Effect of Applied Electrical Stimuli to Interdigitated Electrode Sensors While Detecting 17α-Ethinylestradiol in Water Samples
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Studies of Stability of Thin Films
3.2. Effect of Applied Voltage on the Interdigitated Sensors Characterization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Yang, Q.; Dong, J.; Huang, H. Competitive adsorption of PPCP and humic substances by carbon nanotube membranes: Effects of coagulation and PPCP properties. Sci. Total Environ. 2018, 619–620, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Duca, G.; Boldescu, V. Pharmaceuticals and Personal Care Products in the Environment. In The Role of Ecological Chemistry in Pollution Research and Sustainable Development; NATO Science for Peace and Security Series C: Environmental Security; Bahadir, A.M., Duca, G., Eds.; Springer: Dordrecht, The Netherland, 2009; pp. 27–35. [Google Scholar] [CrossRef]
- Liu, J.L.; Wong, M.H. Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China. Environ. Int. 2013, 59, 208–224. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.F.; Powers, S.M.; Hampton, S.E. An Evidence Synthesis of Pharmaceuticals and Personal Care Products (PPCPs) in the Environment: Imbalances among Compounds, Sewage Treatment Techniques, and Ecosystem Types. Environ. Sci. Technol. 2019, 53, 12961–12973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, I.; Magalhâes-Mota, G.; Pires, F.; Sério, S.; Ribeiro, P.A.; Raposo, M. Detection of traces of triclosan in water. Appl. Surf. Sci. 2017, 421, 142–147. [Google Scholar] [CrossRef]
- Boxall, A.B.; Rudd, M.A.; Brooks, B.W.; Caldwell, D.J.; Choi, K.; Hickmann, S.; Innes, E.; Ostapyk, K.; Staveley, J.P.; Verslycke, T.; et al. Pharmaceuticals and personal care products in the environment: What are the big questions? Environ. Health Perspect. 2012, 120, 1221–1229. [Google Scholar] [CrossRef] [PubMed]
- Vella, K. Commission Implementing Decision (EU) 2018/840 of 5 June 2018. Off. J. Eur. Union 2018, 1–4. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018D0840 (accessed on 16 December 2021).
- da Cunha, D.L.; Camargo da Silva, S.M.; Bila, D.M.; da Mota Oliveira, J.L.; de Novaes Sarcinelli, P.; Larentis, A.L. Regulation of the synthetic estrogen 17α-ethinylestradiol in water bodies in Europe, the United States, and Brazil. Cad. De Saude Publica 2016, 32, 1–12. [Google Scholar] [CrossRef] [Green Version]
- UNESCO. Chemical contaminants: Those invisible additives in our drink. A World Sci. 2011, 9, 18–24. [Google Scholar]
- European Commission. Water Framework Directive 2000/60/EC. Off. J. Eur. Communities 2000, L 269, 1–15. [Google Scholar]
- Hrkal, Z.; Eckhardt, P.; Hrabánková, A.; Novotná, E.; Rozman, D. PPCP monitoring in drinking water supply systems: The example of Káraný waterworks in Central Bohemia. Water 2018, 10, 1852. [Google Scholar] [CrossRef] [Green Version]
- Braig, S.; Delisle, K.; Noël, M. Water Quality Assessment and Proposed Objectives for Burrard Inlet: Pharmaceuticals & Personal Care Products Technical Report. Prepared for Tsleil-Waututh Nation and the Province of B.C.; 2019. Available online: https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/water-quality-objectives/2020-03-31_biwqos_ppcpsdoc.pdf (accessed on 16 December 2021).
- Priya, A.K.; Gnanasekaran, L.; Rajendran, S.; Qin, J.; Vasseghian, Y. Occurrences and removal of pharmaceutical and personal care products from aquatic systems using advanced treatment—A review. Environ. Res. 2022, 204, 112298. [Google Scholar] [CrossRef] [PubMed]
- Ricky, R.; Shanthakumar, S. Phycoremediation integrated approach for the removal of pharmaceuticals and personal care products from wastewater—A review. J. Environ. Manag. 2022, 302, 113998. [Google Scholar] [CrossRef] [PubMed]
- Buchberger, W. Current approaches to trace analysis of pharmaceuticals and personal care products in the environment. J. Chromatogr. A 2011, 1218, 603–618. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Y.; Zhao, J.L.; Liu, Y.S.; Liu, W.R.; Zhang, Q.Q.; Yao, L.; Hu, L.X.; Zhang, J.N.; Jiang, Y.X.; Ying, G.G. Pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) in surface and ground waters and their application as indication of wastewater contamination. Sci. Total Environ. 2018, 616–617, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Ebele, A.J.; Abou-Elwafa Abdallah, M.; Harrad, S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 2017, 3, 1–16. [Google Scholar] [CrossRef]
- Raccanelli, S.; Libralato, S.; Tundo, P. Fate of Persistent Organic Pollutants in the Venice Lagoon: From the Environment to Human Beings through Biological Exploitation? Springer Science + Business Media B.V.: Berlin/Heidelberg, Germany, 2009; pp. 15–25. [Google Scholar] [CrossRef]
- Sengar, A.; Vijayanandan, A. Human health and ecological risk assessment of 98 pharmaceuticals and personal care products (PPCPs) detected in Indian surface and wastewaters. Sci. Total Environ. 2022, 807, 150677. [Google Scholar] [CrossRef] [PubMed]
- Adeleye, A.S.; Xue, J.; Zhao, Y.; Taylor, A.A.; Zenobio, J.E.; Sun, Y.; Han, Z.; Salawu, O.A.; Zhu, Y. Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. J. Hazard. Mater. 2022, 424, 127284. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Xiao, B.; Huang, W.; Peng, P. Sorption of steroid estrogens to soils and sediments. Environ. Toxicol. Chem. 2004, 23, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Clubbs, R.L.; Brooks, B.W. Daphnia magna responses to a vertebrate estrogen receptor agonist and an antagonist: A multigenerational study. Ecotoxicol. Environ. Saf. 2007, 67, 385–398. [Google Scholar] [CrossRef]
- Essandoh, H.M.K.; Tizaoui, C.; Mohamed, M.H.A. Removal of Estrone (E1), 17β-Estradiol (E2) and 17α-Ethinylestradiol (EE2) During Soil Aquifer Treatment of a Model Wastewater. Sep. Sci. Technol. 2012, 47, 777–787. [Google Scholar] [CrossRef]
- Ankley, G.T.; Feifarek, D.; Blackwell, B.; Cavallin, J.E.; Jensen, K.M.; Kahl, M.D.; Poole, S.; Randolph, E.; Saari, T.; Villeneuve, D.L. Re-evaluating the Significance of Estrone as an Environmental Estrogen. Environ. Sci. Technol. 2017, 51, 4705–4713. [Google Scholar] [CrossRef] [PubMed]
- Adeel, M.; Song, X.; Wang, Y.; Francis, D.; Yang, Y. Environmental impact of estrogens on human, animal and plant life: A critical review. Environ. Int. 2017, 99, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Shore, L.S.; Shemesh, M. Estrogen as an Environmental Pollutant. Bull. Environ. Contam. Toxicol. 2016, 97, 447–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magro, C.; Mateus, E.P.; Raposo, M.; Ribeiro, A.B. Overview of electronic tongue sensing in environmental aqueous matrices: Potential for monitoring emerging organic contaminants. Environ. Rev. 2018, 27, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Yousefi-Nejad, S.; Heidarbeigi, K.; Roushani, M. Electronic tongue as innovative instrument for detection of crocin concentration in saffron (Crocus sativus L.). J. Food Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Elamine, Y.; Inácio, P.M.C.; Lyoussi, B.; Anjos, O.; Estevinho, L.M.; da Graça Miguel, M.; Gomes, H.L. Insight into the sensing mechanism of an impedance based electronic tongue for honey botanic origin discrimination. Sens. Actuators B Chem. 2019, 285, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.; Claudel, J.; Kourtiche, D.; Nadi, M. Geometric parameters optimization of planar interdigitated electrodes for bioimpedance spectroscopy. J. Electr. Bioimpedance 2013, 4, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, S.C. Sensing and Instrumentation for a Low Cost Intelligent Sensing System. In Proceedings of the SICE-ICASE International Joint Conference, Bexco, Busan, Korea, 18–21 October 2016; pp. 1075–1080. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.C.; Gooneratne, C.P.; Demidenko, S.; Sen Gupta, G. Low cost sensing system for dairy products quality monitoring. In Proceedings of the 2005 International Instrumentation and Measurement Technology Conference, Ottawa, ON, Canada, 17–19 May 2005; pp. 244–249, ISBN 0-7803-8880-1. [Google Scholar]
- Van Gerwen, P.; Laureys, W.; Huyberechts, G.; Op De Beeck, M.; Baert, K.; Suls, J.; Varlan, A.; Sansen, W.; Hermans, L.; Mertens, R. Nanoscaled interdigitated electrode arrays for biochemical sensors. Int. Conf. Solid-State Sens. Actuators Proc. 1997, 2, 907–910. [Google Scholar] [CrossRef]
- Taylor, D.M.; Macdonald, A.G. AC admittance of the metal/insulator/electrolyte interface. J. Phys. D Appl. Phys. 1987, 20, 1277–1283. [Google Scholar] [CrossRef]
- Döring, J.; Tharmakularajah, L.; Krieger, K. Study of Interdigital Electrode Structures for the Detection of Water Spray, GMA/ITG-Fachtagung Sensoren und Messsysteme, P2: Messsysteme. Available online: https://www.ama-science.org/proceedings/details/3476 (accessed on 16 December 2021).
- Singh, K.V.; Whited, A.M.; Ragineni, Y.; Barrett, T.W.; King, J.; Solanki, R. 3D nanogap interdigitated electrode array biosensors. Anal. Bioanal. Chem. 2010, 397, 1493–1502. [Google Scholar] [CrossRef]
- MacKay, S.; Hermansen, P.; Wishart, D.; Chen, J. Simulations of interdigitated electrode interactions with gold nanoparticles for impedance-based biosensing applications. Sensors 2015, 15, 22192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zagalo, P.M.; Magro, C.; Ribeiro, P.A.; Raposo, M. Applied Voltage Effect in Lbl Sensors While Detecting 17α-Ethinylestradiol in Water Samples. Chem. Proc. 2021, 5, 460. [Google Scholar] [CrossRef]
- Decher, G.; Schmitt, J. Fine-Tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes. Prog. Colloid Polym. Sci. 2007, 89, 160–164. [Google Scholar]
- Jackson, J.; Edward, A. Users Guide to Principal Components; John Wiley & Sons: Hoboken, NJ, USA, 2003; ISBN 0-471-47134-8. [Google Scholar]
- Osborne, J.W.; Costello, A.B. Sample size and subject to item ratio in principal components analysis. J. Biom. Biostat. 2010, 9, 11. [Google Scholar] [CrossRef]
- Giacometti, J.A.; Shimizu, F.M.; Carr, O.; Oliveira, O.N. A Guiding Method to Select and Reduce the Number of Sensing Units in Electronic Tongues. In Proceedings of the 2016 IEEE Sensors, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zagalo, P.M.; Ribeiro, P.A.; Raposo, M. Effect of Applied Electrical Stimuli to Interdigitated Electrode Sensors While Detecting 17α-Ethinylestradiol in Water Samples. Chemosensors 2022, 10, 114. https://doi.org/10.3390/chemosensors10030114
Zagalo PM, Ribeiro PA, Raposo M. Effect of Applied Electrical Stimuli to Interdigitated Electrode Sensors While Detecting 17α-Ethinylestradiol in Water Samples. Chemosensors. 2022; 10(3):114. https://doi.org/10.3390/chemosensors10030114
Chicago/Turabian StyleZagalo, Paulo M., Paulo A. Ribeiro, and Maria Raposo. 2022. "Effect of Applied Electrical Stimuli to Interdigitated Electrode Sensors While Detecting 17α-Ethinylestradiol in Water Samples" Chemosensors 10, no. 3: 114. https://doi.org/10.3390/chemosensors10030114
APA StyleZagalo, P. M., Ribeiro, P. A., & Raposo, M. (2022). Effect of Applied Electrical Stimuli to Interdigitated Electrode Sensors While Detecting 17α-Ethinylestradiol in Water Samples. Chemosensors, 10(3), 114. https://doi.org/10.3390/chemosensors10030114