A Portable Battery-Operated Sensor System for Simple and Rapid Assessment of Virgin Olive Oil Quality Grade †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Olive Oil Samples and Basic Quality Analytical Determinations
2.2. Portable Sensor System
- The HAS reagent (15 mL) is added to the sensor vial.
- The reagent electrical conductance is measured to check if the HAS is suitable for the measurement (i.e., it is not degraded).
- The olive oil under test (1 mL) is added to the sensor vial.
- The sensor vial is vigorously stirred for about 15 s to create the emulsion.
- The emulsion electrical conductance Gm,T and the environmental temperature T are measured using the portable sensor system.
- The compensation model defined by Equation (4), implemented in the microcontroller, calculates the emulsion electrical conductance at 23.5 °C (Gm,23.5°C) from the measured values of Gm,T and T.
- The olive oil free acidity is estimated from the calculated Gm,23.5°C using a calibration curve equation stored in the microcontroller memory.
2.3. Statistical Analysis
3. Results and Discussion
3.1. Analysis of Free Acidity for Fresh Olive Oil Samples
3.2. Analysis of Free Acidity for the Full Set of Olive Oil Samples
3.3. Estimation of Quality Grade for the Full Set of Olive Oil Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gomez-Caravaca, A.M.; SeguraCarretero, A.; Fernandez-Gutierrez, A.; Lercker, G. Phenolic molecules in virgin olive oils: A survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef] [PubMed]
- Tulipani, S.; Huelamo, M.M.; Ribalta, M.R.; Estruch, R.; Ferrer, E.E.; Andres-Lacueva, C.; Illan, M.; Lamuela-Raventós, R.M. Oil matrix effects on plasma exposure and urinary excretion of phenolic compounds from tomato sauces: Evidence from a human pilot study. Food Chem. 2012, 130, 581–590. [Google Scholar] [CrossRef]
- Levi, F.; Lucchini, F.; La Vecchia, C. Worldwide patterns of cancer mortality. Eur. J. Cancer Prev. 1994, 3, 109–144. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Ruiz-Gutiérrez, V.; Covas, M.I.; Fiol, M.; Gómez-Gracia, E.; López-Sabater, M.C.; Vinyoles, E.; et al. Effects of a mediterranean-style diet on cardiovascular risk factors. Ann. Intern. Med. 2006, 145, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tena, N.; Wang, S.C.; Aparicio-Ruiz, R.; García-Gonzaléz, D.L.; Aparicio, R. Indepth assessment of analytical methods for olive oil purity, safety, and quality characterization. J. Agric. Food Chem. 2015, 63, 4509–4526. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EEC) No 2568/91 of 11 July 1991 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. Eur. Union 1991, 248, 1–127. [Google Scholar]
- Ramadan, M.F. Fruit Oils: Chemistry and Functionality; Springer: Zurich, Switzerland, 2019. [Google Scholar]
- Abu-Khalaf, N.; Hmidat, M. Visible/Near Infrared (VIS/NIR) spectroscopy as an optical sensor for evaluating olive oil quality. Comput. Electron. Agric. 2020, 173, 105445. [Google Scholar] [CrossRef]
- Giussani, B.; Escalante-Quiceno, A.T.; Boqué, R.; Riu, J. Measurement Strategies for the Classification of Edible Oils Using Low-Cost Miniaturised Portable NIR Instruments. Foods 2021, 10, 2856. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Y.; Dai, Z.; Cui, L.; Lin, H.; Li, Z.; Wu, K.; Liu, G. Quantitative Detection of Extra Virgin Olive Oil Adulteration, as Opposed to Peanut and Soybean Oil, Employing LED-Induced Fluorescence Spectroscopy. Sensors 2022, 22, 1227. [Google Scholar] [CrossRef]
- Grossi, M.; Valli, E.; Glicerina, V.T.; Rocculi, P.; Gallina Toschi, T.; Riccò, B. Practical determination of solid fat content in fats and oils by single-wavelength near-infrared analysis. IEEE Trans. Instrum. Meas. 2020, 69, 585–592. [Google Scholar] [CrossRef]
- Grossi, M.; Valli, E.; Glicerina, V.T.; Rocculi, P.; Gallina Toschi, T.; Riccò, B. Optical Determination of Solid Fat Content in Fats and Oils: Effects of Wavelength on Estimated Accuracy. Eur. J. Lipid Sci. Technol. 2022, 124, 2100071. [Google Scholar] [CrossRef]
- Fendri, A.; Kallel, A.Y.; Nouri, H.; Ghariani, H.; Kanoun, O. Measurement system for lossy capacitive sensors: Application to edible oils quality assessment. Sensors 2019, 19, 4299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Qin, X.; Chen, Z.; Tang, L.; Borom, B.; Cao, N.; Barnes, D.; Cheng, K.; Chen, J.; Wang, T.; et al. Frying oil evaluation by a portable sensor based on dielectric constant measurement. Sensors 2019, 19, 5375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zappi, D.; Sadun, C.; Gontrani, L.; Dini, D.; Antonelli, M.L. A new electrochemical sensor for extra-virgin olive oils classification. Food Control 2020, 109, 106903. [Google Scholar] [CrossRef]
- Radovanović, M.; Ilić, M.; Pastor, K.; Ačanski, M.; Panić, S.; Srdić, V.V.; Randjelović, D.; Kojić, T.; Stojanović, G.M. Rapid detection of olive oil blends using a paper-based portable microfluidic platform. Food Control 2021, 124, 107888. [Google Scholar] [CrossRef]
- Song, W.; Song, Z.; Vincent, J.; Wang, H.; Wang, Z. Quantification of extra virgin olive oil adulteration using smartphone videos. Talanta 2020, 216, 120920. [Google Scholar] [CrossRef]
- Navarro Soto, J.; Satorres Martínez, S.; Martínez Gila, D.; Gómez Ortega, J.; Gámez García, J. Fast and reliable determination of virgin olive oil quality by fruit inspection using computer vision. Sensors 2018, 18, 3826. [Google Scholar] [CrossRef] [Green Version]
- Gila, A.; Bejaoui, M.A.; Beltrán, G.; Jiménez, A. Rapid method based on computer vision to determine the moisture and insoluble impurities content in virgin olive oils. Food Control 2020, 113, 107210. [Google Scholar] [CrossRef]
- Abu-Khalaf, N. Identification and Quantification of Olive Oil Quality Parameters Using an Electronic Nose. Agriculture 2021, 11, 674. [Google Scholar] [CrossRef]
- Teixeira, G.G.; Dias, L.G.; Rodrigues, N.; Marx, Í.M.; Veloso, A.C.; Pereira, J.A.; Peres, A.M. Application of A Lab-Made Electronic Nose for Extra Virgin Olive Oils Commercial Classification According to The Perceived Fruitiness Intensity. Talanta 2021, 226, 122122. [Google Scholar] [CrossRef]
- Conrado, J.A.M.; Sequinel, R.; Dias, B.C.; Silvestre, M.; Batista, A.D.; Petruci, J.F.D.S. Chemical QR code: A simple and disposable paper-based optoelectronic nose for the identification of olive oil odor. Food Chem. 2021, 350, 129243. [Google Scholar] [CrossRef] [PubMed]
- Grossi, M.; Palagano, R.; Bendini, A.; Riccò, B.; Servili, M.; García-González, D.L.; Gallina Toschi, T. Design and in-house validation of a portable system for the determination of free acidity in virgin olive oil. Food Control 2019, 104, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2005. [Google Scholar]
- Grossi, M.; Parolin, C.; Vitali, B.; Riccò, B. Measurement of bacterial concentration using a portable sensor system with a combined electrical-optical approach. IEEE Sens. J. 2019, 19, 10693–10700. [Google Scholar] [CrossRef]
- Grossi, M.; Parolin, C.; Vitali, B.; Riccò, B. A portable sensor system for bacterial concentration monitoring in metalworking fluids. J. Sens. Sens. Syst. 2018, 7, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Ochandio Fernández, A.; Olguín Pinatti, C.A.; Masot Peris, R.; Laguarda-Miró, N. Freeze-damage detection in lemons using electrochemical impedance spectroscopy. Sensors 2019, 19, 4051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, G.K.; Barfidokht, A.; Tehrani, F.; Mishra, R.K. Food Safety Analysis Using Electrochemical Biosensors. Foods 2018, 7, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.C.; Jan, W.L.; Juan, C.H.; Meng, N.H.; Lin, B.S.; Chen, H.C. Novel Wireless Bioimpedance Device for Segmental Lymphedema Analysis Post Dual-Site Free Vascularized Lymph Node Transfer: A Prospective Cohort Study. Sensors 2021, 21, 8187. [Google Scholar] [CrossRef]
- Cannon, T.; Choi, J. Development of a segmental bioelectrical impedance spectroscopy device for body composition measurement. Sensors 2019, 19, 4825. [Google Scholar] [CrossRef] [Green Version]
- Grossi, M.; Riccò, B. An automatic titration system for oil concentration measurement in metalworking fluids. Measurement 2017, 97, 8–14. [Google Scholar] [CrossRef]
- Grossi, M.; Parolin, C.; Vitali, B.; Riccò, B. Electrical impedance spectroscopy (EIS) characterization of saline solutions with a low-cost portable measurement system. Eng. Sci. Technol. Int. J. 2019, 22, 102–108. [Google Scholar] [CrossRef]
- Szypłowska, A.; Nakonieczna, A.; Wilczek, A.; Paszkowski, B.; Solecki, G.; Skierucha, W. Application of a coaxial-like sensor for impedance spectroscopy measurements of selected low-conductivity liquids. Sensors 2013, 13, 13301–13317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feliu, S. Electrochemical impedance spectroscopy for the measurement of the corrosion rate of magnesium alloys: Brief review and challenges. Metals 2020, 10, 775. [Google Scholar] [CrossRef]
- Kim, J.K.; Kee, S.H.; Futalan, C.M.; Yee, J.J. Corrosion monitoring of reinforced steel embedded in cement mortar under wet-and-dry cycles by electrochemical impedance spectroscopy. Sensors 2020, 20, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Official Journal of the European Union. Commission Delegated Regulation (EU) No 2019/1604 of 27 September 2019 Amending Regulation (EEC) No 2568/91 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis; Official Journal of the European Union: Brussels, Belgium, 2019; Volume L250, pp. 14–48. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R1604&from=EN (accessed on 18 January 2022).
Sample Number | Free Acidity (%) | Estimated Free Acidity (%) |
---|---|---|
1 | 0.253 | 0.298 |
2 | 0.307 | 0.263 |
3 | 0.409 | 0.520 |
4 | 0.376 | 0.430 |
5 | 0.760 | 0.989 |
6 | 1.202 | 1.335 |
7 | 2.200 | 2.364 |
8 | 0.236 | 0.562 |
9 | 1.741 | 1.588 |
10 | 1.432 | 1.336 |
11 | 2.217 | 1.983 |
12 | 0.838 | 0.896 |
13 | 0.732 | 0.852 |
14 | 0.228 | 0.086 |
15 | 0.231 | 0.162 |
16 | 0.451 | 0.364 |
17 | 0.252 | 0.548 |
18 | 0.196 | 0.190 |
19 | 0.422 | 0.692 |
20 | 0.368 | 0.423 |
21 | 0.198 | 0.065 |
22 | 0.184 | 0.041 |
23 | 0.145 | 0.065 |
24 | 0.471 | 0.449 |
25 | 2.298 | 2.160 |
26 | 1.787 | 1.661 |
27 | 0.334 | 0.328 |
28 | 0.324 | 0.332 |
29 | 0.304 | 0.350 |
30 | 0.360 | 0.325 |
31 | 0.329 | 0.300 |
UV Stress Time | Gm,23.5°C (µS) |
---|---|
No UV stress | 2.26 |
1 week UV stress | 5.09 |
2 weeks UV stress | 5.22 |
3 weeks UV stress | 5.12 |
EVOO | Non-EVOO | |
---|---|---|
Estimated EVOO | 21 | 1 |
Estimated non-EVOO | 2 | 16 |
EVOO | VOO | LOO | |
---|---|---|---|
Estimated EVOO | 22 | 0 | 1 |
Estimated VOO | 0 | 4 | 1 |
Estimated LOO | 1 | 1 | 10 |
EVOO | Non-EVOO | |
---|---|---|
Estimated EVOO | 20 | 3 |
Estimated non-EVOO | 3 | 14 |
EVOO | VOO | LOO | |
---|---|---|---|
Estimated EVOO | 21 | 2 | 1 |
Estimated VOO | 0 | 3 | 3 |
Estimated LOO | 2 | 0 | 8 |
Reagents Used | Accuracy | Precision EVOO | Recall EVOO | Precision Non-EVOO | Recall Non-EVOO |
---|---|---|---|---|---|
HAS | 0.925 | 0.954 | 0.913 | 0.888 | 0.941 |
HAS + DW | 0.850 | 0.869 | 0.869 | 0.823 | 0.823 |
Reagents Used | Accuracy | Precision EVOO | Recall EVOO | Precision VOO | Recall VOO | Precision LOO | Recall LOO |
---|---|---|---|---|---|---|---|
HAS | 0.900 | 0.956 | 0.956 | 0.800 | 0.800 | 0.833 | 0.833 |
HAS + DW | 0.800 | 0.875 | 0.913 | 0.500 | 0.600 | 0.800 | 0.666 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grossi, M.; Valli, E.; Bendini, A.; Gallina Toschi, T.; Riccò, B. A Portable Battery-Operated Sensor System for Simple and Rapid Assessment of Virgin Olive Oil Quality Grade. Chemosensors 2022, 10, 102. https://doi.org/10.3390/chemosensors10030102
Grossi M, Valli E, Bendini A, Gallina Toschi T, Riccò B. A Portable Battery-Operated Sensor System for Simple and Rapid Assessment of Virgin Olive Oil Quality Grade. Chemosensors. 2022; 10(3):102. https://doi.org/10.3390/chemosensors10030102
Chicago/Turabian StyleGrossi, Marco, Enrico Valli, Alessandra Bendini, Tullia Gallina Toschi, and Bruno Riccò. 2022. "A Portable Battery-Operated Sensor System for Simple and Rapid Assessment of Virgin Olive Oil Quality Grade" Chemosensors 10, no. 3: 102. https://doi.org/10.3390/chemosensors10030102
APA StyleGrossi, M., Valli, E., Bendini, A., Gallina Toschi, T., & Riccò, B. (2022). A Portable Battery-Operated Sensor System for Simple and Rapid Assessment of Virgin Olive Oil Quality Grade. Chemosensors, 10(3), 102. https://doi.org/10.3390/chemosensors10030102