Carbocyanine-Based Fluorescent and Colorimetric Sensor Array for the Discrimination of Medicinal Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Instrumentation
2.3. Procedures
Operations with Turkey Meat Extract
2.4. Data Treatment
3. Results and Discussion
3.1. Selection of Indicator Systems and Reaction Conditions
3.2. Discrimination of Nine Model Analytes in Water
3.3. Discrimination of Nine Model Analytes in Turkey Meat Extract
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fan, J.; Ding, L.; Fang, Y. Surfactant Aggregates Encapsulating and Modulating: An Effective Way to Generate Selective and Discriminative Fluorescent Sensors. Langmuir 2019, 35, 326–341. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Sedgwick, A.C.; Hirao, T.; Sessler, J.L. Supramolecular Fluorescent Sensors: An Historical Overview and Update. Coord. Chem. Rev. 2021, 427, 213560. [Google Scholar] [CrossRef] [PubMed]
- Fukuhara, G. Analytical supramolecular chemistry: Colorimetric and fluorimetric chemosensors. J. Photochem. Photobiol. C 2020, 42, 100340. [Google Scholar] [CrossRef]
- Mancin, F.; Rampazzo, E.; Tecilla, P.; Tonellato, U. Self-assembled fluorescent chemosensors. Chem. Eur. J. 2006, 12, 1844–1854. [Google Scholar] [CrossRef] [PubMed]
- Rehm, T.H.; Schmuck, C. Ion-pair induced self-assembly in aqueous solvents. Chem. Soc. Rev. 2010, 39, 3597–3611. [Google Scholar] [CrossRef]
- Sabela, M.; Balme, S.; Bechelany, M.; Janot, J.-M.; Bisetty, K. A Review of Gold and Silver Nanoparticle-Based Colorimetric Sensing Assays. Adv. Eng. Mater. 2017, 12, 1700270. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, W. In Situ formed nanomaterials for colorimetric and fluorescent sensing. Coord. Chem. Rev. 2019, 387, 249–261. [Google Scholar] [CrossRef]
- Mauriz, E. Clinical Applications of Visual Plasmonic Colorimetric Sensing. Sensors 2020, 20, 6214. [Google Scholar] [CrossRef]
- Singh, R.; Thakur, P.; Thakur, A.; Kumar, H.; Chawla, P.; Rohit, J.V.; Kaushik, R.; Kumar, N. Colorimetric sensing approaches of surface-modified gold and silver nanoparticles for detection of residual pesticides: A review. Int. J. Env. Anal. Chem. 2021, 101, 1715382. [Google Scholar] [CrossRef]
- Olenin, A.Y. Chemically Modified Silver and Gold Nanoparticles in Spectrometric Analysis. J. Anal. Chem. 2019, 74, 355–375. [Google Scholar] [CrossRef]
- Demchenko, A.P. Introduction to Fluorescence Sensing; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Pallavicini, P.; Diaz-Fernandez, Y.A.; Pasotti, L. Micelles as nanosized containers for the self-assembly of multicomponent fluorescent sensors. Coord. Chem. Rev. 2009, 253, 2226–2240. [Google Scholar] [CrossRef]
- Riis-Johannessen, T.; Severin, K. A Micelle-Based Chemosensing Ensemble for the Fluorimetric Detection of Chloride in Water. Chem. Eur. J. 2010, 16, 8291–8295. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; Samanta, A.; Bandyopadhyay, P. Cu2+-Induced Micellar Charge Selective Fluorescence Response of Acridine Orange: Effect of Micellar Charge, pH, and Mechanism. J. Phys. Chem. B 2011, 115, 11823–11830. [Google Scholar] [CrossRef] [PubMed]
- Köstereli, Z.; Scopelliti, R.; Severin, K. Pattern-based sensing of aminoglycosides with fluorescent amphiphiles. Chem. Sci. 2014, 5, 2456–2460. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, H.; Chen, J.; Shahzad, S.A.; Yu, C. Controlled self-assembly of small molecule probes and the related applications in bioanalysis. Biosens. Bioelectron. 2016, 76, 38–53. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Peng, H.; Liu, T.; Yang, M.; Zhang, Y.; Fang, Y. A novel picric acid film sensor via combination of the surface enrichment effect of chitosan films and the aggregation-induced emission effect of siloles. J. Mater. Chem. 2009, 19, 7347–7353. [Google Scholar] [CrossRef]
- Cao, J.; Ding, L.; Zhang, Y.; Wang, S.; Fang, Y. A ternary sensor system based on pyrene derivative-SDS assemblies-Cu2+ displaying dual responsive signals for fast detection of arginine and lysine in aqueous solution. J. Photochem. Photobiol. A 2016, 314, 66–74. [Google Scholar] [CrossRef]
- Zakharenkova, S.A.; Katkova, E.A.; Doroshenko, I.A.; Kriveleva, A.S.; Lebedeva, A.N.; Vidinchuk, T.A.; Shik, A.V.; Abramchuk, S.S.; Podrugina, T.A.; Beklemishev, M.K. Aggregation-based fluorescence amplification strategy: "turn-on" sensing of aminoglycosides using near-IR carbocyanine dyes and pre-micellar surfactants. Spectr. Acta A 2021, 247, 119109. [Google Scholar] [CrossRef]
- Gopika, G.S.; Prasad, P.H.; Lekshmi, A.G.; Lekshmypriya, S.; Sreesaila, S.; Arunima, C.; Kumar, M.S.; Anil, A.; Pillai, Z.S. Chemistry of cyanine dyes—A review. Mater. Today Proc. 2021, 46, 3102–3108. [Google Scholar] [CrossRef]
- Sun, W.; Guo, S.; Hu, C.; Fan, J.; Peng, X. Recent development of chemosensors based on cyanine platforms. Chem. Rev. 2016, 116, 7768–7817. [Google Scholar] [CrossRef]
- Chen, C.; Tian, R.; Zeng, Y.; Chu, C.; Liu, G. Activatable fluorescence probes for “turn-on” and ratiometric biosensing and bioimaging: From NIR-I to NIR-II. Bioconjugat. Chem. 2020, 31, 276–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mottola, H.A.; Perez-Bendito, D. Kinetic determinations and some kinetic aspects of analytical chemistry. Anal. Chem. 1994, 66, 131–162. [Google Scholar] [CrossRef] [PubMed]
- Crouch, S.R.; Scheeline, A.; Kirkor, E.S. Kinetic determinations and some kinetic aspects of analytical chemistry. Anal. Chem. 2000, 72, 53–70. [Google Scholar] [CrossRef] [PubMed]
- Pérez Bendito, D.; Silva, M. Kinetic Methods in Analytical Chemistry; Ellis Horwood Ltd.: Chichester, UK, 1988; ISBN 9780470211816. [Google Scholar]
- Ye, M.L.; Zhu, Y.; Lu, Y.; Gan, L.; Zhang, Y.; Zhao, Y.G. Magnetic nanomaterials with unique nanozymes-like characteristics for colorimetric sensors: A review. Talanta 2021, 230, 122299. [Google Scholar] [CrossRef]
- Li, J.; Yu, C.; Wu, Y.-N.; Zhu, Y.; Xu, J.; Wang, Y.; Wang, H.; Guo, M.; Li, F. Novel sensing platform based on gold nanoparticle-aptamer and Fe-metal-organic framework for multiple antibiotic detection and signal amplification. Environ. Int. 2019, 125, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Suslick, K.S. The optoelectronic nose. Acc. Chem. Res. 2020, 54, 950–960. [Google Scholar] [CrossRef]
- Dolmanova, I.F.; Peshkova, V.M. Determination of copper traces using the catalytic oxidation of hydroquinone with hydrogen peroxide in the presence of pyridine. Zh. Anal. Khim. 1964, 19, 297–302. [Google Scholar]
- Beklemishev, M.K.; Petrova, Y.Y.; Dolmanova, I.F. Sorption-Catalytic Determination of Imazapyr on a Copper-Containing Sorbent. Microchim. Acta 2001, 136, 35–41. [Google Scholar] [CrossRef]
- Stepanova, I.A.; Lebedeva, A.N.; Shik, A.V.; Skorobogatov, E.V.; Beklemishev, M.K. Recognition and Determination of Sulfonamides by Near-IR Fluorimetry Using Their Effect on the Rate of the Catalytic Oxidation of a Carbocyanine Dye by Hydrogen Peroxide. J. Analyt. Chem. 2021, 76, 1397–1405. [Google Scholar] [CrossRef]
- Abedalwafa, M.A.; Li, Y.; Ni, C.; Wang, L. Colorimetric sensor arrays for the detection and identification of antibiotics. Anal. Meth. 2019, 11, 2836–2854. [Google Scholar] [CrossRef]
- Melikishvili, S.; Piovarci, I.; Hianik, T. Advances in colorimetric assay based on AuNPs modified by proteins and nucleic acid aptamers. Chemosensors 2021, 9, 281. [Google Scholar] [CrossRef]
- Monogarova, O.V.; Chaplenko, A.A.; Oskolok, K.V. Multisensory digital colorimetry to identify and determination of active substances in drugs. Sens. Actuat. B 2019, 299, 126909. [Google Scholar] [CrossRef]
- Shayesteh, O.H.; Ghavami, R. Two colorimetric ampicillin sensing schemes based on the interaction of aptamers with gold nanoparticles. Microchim. Acta 2019, 186, 485. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Shi, A.; Zheng, Z.; Huang, L.; Wang, Y.; Lin, H.; Lin, X. Simultaneous Quantification of Ampicillin and Kanamycin in Water Samples Based on Lateral Flow Aptasensor Strip with an Internal Line. Molecules 2021, 26, 3806. [Google Scholar] [CrossRef]
- Aghamirzaei, M.; Khiabani, M.S.; Hamishehkar, H.; Mokarram, R.R.; Amjadi, M. Plasmonic Sensor for Detection of β-Lactam Antibiotics based on the Conjugated Antibody with Gold Nanoparticles. J. Appl. Spectrosc. 2021, 88, 233–241. [Google Scholar] [CrossRef]
- Fu, Y.; Zhao, S.; Wu, S.; Huang, L.; Xu, T.; Xing, X.; Lan, M.; Song, X. A carbon dots-based fluorescent probe for turn-on sensing of ampicillin. Dyes Pigm. 2020, 172, 107846. [Google Scholar] [CrossRef]
- Esmaelpourfarkhani, M.; Abnous, K.; Taghdisi, S.M.; Chamsaz, M. A novel turn-off fluorescent aptasensor for ampicillin detection based on perylenetetracarboxylic acid diimide and gold nanoparticles. Biosens. Bioelectron. 2020, 164, 112329. [Google Scholar] [CrossRef]
- Lin, H.; Fang, F.; Zang, J.; Su, J.; Tian, Q.; Kumar Kankala, R.; Lin, X. A Fluorescent Sensor-Assisted Paper-Based Competitive Lateral Flow Immunoassay for the Rapid and Sensitive Detection of Ampicillin in Hospital Wastewater. Micromachines 2020, 11, 431. [Google Scholar] [CrossRef] [Green Version]
- Pennacchio, A.; Varriale, A.; Esposito, M.G.; Scala, A.; Marzullo, V.M.; Staiano, M.; D’Auria, S. A Rapid and Sensitive Assay for the Detection of Benzylpenicillin (PenG) in Milk. PLoS ONE 2015, 10, e0132396. [Google Scholar] [CrossRef]
- Salem, H.; Samir, E. Determination of cefotaxime, cefoperazone, ceftazidime and cefadroxil using surface plasmon resonance band of silver nanoparticles. Braz. J. Pharm. Sci. 2018, 54. [Google Scholar] [CrossRef]
- Ali, R.; Ali, H.R.H.; Batakoushy, H.A.; Derayea, S.M.; Elsutohy, M.M. A reductant colorimetric method for the rapid detection of certain cephalosporins via the production of gold and silver nanoparticles. Microchem. J. 2019, 146, 864–871. [Google Scholar] [CrossRef]
- Pourreza, N.; Ghomi, M. A network composed of gold nanoparticles and a poly(vinyl alcohol) hydrogel for colorimetric determination of ceftriaxone. Microchim. Acta 2020, 187, 133. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Qu, X.; Zhu, C.; Gao, Y.; Mao, C.; Song, J.; Niu, H. A two-dimensional zinc(II)-based metal-organic framework for fluorometric determination of ascorbic acid, chloramphenicol and ceftriaxone. Microchim. Acta 2020, 187, 136. [Google Scholar] [CrossRef] [PubMed]
- Douglass, P.M.; Salins, L.L.E.; Dikici, E.; Daunert, S. Class-Selective Drug Detection: Fluorescently-Labeled Calmodulin as the Biorecognition Element for Phenothiazines and Tricyclic Antidepressants. Bioconjugate Chem. 2002, 13, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Gurka, D.F.; Kolinski, R.E.; Myrick, J.W.; Wells, C.E. Scope of differential UV and differential fluorescence assays for phenothiazines: Comparison with official methods. J. Pharm. Sci. 1980, 69, 1069–1074. [Google Scholar] [CrossRef]
- Xia, W.Q.; Zhang, H.C.; Wang, G.N.; Liu, J.; Wang, J.P. A molecularly imprinted polymer based chemiluminescence array sensor for one-step determination of phenothiazines and benzodiazepines in pig urine. Luminescence 2019, 34, 98–105. [Google Scholar] [CrossRef]
- Jarangdet, T.; Pratumyot, K.; Srikittiwanna, K.; Dungchai, W.; Mingvanish, W.; Techakriengkrai, I.; Sukwattanasinitt, M.; Niamnont, N. A fluorometric paper-based sensor array for the discrimination of volatile organic compounds (VOCs) with novel salicylidene derivatives. Dyes Pigm. 2018, 159, 378–383. [Google Scholar] [CrossRef]
- Divyanin, N.N.; Rukosueva, E.A.; Garmash, A.V.; Beklemishev, M.K. Recognition of Model Analyte Mixtures in the Presence of Blood Plasma Using a Mixture of Fluorophores (“Fluorescent Tongue”). J. Analyt. Chem. 2018, 73, 1195–1201. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, F.; Zhang, G.; Chen, L.; Wu, Q.; Liu, X. Sensor array based on single carbon quantum dot for fluorometric differentiation of all natural amino acids. Microchim. Acta 2019, 186, 858. [Google Scholar] [CrossRef]
- Han, J.; Wang, B.; Bender, M.; Kushida, S.; Seehafer, K.; Bunz, U.H.F. Poly (aryleneethynylene) tongue that identifies nonsteroidal anti-inflammatory drugs in water: A test case for combating counterfeit drugs. ACS Appl. Mater. Interfaces 2017, 9, 790–797. [Google Scholar] [CrossRef]
- Wang, B.; Han, J.; Ma, C.; Bender, M.; Seehafer, K.; Herrmann, A.; Bunz, U.H.F. A Simple Optoelectronic Tongue Discriminates Amino Acids. Chem. Eur. J. 2017, 23, 12471–12474. [Google Scholar] [CrossRef]
- Wang, B.; Han, J.; Bender, M.; Seehafer, K.; Bunz, U.H.F. Array-Based Sensing of Explosives by Water-Soluble Poly(p-phenyleneethynylene)s. Macromolecules 2017, 50, 4126–4131. [Google Scholar] [CrossRef]
- Bojanowski, N.M.; Bender, M.; Seehafer, K.; Bunz, U.H.F. Discrimination of Saccharides by a Simple Array. Chem. Eur. J. 2017, 23, 12253–12258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.; Wang, B.; Bender, M.; Pfisterer, J.; Huang, W.; Seehafer, K.; Yazdani, M.; Rotello, V.M.; Rotello, C.M.; Bunz, U.H.F. Fingerprinting antibiotics with PAE-based fluorescent sensor arrays. Polymer Chem. 2017, 8, 2723–2732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demarco, P.V.; Nagarajan, R. Physico-chemical properties of cephalosporins and penicillins. In Cephalosporins and Penicillins. Chemistry and Biology; Flynn, E.H., Ed.; Academic Press: Cambridge, MA, USA, 1972; p. 315. ISBN 9781483270173. [Google Scholar]
- Perez-Inestrosa, E.; Suau, R.; Montañez, M.I.; Rodriguez, R.; Mayorga, C.; Torres, M.J.; Blanca, M. Cephalosporin chemical reactivity and its immunological implications. Curr. Opin. Allergy Clin. Immunol. 2005, 5, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Kojlo, A.; Karpinska, J.; Kuzmicka, L.; Misiuk, W.; Puzanowska-Tarasiewicz, H.; Tarasiewicz, M. Analytical study of the reaction of phenothiazines with some oxidants, metal ions, and organic substances (review article). J. Trace Microprobe Tech. 2001, 19, 45–70. [Google Scholar] [CrossRef]
- Narayanan, N.; Patonay, G. A New Method for the Synthesis of Heptamethine Cyanine Dyes: Synthesis of New Near-Infrared Fluorescent Labels. J. Org. Chem. 1995, 60, 2391–2395. [Google Scholar] [CrossRef]
- Rukosueva, E.A.; Belikova, V.A.; Krylov, I.N.; Orekhov, V.S.; Skorobogatov, E.V.; Garmash, A.V.; Beklemishev, M.K. Evaluation of Discrimination Performance in Case for Multiple Non-Discriminated Samples: Classification of Honeys by Fluorescent Fingerprinting. Sensors 2020, 20, 5351. [Google Scholar] [CrossRef]
Dye | 1 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
Indicator reaction type | Aggregation | Oxidation | Oxidation | Oxidation | Oxidation |
Type of photography * | NIR | NIR | NIR and vis | NIR and vis | NIR and vis |
RGB splitting of images | No | No | Yes | Yes | No |
Total number of data columns ** | 1 | 1 | 6 | 6 | 2 |
Time of signal measurement after reaction start, min | – *** | 6 | 2 (NIR), 5 (vis) | 2 (NIR), 5 (vis) | 4 (NIR), 4 (vis) |
The same in the presence of turkey extract, min | – *** | 50 | 36 (NIR), 19 (vis) | 11 (NIR), 10 (vis) | 58 (NIR), 33 (vis) |
No. | Description of the Data Set | Total Number of Data Columns | Data Columns Used for PCA Treatment | Crossing Number of Ellipses CrN for the Plot | Rating | Accuracy, & % | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dye 1 | Dye 2, NIR * | Dye 2, vis * | Dye 3, NIR | Dye 3, vis | Dye 4 | |||||||||||||||||
redox | aggr. | R | G | B | visR | visG | visB | R | G | B | visR | visG | visB | NIR | vis | PC1-PC2 | PC1-PC3 | |||||
1 | Basic set | 16 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 2 | 1 | 3 | 100 |
2 | Oxidation of dye 1 removed | 15 | − | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 2 | 4 | 6 | 95 |
3 | Dyes 1 and 4 oxidation removed | 13 | − | + | + | + | + | + | + | + | + | + | + | + | + | + | − | − | 2 | 4 | 6 | 100 |
4 | Dye 3 (NIR), dye 4 (vis) removed | 12 | + | + | + | + | + | + | + | + | − | − | − | + | + | + | + | − | 2 | 3 | 5 | 100 |
5 | Dye 3 completely removed | 10 | + | + | + | + | + | + | + | + | − | − | − | − | − | − | + | + | 4 | 4 | 8 | 97.5 |
6 | Dyes 2 and 3 (part of channels) removed | 10 | + | + | − | + | − | − | + | − | + | + | − | + | + | − | + | + | 3 | 2 | 5 | 100 |
7 | 8 col. selected based on visual inspection | 8 | − | + | + | − | − | + | + | + | − | − | − | + | − | + | + | − | 1 | 3 | 4 | 95 |
8 | 8 columns selected by ST DEV ** (Figure 6) | 8 | + | + | − | − | − | − | + | − | − | + | + | − | + | + | + | − | 1 | 3 | 4 | 100 |
9 | 8 columns selected by RSD ** | 8 | + | + | − | − | + | − | − | − | − | + | + | − | − | + | + | + | 3 | 2 | 5 | 97.5 |
10 | Same as line 7, one column changed | 8 | − | + | + | − | − | + | + | + | − | − | − | − | + | + | + | − | 2 | 5 | 7 | 97.5 |
11 | 6 columns selected by ST DEV ** | 6 | + | + | − | − | − | − | + | + | − | − | − | − | + | + | − | − | 3 | 3 | 6 | 95 |
12 | Only dyes 2 and 3, visible photographs | 6 | − | − | − | − | − | + | + | + | − | − | − | + | + | + | − | − | 4 | 7 | 11 | 85 |
13 | Basic set + additional points in kinetic curves | 33 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 3 | 4 | 7 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shik, A.V.; Stepanova, I.A.; Doroshenko, I.A.; Podrugina, T.A.; Beklemishev, M.K. Carbocyanine-Based Fluorescent and Colorimetric Sensor Array for the Discrimination of Medicinal Compounds. Chemosensors 2022, 10, 88. https://doi.org/10.3390/chemosensors10020088
Shik AV, Stepanova IA, Doroshenko IA, Podrugina TA, Beklemishev MK. Carbocyanine-Based Fluorescent and Colorimetric Sensor Array for the Discrimination of Medicinal Compounds. Chemosensors. 2022; 10(2):88. https://doi.org/10.3390/chemosensors10020088
Chicago/Turabian StyleShik, Anna V., Irina A. Stepanova, Irina A. Doroshenko, Tatyana A. Podrugina, and Mikhail K. Beklemishev. 2022. "Carbocyanine-Based Fluorescent and Colorimetric Sensor Array for the Discrimination of Medicinal Compounds" Chemosensors 10, no. 2: 88. https://doi.org/10.3390/chemosensors10020088
APA StyleShik, A. V., Stepanova, I. A., Doroshenko, I. A., Podrugina, T. A., & Beklemishev, M. K. (2022). Carbocyanine-Based Fluorescent and Colorimetric Sensor Array for the Discrimination of Medicinal Compounds. Chemosensors, 10(2), 88. https://doi.org/10.3390/chemosensors10020088