrochloric acid and thiourea-ascorbic acid solution up to 10 mL; this solution was well-shaken, and As was measured using AFS. The methodological verification is shown in Table S2. For all instrument testing parameters, see Support Information Tables S3–S6.
2.5. Statistical Analysis
3. Results and Discussion
3.1. Stable Isotope Ratio Analysis
3.2. Multi-Element Mineral Analysis
3.3. Chemometrics Analysis
3.3.1. PLSDA Model Analysis
3.3.2. OPLS-DA Model Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Li, H.; Qin, K.; Cai, H.; Liu, X.; Zheng, L.; Gu, J.; Cai, B.C. Elemental analysis of flos chrysanthemi by inductively coupled plasma atomic emission spectrometry with pressurized digestion. Anal. Lett. 2014, 47, 1589–1597. [Google Scholar] [CrossRef]
- Chen, Y.; Zhen, X.T.; Yu, Y.L.; Shi, M.Z.; Cao, J.; Zheng, H.; Ye, L.H. Chemoinformatics based comprehensive two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry approach to chemically distinguish chrysanthemum species. Microchem. J. 2021, 168, 106464. [Google Scholar] [CrossRef]
- Han, Y.Q.; Zhou, M.; Wang, L.Q.; Ying, X.H.; Peng, J.M.; Jiang, M.; Bai, G.; Luo, G.A. Comparative evaluation of different cultivars of flos chrysanthemi by an anti-inflammatory-based NF-κB reporter gene assay coupled to UPLC-Q/TOF ms with PCA and ANN. J. Ethnopharmacol. 2015, 174, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China, 2020th ed.; China Medical Science Press: Beijing, China, 2020; Volume 1, p. 323.
- He, J.; Chen, L.D.; Chu, B.Q.; Zhang, C. Determination of total polysaccharides and total flavonoids in chrysanthemum morifolium using near-infrared hyperspectral imaging and multivariate analysis. Molecules 2018, 23, 2395. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Sun, Z.G.; Xiong, W.Z.; Huang, L.M.; Wang, S.T. Intangible cultural heritage and geographical indication rights of chrysanthemum resources. J. Zhejiang Agric. Sci. China 2012, 07, 986–989. [Google Scholar]
- Chen, G.; Qiao, J.; Zhao, G.H.; Zhang, H.M.; Cheng, W.D. Rice-straw biochar regulating effect on ramat. cv. ‘hangbaiju’. Agron. J. 2018, 110, 1996–2003. [Google Scholar] [CrossRef]
- He, J.; Zhang, C.; Zhou, L.; He, Y. Simultaneous determination of five micro-components in Chrysanthemum morifolium (Hangbaiju) using near-infrared hyperspectral imaging coupled with deep learning with wavelength selection. Infrared Phys. Technol. 2021, 116, 103802. [Google Scholar] [CrossRef]
- Xu, L.; Hai, C.Y.; Yan, S.M.; Wang, S.; Du, S.J.; Chen, H.Y.; Yang, J.; Fu, H.Y. Classification of organic and ordinary kiwifruit by chemometrics analysis of elemental fingerprint and stable isotopic ratios. J. Food Sci. 2021, 86, 3447–3456. [Google Scholar] [CrossRef]
- Duarte, B.; Duarte, I.A.; Cacador, I.; Reis-Santos, P.; Vasconcelos, R.P.; Gameiro, C.; Tanner, S.E.; Fonseca, V.F. Elemental fingerprinting of thornback ray (Raja clavata) muscle tissue as a tracer for provenance and food safety assessment. Food Contral 2021, 133, 108592. [Google Scholar] [CrossRef]
- Han, C.; Li, L.; Dong, X.; Gao, Q.F.; Dong, S.L. Current progress in the authentication of fishery and aquatic products using multi-element and stable isotope analyses combined with chemometrics. Rev. Aquacul. 2022, 14, 2023–2037. [Google Scholar] [CrossRef]
- Zhao, Y.; Tu, T.; Tang, X.; Zhao, S.; Yang, S. Authentication of organic pork and identification of geographical origins of pork in four regions of China by combined analysis of stable isotopes and multi-elements. Meat Sci. 2020, 165, 108129. [Google Scholar] [CrossRef] [PubMed]
- McLeod, R.J.; Prosser, C.G.; Wakefield, J.W. Identification of goat milk powder by manufacturer using multiple chemical parameters. J. Dairy Sci. 2016, 99, 982–993. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Kang, L.P.; Zhao, Y.Y.; Xiong, F.; Yuan, Y.W.; Nie, J.; Huang, L.Q.; Yang, J. Stable isotope and multi-element profiling of Cassiae Semen tea combined with chemometrics for geographical discrimination. J. Food Compos. Anal. 2022, 107, 104359. [Google Scholar] [CrossRef]
- Du, H.; Tang, B.B.; Cao, S.R.; Xi, C.X.; Li, X.L.; Zhang, L.; Wang, G.M.; Lai, G.Y.; Chen, Z.Q. Discrimination of the species and authenticity of Rhizoma Coptidis based on stable isotope and multielement fingerprinting and multivariate statistical analysis. Anal. Bioanal. Chem. 2019, 411, 2827–2837. [Google Scholar] [CrossRef]
- Fu, H.Y.; Wei, L.N.; Chen, H.Y.; Yang, X.L.; Kang, L.P.; Hao, Q.X.; Zhou, L.; Zhan, Z.L.; Liu, Z.; Yang, J.; et al. Combining stable C, N, O, H, Sr isotope and multi-element with chemometrics for identifying the geographical origins and farming patterns of Huangjing herb. J. Food Compos. Anal. 2021, 102, 103972. [Google Scholar] [CrossRef]
- Choi, S.H.; Bong, Y.S.; Park, J.H.; Lee, K.S. Geographical origin identification of garlic cultivated in korea using isotopic and multi-elemental analyses. Food Control 2020, 111, 107064. [Google Scholar] [CrossRef]
- Shen, Y.; Li, B.; Liu, L.R. Rapid identification of producing area of wheat using terahertz spectroscopy combined with chemometrics. Spectrochim. A 2022, 269, 120694. [Google Scholar] [CrossRef]
- Li, M.X.; Li, Y.Z.; Chen, Y.; Wang, T.; Yang, J.; Fu, H.Y.; Yang, X.L.; Li, X.F.; Zhang, G.; Chen, Z.P.; et al. Excitation-emission matrix fluorescence spectroscopy combined with chemometrics methods for rapid identification and quantification of adulteration in atractylodes macrocephala koidz. Microchem. J. 2021, 171, 106884. [Google Scholar] [CrossRef]
- Raypah, M.E.; Zhi, L.J.; Loon, L.Z.; Omar, A.F. Near-infrared spectroscopy with chemometrics for identification and quantification of adulteration in high-quality stingless bee honey. Chemometr. Intell. Lab. 2022, 224, 104540. [Google Scholar] [CrossRef]
- Khorramifar, A.; Karami, H.; Wilson, A.D.; Sayyah, A.; Shuba, A. Grape Cultivar Identification and Classification by Machine Olfaction Analysis of Leaf Volatiles. Chemosensors 2022, 10, 125. [Google Scholar] [CrossRef]
- Rasekh, M.; Karami, H.; Wilson, A.D.; Gancarz, M. Classification and Identification of Essential Oils from Herbs and Fruits Based on a MOS Electronic-Nose Technology. Chemosensors 2021, 9, 142. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.T.; Zhao, P.; Ren, L.; Li, X.; Gao, W.Y. Physicochemical characteristics and immunoregulatory activities of polysaccharides from five cultivars of Chrysanthemi Flos. Food Sci. Nutr. 2022, 10, 1391–1400. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.J.; Xiong, X.; Xu, Z.H.; Zeng, Q.Z.; He, S.; Yuan, Y.; Wang, Y.L.; Yang, X.Q.; Su, D.X. Comparison of phenolic substances and antioxidant activities in different varieties of chrysanthemum flower under simulated tea making conditions. J. Food Meas. Charact. 2020, 14, 1443–1450. [Google Scholar] [CrossRef]
- Gong, J.Y.; Chu, B.Q.; Gong, L.X.; Fang, Z.X.; Zhang, X.X.; Qiu, S.P.; Wang, J.J.; Xiang, Y.L.; Xiao, G.N.; Yuan, H.N.; et al. Comparison of phenolic compounds and the antioxidant activities of fifteen Chrysanthemum morifolium Ramat cv. ‘Hangbaiju’ in China. Antioxidants 2019, 8, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L. Study on Traceability and Identification of Plant Origin Agricultural Products; Zhejiang University: Hangzhou, China, 2012; p. 12. [Google Scholar]
- Kang, X.M.; Zhao, Y.F.; Shang, D.R.; Zhai, Y.X.; Ning, J.S.; Ding, H.Y.; Sheng, X.F. Identification of the geographical origins of sea cucumbers in china: The application of stable isotope ratios and compositions of c, n, o and h. Food Control 2019, 11, 107036. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, T.T.; Ge, Y.B. C/N/H/O stable isotope analysis for determining the geographical origin of american ginseng (panax quinquefolius). J. Food Compos. Anal. 2020, 96, 103756. [Google Scholar] [CrossRef]
- Bateman, A.S.; Kelly, S.D.; Woolfe, M. Nitrogen isotope composition of organically and conventionally grown crops. J. Agric. Food Chem. 2007, 55, 2664. [Google Scholar] [CrossRef]
- Salim, N.A.A.; Mostapa, R.; Othman, Z.; Daud, N.M.; Harun, A.R.; Mohamed, F. Geographical identification of Oryza sativa “MR 220CL” from Peninsular Malaysia using elemental and isotopic profiling. Food Control 2020, 110, 106967. [Google Scholar] [CrossRef]
- Mohr, H.; Schopfer, P. Plant Physiology; Springer-Verlag: Berlin/Heidelberg, Germany, 1995; pp. 256–257. [Google Scholar]
- Zhang, P.; Liu, W.; Ma, J.; Wu, J.; Lu, X. Carbon dioxide concentration can limit the identification of C4 plants by stable isotope composition. Arab. J. Geosci. 2016, 9, 1–12. [Google Scholar] [CrossRef]
- Camin, F.; Bontempo, L.; Ziller, L.; Piangiolino, C.; Morchio, G. Stable isotope ratios of carbon and hydrogen to distinguish olive oil from shark squalene-squalane. Rapid Commun. Mass Spectrom. 2010, 24, 1810–1816. [Google Scholar] [CrossRef]
- Zhaxi, C.; Zhao, S.S.; Zhao, Y. Stable isotopes verify geographical origin of tibetan chicken. Food Chem. 2021, 358, 129893. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.L.; Wei, Y.M.; Simon, K.D.; Pan, J.R.; Shuai, W. Application of stable hydrogen isotope analysis in beef geographical origin traceability. Chin. J. Anal. Chem. 2009, 37, 1333–1336. [Google Scholar]
- Sturm, M.; Lojen, S. Isotopes in environmental and health studies. Isot. Environ. Health Stud. 2011, 47, 214–220. [Google Scholar]
- Preisner, O.; Lopes, J.A.; Menezes, J.C. Uncertainty assessment in ft-ir spectroscopy based bacteria classification models. Chemometr. Intell. Lab. 2008, 94, 33–42. [Google Scholar] [CrossRef]
- Jumtee, K.; Bamba, T.; Fukusaki, E. Fast GC-FID based metabolic fingerprinting of japanese green tea leaf for its quality ranking prediction. J. Sep. Sci. 2009, 32, 2296–2304. [Google Scholar] [CrossRef]
Elements | Yancheng (n = 29) | Rudong (n = 30) | Tongxiang (n = 29) | Jinhua (n = 25) | Jiangchang (n = 38) | Huangtan (n = 40) |
---|---|---|---|---|---|---|
δ15N | 2.71 c | 10.93 a | 2.87 c | 1.11 d | 5.06 b | 4.98 b |
δ13C | −28.26 c | −27.26 b | −26.56 a | −28.40 c | −28.97 d | −28.92 d |
δ2H | −78.11 c | −72.26 b | −78.06 c | −85.85 d | −62.94 a | −77.93 c |
δ18O | 23.25 c | 22.26 d | 21.02 e | 20.83 e | 23.97 b | 28.40 a |
Origin | Yancheng | Rudong | Tongxiang | Jinhua | Jiangchang | Huangtan |
---|---|---|---|---|---|---|
Humidity/% | 43.5 | 22.8 | 38.9 | 59.9 | 37.5 | 37.8 |
Mean annual temperature/°C | 14.2 | 15.1 | 16.2 | 17.1 | 16.6 | 16.5 |
Isothermal (BIO2/BIO7) (×100) | 26.1 | 24.0 | 24.4 | 27.7 | 25.5 | 25.5 |
Seasonality of temperature (SD × 100) | 913.4 | 878.3 | 878.4 | 815.8 | 891.1 | 892.1 |
Annual precipitation/mm | 998.0 | 1028.8 | 1143.3 | 1479.8 | 1089.0 | 1086.0 |
Precipitation seasonality (coefficient of variation) | 79.8 | 55.9 | 48.0 | 50.2 | 52.5 | 53.4 |
Elements | Yancheng (n = 29) | Rudong (n = 30) | Tongxiang (n = 29) | Jinhua (n = 25) | Jiangchang (n = 38) | Huangtan (n = 40) |
---|---|---|---|---|---|---|
Se | 0.0094 d | 0.0095 d | 0.0119 d | 0.0185 c | 0.1108 a | 0.057 b |
As | 0.0297 bc | 0.0223 c | 0.0168 cd | 0.0142 d | 0.0608 a | 0.0331 b |
Li | 0.0841 a | 0.0561 b | 0.0429 b | 0.0157 c | 0.0947 a | 0.0549 b |
Be | 0.0015 c | 0.001 c | 0.0014 c | 0.0026 b | 0.0039 a | 0.0019 bc |
Ga | 0.0172 bc | 0.015 bc | 0.0146 bc | 0.0142 c | 0.0325 a | 0.0183 b |
Ge | 0.0014 b | 0.0011 bc | 0.0008 bc | 0.0007 c | 0.0026 a | 0.0013 b |
Rb | 10.7397 c | 28.079 a | 15.749 b | 37.86 a | 10.8421 c | 14.6513 b |
Nb | 0.0084 b | 0.0063 bc | 0.0045 c | 0.0034 c | 0.015 a | 0.0089 b |
Cs | 0.0246 c | 0.0849 a | 0.0559 a | 0.0684 a | 0.0425 b | 0.0592 a |
Th | 0.0186 b | 0.0114 bc | 0.0089 c | 0.0092 c | 0.025 a | 0.0144 b |
V | 0.1295 bc | 0.0988 c | 0.0829 cd | 0.0532 d | 0.317 a | 0.171 b |
Cr | 2.8583 | 1.5551 | 1.5277 | 4.4552 | 5.9361 | 2.5439 |
Co | 0.0565 c | 0.059 c | 0.0829 b | 0.1188 a | 0.1177 a | 0.1295 a |
Ni | 2.1287 c | 1.5683 d | 4.9838 a | 3.9588 b | 1.4105 d | 1.3178 d |
Cu | 12.956 a | 12.8797 a | 13.1648 a | 12.2383 a | 9.969 b | 8.9077 c |
Zn | 31.5147 b | 29.9754 b | 30.2844 b | 49.9507 a | 22.0355 c | 23.4251 c |
Sr | 16.4219 bc | 17.4596 b | 15.3155 c | 33.7568 a | 6.3424 d | 6.6427 d |
Mo | 1.211 b | 0.8915 c | 0.224 e | 0.5245 d | 1.2642 a | 1.4522 a |
Cd | 0.1015 f | 0.1793 e | 0.3632 c | 0.9844 a | 0.4503 b | 0.2258 d |
Ba | 2.764 c | 1.1705 d | 3.4722 b | 20.2914 a | 6.0221 b | 5.1263 bc |
Tl | 0.0023 d | 0.0023 d | 0.0094 b | 0.0423 a | 0.006 c | 0.0055 c |
Al | 45.6741 b | 36.3351 c | 34.0806 c | 29.1579 c | 105.9441 a | 55.2508 b |
Ca | 6338.9766 b | 8795.2547 a | 5552.7848 c | 4973.884 d | 4149.4331 f | 4187.0512 e |
Fe | 98.1835 bc | 81.2943 c | 88.5503 bc | 104.7596 bc | 176.6576 a | 110.598 b |
K | 33,350.72 a | 32,151.18 b | 28,497.8 c | 31,450.752 b | 23,732.3274 d | 24,014.445 d |
Mg | 3774.3658 b | 4466.9468 a | 3709.747 b | 2830.2142 c | 1927.8547 d | 1922.862 d |
Mn | 27.7618 d | 40.2097 c | 87.8037 b | 142.0024 a | 26.4587 d | 26.3564 d |
Na | 121.1388 b | 177.2628 a | 47.4063 c | 53.0712 c | 27.2487 e | 39.783 d |
La | 0.0524 c | 0.0442 c | 0.0364 c | 0.0773 b | 0.0993 a | 0.0529 c |
Ce | 0.0974 bc | 0.0828 bc | 0.0632 c | 0.118 b | 0.1862 a | 0.0977 b |
Nd | 0.0412 bc | 0.0353 bc | 0.0257 c | 0.031 c | 0.0822 a | 0.0431 b |
Y | 0.027 bc | 0.0213 bc | 0.0187 c | 0.018 c | 0.0571 a | 0.029 b |
Sc | 0.0237 b | 0.0215 bc | 0.0243 b | 0.0171 c | 0.04 a | 0.0208 e |
Pr | 0.0115 b | 0.0099 bc | 0.0073 c | 0.0095 bc | 0.0216 a | 0.0113 b |
Sm | 0.0082 b | 0.0068 bc | 0.0051 bc | 0.0047 c | 0.0163 a | 0.0084 b |
Eu | 0.0023 d | 0.0017 f | 0.0021 e | 0.0067 a | 0.0052 b | 0.003 c |
Gd | 0.0071 bc | 0.0057 bc | 0.0047 c | 0.0049 c | 0.0151 a | 0.0076 b |
Tb | 0.001 b | 0.0008 bc | 0.0007 c | 0.0006 c | 0.0021 a | 0.001 b |
Dy | 0.0054 b | 0.0044 bc | 0.0036 c | 0.003 c | 0.0115 a | 0.0054 b |
Ho | 0.0012 b | 0.0009 bc | 0.0007 c | 0.0006 c | 0.0021 a | 0.0014 b |
Er | 0.0026 b | 0.002 bc | 0.0016 c | 0.0013 c | 0.0055 a | 0.0026 b |
Tm | 0.0004 b | 0.0003 bc | 0.0003 bc | 0.0002 c | 0.0008 a | 0.0004 b |
Yb | 0.0022 b | 0.0018 bc | 0.0016 bc | 0.001 c | 0.0048 a | 0.0023 b |
Lu | 0.0003 bc | 0.0003 bc | 0.0002 c | 0.0002 c | 0.0007 a | 0.0004 b |
Total element | 1,271,307.3527 | 1,375,285.3274 | 1,105,009.4770 | 993,712.6204 | 1,148,039.9990 | 1,216,859.6091 |
Macro elements | 1,263,970.8340 | 1,367,719.3280 | 1,096,424.4080 | 982,698.0368 | 1,133,800.8284 | 1,206,565.6480 |
Micro elements | 5003.7967 | 4977.8213 | 6518.8246 | 7822.7436 | 8988.1881 | 6824.2040 |
Trace elements | 2332.1524 | 2587.6737 | 2065.8889 | 3191.4708 | 5249.4942 | 3468.9353 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, X.; Chen, H.; Long, W.; Lan, W.; Wang, S.; Lei, G.; Guan, Y.; Yang, J.; Fu, H. Accurate Traceability of Stable C, H, O, N Isotope Ratios and Multi-Element Analysis Combined with Chemometrics for Chrysanthemi Flos ‘Hangbaiju’ from Different Origins. Chemosensors 2022, 10, 529. https://doi.org/10.3390/chemosensors10120529
Bai X, Chen H, Long W, Lan W, Wang S, Lei G, Guan Y, Yang J, Fu H. Accurate Traceability of Stable C, H, O, N Isotope Ratios and Multi-Element Analysis Combined with Chemometrics for Chrysanthemi Flos ‘Hangbaiju’ from Different Origins. Chemosensors. 2022; 10(12):529. https://doi.org/10.3390/chemosensors10120529
Chicago/Turabian StyleBai, Xiuyun, Hengye Chen, Wanjun Long, Wei Lan, Siyu Wang, Guanghua Lei, Yuting Guan, Jian Yang, and Haiyan Fu. 2022. "Accurate Traceability of Stable C, H, O, N Isotope Ratios and Multi-Element Analysis Combined with Chemometrics for Chrysanthemi Flos ‘Hangbaiju’ from Different Origins" Chemosensors 10, no. 12: 529. https://doi.org/10.3390/chemosensors10120529
APA StyleBai, X., Chen, H., Long, W., Lan, W., Wang, S., Lei, G., Guan, Y., Yang, J., & Fu, H. (2022). Accurate Traceability of Stable C, H, O, N Isotope Ratios and Multi-Element Analysis Combined with Chemometrics for Chrysanthemi Flos ‘Hangbaiju’ from Different Origins. Chemosensors, 10(12), 529. https://doi.org/10.3390/chemosensors10120529