Perchlorate Solid-Contact Ion-Selective Electrode Based on Dodecabenzylbambus[6]uril
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Development of Perchlorate SC-ISE
3.2. Selectivity of Perchlorate SC-ISE
3.3. Analysis of Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trumpolt, C.W.; Crain, M.; Cullison, G.D.; Flanagan, S.J.P.; Siegel, L.; Lathrop, S. Perchlorate: Sources, Uses, and Occurrences in the Environment. Remediation 2005, 16, 65–89. [Google Scholar] [CrossRef] [Green Version]
- Kumarathilaka, P.; Oze, C.; Indraratne, S.P.; Vithanage, M. Perchlorate as an emerging contaminant in soil, water and food. Chemosphere 2016, 150, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Seyfferth, A.L.; Parker, D.R. Uptake and Fate of Perchlorate in Higher Plants. Adv. Agron. 2008, 99, 101–123. [Google Scholar] [CrossRef]
- Leoterio, D.M.S.; Paim, A.P.S.; Belian, M.F.; Galembeck, A.; Lavorante, A.F.; Pinto, E.; Amorim, C.G.; Araujo, A.N.; Montenegro, M.C.B.S.M. Potentiometric perchlorate determination at nanomolar concentrations in vegetables. Food Chem. 2017, 227, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-W.; Oh, S.-H.; Oh, J.-E. Monitoring of perchlorate in diverse foods and its estimated dietary exposure for Korea populations. J. Hazard. Mat. 2012, 243, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Blount, B.C.; Valentin-Blasini, L.; Osterloh, J.D.; Mauldin, J.P.; Pirkle, J.L. Perchlorate exposure of the US population, 2001-2002. J. Exp. Sci. Env. Epidemiol. 2007, 17, 400–407. [Google Scholar] [CrossRef] [Green Version]
- Theodorakis, C.; Rinchard, J.; Anderson, T.; Liu, F.; Park, J.W.; Costa, F.; McDaniel, L.; Kendall, R.; Waters, A. Perchlorate in fish from a contaminated site in east-central Texas. Environ. Pollut. 2006, 139, 59–69. [Google Scholar] [CrossRef]
- Jackson, P.E.; Laikhtman, M.; Rohrer, J.S. Determination of trace level perchlorate in drinking water and ground water by ion chromatography. J. Chrom. A 1999, 850, 131–135. [Google Scholar] [CrossRef]
- Lamb, J.D.; Simpson, D.; Jensen, B.D.; Gardner, J.S.; Peterson, Q.P. Determination of perchlorate in drinking water by ion chromatography using macrocycle-based concentration and separation methods. J. Chrom. A 2006, 1118, 100–105. [Google Scholar] [CrossRef]
- Martinelango, P.K.; Gümüs, G.; Dasgupta, P.K. Matrix interference free determination of perchlorate in urine by ion association–ion chromatography–mass spektrometry. Anal. Chim. Acta 2006, 567, 79–86. [Google Scholar] [CrossRef]
- Lin, S.-L.; Lo, C.-Y.; Fuh, M.-R. Quantitative determination of perchlorate in bottled water and tea with online solid phase extraction high-performance liquid chromatography coupled to tandem mass spectrometry. J. Chrom. A 2012, 1246, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Nollet, L.M.L. (Ed.) Handbook of Water Analysis; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Boček, P.; Deml, M.; Gebauer, P.; Dolník, V. Analytical Isotachophoresis; VCH: Weinheim, Germany, 1988. [Google Scholar]
- Foret, F.; Křivánková, L.; Boček, P. Capillary Zone Electrophoresis; VCH: Weinheim, Germany, 1993. [Google Scholar]
- Buszewski, B.; Dziubakiewicz, E.; Szumski, M. (Eds.) Electromigration Techniques—Theory and Practice; Springer: Berlin, Germany, 2013. [Google Scholar]
- Kiplagat, I.K.; Thi, K.O.D.; Kubáň, P.; Boček, P. Trace determination of perchlorate using electromembrane extraction and capillary electrophoresis with capacitively coupled contactless conductivity detection. Electrophoresis 2011, 32, 3008–3015. [Google Scholar] [CrossRef] [PubMed]
- Šlampová, A.; Šindelář, V.; Kubáň, P. Application of a macrocyclic compound, bambus[6]uril, in tailor-made liquid membranes for highly selective electromembrane extractions of inorganic anions. Anal. Chim. Acta 2017, 950, 49–56. [Google Scholar] [CrossRef]
- Pourreza, N.; Mousavi, H.Z. Extraction spectrophotometric determination of trace amounts of perchlorate based on ion-pair formation with thionine. J. Anal. Chem. 2005, 60, 816–818. [Google Scholar] [CrossRef]
- Vázquez, K.; Šindelář, V. Phase-transfer extraction for the fast quantification of perchlorate anions in water. RSC Adv. 2019, 9, 35452. [Google Scholar] [CrossRef] [Green Version]
- Hatzistavros, V.S.; Kallithrakas-Kontos, N.G. Determination of Trace Perchlorate Concentrations by Anion-Selective Membranes and Total Reflection X-ray Fluorescence Analysis. Anal. Chem. 2011, 83, 3386–3391. [Google Scholar] [CrossRef]
- Ruan, C.; Wang, W.; Gu, B. Surface-enhanced Raman scattering for perchlorate detection using cystamine-modified gold nanoparticles. Anal. Chim. Acta 2006, 567, 114–120. [Google Scholar] [CrossRef]
- Barnett, D.A.; Horlick, G. Quantitative Electrospray Mass Spectrometry of Halides and Halogenic Anions. J. Anal. At. Spectrom. 1997, 12, 497–501. [Google Scholar] [CrossRef]
- Handy, R.; Barnett, D.A.; Purves, R.W.; Horlick, G.; Guevremont, R. Determination of nanomolar levels of perchlorate in water by ESIFAIMS-MS. J. Anal. At. Spectrom. 2000, 15, 907–911. [Google Scholar] [CrossRef]
- Koester, C.J.; Beller, H.R.; Halden, R.U. Analysis of Perchlorate in Groundwater by Electrospray Ionization Mass Spectrometry/Mass Spectrometry. Environ. Sci. Technol. 2000, 34, 1862–1864. [Google Scholar] [CrossRef]
- Martinelango, P.K.; Anderson, J.L.; Dasgupta, P.K.; Armstrong, D.W.; Al-Horr, R.S.; Slingsby, R.W. Gas-Phase Ion Association Provides Increased Selectivity and Sensitivity for Measuring Perchlorate by Mass Spectrometry. Anal. Chem. 2005, 77, 4829–4835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anzenbacher, P., Jr.; Lubal, P.; Buček, P.; Palacios, M.A.; Kozelkova, M.E. A practical approach to optical cross-reactive sensor arrays. Chem. Soc. Rev. 2010, 39, 3954–3979. [Google Scholar] [CrossRef] [PubMed]
- Šídlo, M.; Lubal, P.; Anzenbacher, P., Jr. Colorimetric Chemosensor Array for Determination of Halides. Chemosensors 2021, 9, 39. [Google Scholar] [CrossRef]
- Marshall, S.R.; Singh, A.; Wagner, J.N.; Busschaert, N. Enhancing the selectivity of optical sensors using synthetic transmembrane ion transporters. Chem. Comm. 2020, 56, 14455–14458. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Zha, D.; Anslyn, E.V. Recent Advances in Supramolecular Analytical Chemistry Using Optical Sensing. Chem. Rev. 2015, 115, 7840–7892. [Google Scholar] [CrossRef]
- Wang, B.; Anslyn, E.V. (Eds.) Chemosensors. Principles, Strategies and Applications; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Janata, J. Principles of Chemical Sensors; Springer: Heidelberg, Germany, 2010. [Google Scholar]
- Wang, J. Analytical Electrochemistry; Wiley-VCH: Hoboken, NJ, USA, 2006. [Google Scholar]
- Cattrall, R.W. Chemical Sensors; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Banica, F.-G. Chemical Sensors and Biosensors; Wiley: Chichester, UK, 2012. [Google Scholar]
- Lindner, E.; Bradford, D.; Pendley, B.D. A tutorial on the application of ion-selective electrode potentiometry: An analytical method with unique qualities, unexplored opportunities and potential pitfalls; Tutorial. Anal. Chim. Acta 2013, 762, 1–13. [Google Scholar] [CrossRef]
- Bakker, E.; Pretsch, E. The new wave of ion-selective electrodes. Anal. Chem. 2002, 74, 420A–426A. [Google Scholar] [CrossRef]
- Sokalski, T.; Zwickl, T.; Bakker, E.; Pretsch, E. Lowering the detection limit of solvent polymeric ion-selective electrodes. 1. Modeling the influence of steady-state ion fluxes. Anal. Chem. 1999, 71, 1204–1209. [Google Scholar] [CrossRef]
- Sokalski, T.; Ceresa, A.; Fibbioli, M.; Zwickl, T.; Bakker, E.; Pretsch, E. Lowering the detection limit of solvent polymeric ion-selective electrodes. 2. Influence of composition of sample and internal electrolyte solution. Anal. Chem. 1999, 71, 1210–1214. [Google Scholar] [CrossRef]
- Malon, A.; Radu, A.; Qin, W.; Qin, Y.; Ceresa, A.; Maj-Zurawska, M.; Bakker, E.; Pretsch, E. Improving the detection limit of anion-selective electrodes: An iodide-selective membrane with a nanomolar detection limit. Anal. Chem. 2003, 75, 3865–3871. [Google Scholar] [CrossRef]
- Casabó, J.; Escriche, L.; Pérez-Jiménez, C.; Munoz, C.A.; Teixidor, F.; Bausells, J.; Errachid, A. Application of a new phosphadithiamacrocycle to ClO4-selective CHEMFET and ion-selective electrode device. Anal. Chim. Acta 1996, 320, 63–68. [Google Scholar] [CrossRef]
- Pérez-Olmos, R.; Rios, A.; Martín, M.P.; Lapa, R.A.S.; Lima, J.L.F.C. Construction and evaluation of ion selective electrodes for perchlorate with a summing operational amplifier: Application to pyrotechnics mixtures analysis. Analyst 1999, 124, 97–100. [Google Scholar] [CrossRef]
- Shamsipur, M.; Soleymanpour, A.; Akhond, M.; Sharghi, H.; Hasaninejad, A.R. Perchlorate selective membrane electrodes based on a phosphorus(V)-tetraphenylporphyrin complex. Sens. Actuators B 2003, 89, 9–14. [Google Scholar] [CrossRef]
- Ganjali, M.R.; Yousefi, M.; Poursaberi, T.; Naji, L.; Salavati-Niasari, M.; Shamsipur, M. Highly Selective and Sensitive Perchlorate Sensors Based on Some Recently Synthesized Ni(II)-Hexaazacyclotetradecane Complexes. Electroanalysis 2003, 15, 1476–1480. [Google Scholar] [CrossRef]
- Sabater, J.L.; Segui, M.J.; Lloris, J.M.; Martínez-Mánez, R.; Pardo, T.; Sancenon, F.; Soto, J. New membrane perchlorate-selective electrodes containing polyazacycloalkanes as carriers. Sens. Act. B 2004, 101, 20–27. [Google Scholar] [CrossRef]
- Mazloum-Ardakani, M.; Jalayer, M.; Naeimi, H.; Zare, H.R.; Moradi, L. Perchlorate-selective membrane electrode based on a new complex of uranyl. Anal. Bioanal. Chem. 2005, 381, 1186–1192. [Google Scholar] [CrossRef]
- Bendikov, T.A.; Harmon, T.C. Long-lived solid state perchlorate ion selective sensor based on doped poly(3,4-ethylenedioxythiophene) (PEDOT) films. Anal. Chim. Acta 2005, 551, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Segui, M.J.; Sabater, J.L.; Martínez-Mánez, R.; Sancenon, F.; Soto, J.; Garcia-Breijo, E.; Gil, L. An Ion-selective Electrode for Anion Perchlorate in Thick-film Technology. Sensors 2006, 6, 480–491. [Google Scholar] [CrossRef] [Green Version]
- Zanjanchi, M.A.; Arvand, M.; Akbari, M.; Tabatabaeian, K.; Zaraei, G. Perchlorate-selective polymeric membrane electrode based on a cobaloxime as a suitable carrier. Sens. Act. B 2006, 113, 304–309. [Google Scholar] [CrossRef]
- Arvand, M.M.; Pourhabib, A.; Shemshadi, R.; Giahi, M. The potentiometric behavior of polymer-supported metallophthalocyanines used as anion-selective electrodes. Anal. Bioanal. Chem. 2007, 387, 1033–1039. [Google Scholar] [CrossRef]
- Rezaei, B.; Meghdadi, S.; Nafisi, V. Fast response and selective perchlorate polymeric membrane electrode based on bis(dibenzoylmethanato) nickel(II) complex as a neutral carrier. Sens. Act. B 2007, 121, 600–605. [Google Scholar] [CrossRef]
- Soleymanpour, A.; Hanifi, A.; Kyanfar, A.H. Polymeric Membrane and Solid Contact Electrodes Based on Schiff Base Complexes of Co(III) for Potentiometric Determination of Perchlorate Ions. Bull. Korean Chem. Soc. 2008, 29, 1774–1780. [Google Scholar]
- Almeer, S.H.M.A.; Zogby, I.A.; Hassan, S.S.M. Novel miniaturized sensors for potentiometric batch and flow-injection analysis (FIA) of perchlorate in fireworks and propellants. Talanta 2014, 129, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Braik, M.M.; Dridi, C.; Ali, A.; Abbas, M.N.; Ben, A.M.; Errachid, A. Development of a perchlorate sensor based on Co-phthalocyanine derivative by impedance spectroscopy measurements. Org. Electron. 2015, 16, 77–86. [Google Scholar] [CrossRef]
- Anita, A.; Memon, A.A.; Solangi, A.R.; Memon, S.; Ali Bhatti, A. Highly Selective Determination of Perchlorate by a Calix[4]arene based Polymeric Membrane Electrode. Polycyclic Arom. Compd. 2015, 36, 1–14. [Google Scholar] [CrossRef]
- Erturun, H.E.K.; Ozel, A.D.; Ayanoglu, M.N.; Sahin, O.; Yilmaz, M. A calix[4]arene derivative-doped perchlorate-selective membrane electrodes with/without multi-walled carbon nanotubes. Ionics 2017, 23, 917–927. [Google Scholar] [CrossRef]
- Ertürün, H.E.K. Fabrication of a New Carbon Paste Electrode Based on 5,11,17,23-tetra-tert-butyl-25,27-bis(pyren-1-yl-methylimido-propoxy)-26,28-dihydroxy-calix[4]arene for Potentiometric Perchlorate Determination. Int. J. Electrochem. Sci. 2017, 12, 10737–10748. [Google Scholar] [CrossRef]
- Hassan, S.S.M.; Galal Eldin, A.; Amr, A.E.-G.E.; Al-Omar, M.A.; Kamel, A.H. Single-Walled Carbon Nanotubes (SWCNTs) as Solid-Contact in All-Solid-State Perchlorate ISEs: Applications to Fireworks and Propellants Analysis. Sensors 2019, 19, 2697. [Google Scholar] [CrossRef] [Green Version]
- Lízal, T.; Šindelář, V. Bambusuril Anion Receptors. Isr. J. Chem. 2018, 58, 326–333. [Google Scholar] [CrossRef]
- Havel, V.; Švec, J.; Wimmerová, M.; Dušek, M.; Pojarová, M.; Šindelář, V. Bambus[n]urils: A New Family of Macrocyclic Anion Receptors. Org. Lett. 2011, 13, 4000–4003. [Google Scholar] [CrossRef]
- Švec, J.; Dušek, M.; Fejfarová, K.; Štacko, P.; Klán, P.; Kaifer, A.E.; Li, W.; Hudečková, E.; Šindelář, V. Anion-Free Bambus[6]uril and Its Supramolecular Properties. Chem. Eur. J. 2011, 17, 5605–5612. [Google Scholar] [CrossRef]
- Revesz, A.; Schroeder, D.; Švec, J.; Wimmerová, M.; Šindelář, V. Anion Binding by Bambus[6]uril Probed in the Gas Phase and in Solution. J. Phys. Chem. A 2011, 115, 11378–11386. [Google Scholar] [CrossRef] [PubMed]
- Yawer, M.A.; Havel, V.; Šindelář, V. A Bambusuril Macrocycle that Binds Anions in Water with High Affinity and Selectivity. Angew. Chem. Int. Ed. 2015, 54, 276–279. [Google Scholar] [CrossRef] [PubMed]
- Havel, V.; Yawer, M.A.; Šindelář, V. Real-time analysis of multiple anion mixtures in aqueous media using a single receptor. Chem. Commun. 2015, 51, 4666–4669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havel, V.; Šindelář, V. Anion Binding Inside a Bambus[6]uril Macrocycle in Chloroform. ChemPlusChem 2015, 80, 1601–1606. [Google Scholar] [CrossRef] [PubMed]
- Fiala, T.; Šindelář, V. Supramolecular complexes of bambusurils with dialkyl phosphates. Supramol. Chem. 2016, 28, 810–816. [Google Scholar] [CrossRef]
- Havel, V.; Sadilová, T.; Šindelář, V. Unsubstituted Bambusurils: Post-Macrocyclization Modification of Versatile Intermediates. ACS Omega 2018, 3, 4657–4663. [Google Scholar] [CrossRef]
- Fiala, T.; Sleziaková, K.; Maršálek, K.; Salvadori, K.; Šindelář, V. Thermodynamics of Halide Binding to a Neutral Bambusuril in Water and Organic Solvents. J. Org. Chem. 2018, 83, 1903–1912. [Google Scholar] [CrossRef]
- Jašíková, L.; Rodrigues, M.; Lapešová, J.; Lízal, T.; Šindelář, V.; Roithová, J. Bambusurils as a mechanistic tool for probing anion effects. Faraday Discuss. 2019, 220, 58–70. [Google Scholar] [CrossRef]
- Valkenier, H.; Akrawi, O.; Jurček, P.; Sleziaková, K.; Lízal, T.; Bartik, K.; Šindelář, V. Fluorinated Bambusurils as Highly Effective and Selective Transmembrane Cl-/HCO3− Antiporters. Chem 2019, 5, 429–444. [Google Scholar] [CrossRef] [Green Version]
- Maršálek, K.; Šindelář, V. Monofunctionalized Bambus[6]urils and Their Conjugates with Crown Ethers for Liquid−Liquid Extraction of Inorganic Salts. Org. Lett. 2020, 22, 1633–1637. [Google Scholar] [CrossRef] [PubMed]
- Hamáček, J.; Sokolov, J.; Šindelář, V. Bambusuril Macrocycles as Mediators of Supramolecular Interactions: Application to the Europium Cage Helicate. Chem. Eur. J. 2021, 27, 5492–5497. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Crespo, L.; Hewitt, S.H.; De Simone, N.A.; Šindelář, V.; Davis, A.P.; Butler, S.; Valkenier, H. Transmembrane Transport of Bicarbonate Unravelled. Chem. Eur. J. 2021, 27, 7367–7375. [Google Scholar] [CrossRef] [PubMed]
- Kubik, S. (Ed.) Supramolecular Chemistry in Water; Wiley-VCH: Weinheim, Germany, 2019. [Google Scholar]
- Steed, J.W.; Atwood, J.L. Supramolecular Chemistry; Wiley: New York, NY, USA, 2009. [Google Scholar]
- Bowman-James, K.; Bianchi, A.; García-Espaňa, E. Anion Coordination Chemistry; Wiley-VCH: Weinheim, Germany, 2012. [Google Scholar]
- Cova, T.F.G.G.; Nunes, S.C.C.; Valente, A.J.M.; Pinho-Melo, T.M.V.D.; Pais, A.A.C.C. Properties and patterns in anion-receptors: A closer look at bambusurils. J. Mol. Liq. 2017, 242, 640–652. [Google Scholar] [CrossRef]
- Lisbjerg, M.; Nielsen, B.E.; Milhoj, B.O.; Sauer, S.P.A.; Pittelkow, M. Anion binding by biotin[6]uril in water. Org. Biomol. Chem. 2015, 13, 369–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bobacka, J.; Ivaska, A.; Lewenstam, A. Potentiometric Ion Sensors. Chem. Rev. 2008, 108, 329–351. [Google Scholar] [CrossRef] [PubMed]
- Bobacka, J. Conducting Polymer-Based Solid-State Ion-Selective Electrodes. Electroanalysis 2006, 18, 7–18. [Google Scholar] [CrossRef]
- Bobacka, J. Potential Stability of All-Solid-State Ion-Selective Electrodes Using Conducting Polymers as Ion-to-Electron Transducers. Anal. Chem. 1999, 71, 4932–4937. [Google Scholar] [CrossRef]
- Bobacka, J.; Lewenstam, A.; Ivaska, A. Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions. J. Electroanal. Chem. 2000, 489, 17–27. [Google Scholar] [CrossRef]
- Yang, J.; Martin, D.C. Microporous conducting polymers on neural microelectrode arrays I Electrochemical deposition. Sens. Act. B 2004, 101, 133–142. [Google Scholar] [CrossRef]
- Yang, J.; Martin, D.C. Microporous conducting polymers on neural microelectrode arrays II. Physical characterization. Sens. Act. A 2004, 113, 204–211. [Google Scholar] [CrossRef]
- Sjöoberg-Eerola, P.; Bobacka, J.; Lewenstam, A.; Ivaska, A. All-solid-state chloride sensors based on electronically conducting, semiconducting and insulating polymer membranes. Sens. Act. B 2007, 127, 545–553. [Google Scholar] [CrossRef]
- Gao, N.; Yu, J.; Tian, Q.; Shi, J.; Zhang, M.; Chen, S.; Zang, L. Application of PEDOT:PSS and Its Composites in Electrochemical and Electronic Chemosensors. Chemosensors 2021, 9, 79. [Google Scholar] [CrossRef]
- Michalska, A.; Gałuszkiewicz, A.; Ogonowska, M.; Ocypa, M.; Maksymiuk, K. PEDOT films: Multifunctional membranes for electrochemical ion sensing. J. Solid State Eletrochem. 2004, 8, 381–389. [Google Scholar] [CrossRef]
- Oña, J.P.; Mousavi, Z.; Sokalski, T.; Leito, I.; Bobacka, J. Dependence of the potentiometric response of PEDOT(PSS) on the solubility product of silver salts. Electrochim. Acta 2021, 390, 138854. [Google Scholar] [CrossRef]
- Yrjänä, V.; Saar, I.; Ilisson, M.; Kadam, S.A.; Leito, I.; Bobacka, J. Potentiometric Carboxylate Sensors Based on Carbazole-Derived Acyclic and Macrocyclic Ionophores. Chemosensors 2021, 9, 4. [Google Scholar] [CrossRef]
- Bobacka, J.; Alaviuhkola, T.; Hietapelto, V.; Koskinen, H.; Lewenstam, A.; Lämsä, M.; Pursiainen, J.; Ivaska, A. Solid-contact ion-selective electrodes for aromatic cations based on coordinating soft carriers. Talanta 2002, 58, 341–349. [Google Scholar] [CrossRef]
- Jarolímová, Z.; Han, T.; Mattinen, U.; Bobacka, J.; Bakker, E. Capacitive Model for Coulometric Readout of Ion-Selective Electrodes. Anal. Chem. 2018, 90, 8700–8707. [Google Scholar] [CrossRef]
- Han, T.; Mattinen, U.; Mousavi, Z.; Bobacka, J. Coulometric response of solid-contact anion-sensitive electrodes. Electrochim. Acta 2021, 367, 137566. [Google Scholar] [CrossRef]
- Ding, R.; Joon, N.K.; Ahamed, A.; Shafaat, A.; Guzinski, M.; Wagner, M.; Ruzgas, T.; Bobacka, J.; Lisak, G. Gold-modified paper as microfluidic substrates with reduced biofouling in potentiometric ion sensing. Sens. Actuators B. Chem. 2021, 344, 130200. [Google Scholar] [CrossRef]
Cocktail for ISM | Composition of Compounds in Membrane (ISM)/% (m/m) | |||
---|---|---|---|---|
Bn12BU[6] a | TDMACl b | DOS c | PVC d | |
1% BBU | 1.0 | 0.5 | 65.2 | 33.3 |
2% BBU | 2.0 | 1.0 | 64.2 | 32.8 |
3% BBU | 3.0 | 1.5 | 63.2 | 32.3 |
0% BBU | --- | 0.6 | 66.0 | 33.4 |
Electrode | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
ISM | --- | 0% BBU | 1% BBU | 2% BBU | 3% BBU | 3% BBU a | 2% BBU b |
CV (GC/PEDOT(Cl)) | |||||||
CCV/μF | 393 | 261 | 420 | 408 | 401 | 394 | 345 |
EIS (GC/PEDOT(Cl)) | |||||||
Rs/Ω | 184.5 | 204.3 | 177.3 | 178.9 | 178.5 | 171.0 | 186.2 |
Cd/μF | 314.2 | 391.3 | 350.4 | 327.1 | 316.5 | 313.8 | 277.9 |
EIS (ISM) | |||||||
Rb/MΩ | --- | 10.66 | 5.91 | 8.98 | --- | --- | 8.31 |
Cg/pF | --- | 7.44 | 8.50 | 8.41 | --- | --- | 8.19 |
ChP (ISM) | |||||||
R/MΩ | --- | 10.7 | 5.95 | 9.20 | 6.91 | 6.97 | 8.50 |
CL/μF | --- | 86.3 | 91.5 | 46.9 | 39.2 | 14.1 | 27.5 |
Slope | |||||||
mV/log a(ClO4−) | −58.3 ± 0.7 | −57.7 ± 1.4 | −56.2 ± 1.4 | −56.3 ± 1.3 | −59.9 ± 1.1 | −57.3 ± 0.4 | −57.1 ± 1.5 |
Conc. range | |||||||
−log a(ClO4−) | 5–1 | 4–1 | 6–1 | 6–1 | 6–1 | 6–1 | 6–1 |
Limit of detection | |||||||
μM | 6.3 | 100 | ~1 | ~1 | ~1 | ~1 | ~1 |
Sample | Concentration of Perchlorate/μM | Slope/mV/−log c(ClO4−) b | ||
---|---|---|---|---|
Added | Found | texpa | ||
Lake water | 20.0 | 19.5 ± 0.6 | 1.44 | 55.1 ± 0.5 |
Mineral water | 20.0 | 20.05 ± 0.05 | 1.73 | 58.5 ± 0.1 |
Sea water | 20.0 | 16 ± 3 | 2.31 | 50 ± 2 |
Ionophore | Electrode Type | Conc. Range (M) | Detection Limit (μM) | Slope (mV·decade−1) | Ref. |
---|---|---|---|---|---|
Bambusuril | A | 1 × 10−6–1 × 10−1 | ~1 | −57.3 ± 0.4 | This work |
L1 L2 L3 | B B B B | 1.4 × 10−5–1 × 10−1 1 × 10−5–1 × 10−1 6.3 × 10−5–1 × 10−1 1 × 10−5–1 × 10−1 | 6.6 5.4 22 5.6 | −57.3 −54.5 −70.2 −55.0 | [44] [44] [47] [44] |
L4 | A C | 1 × 10−6–1 × 10−2 6 × 10−7–1 × 10−2 | 0.8 0.3 | −56 54 | [40] [40] |
L5 | B | 1 × 10−6–1 × 10−1 | 0.5 | −56.3 | [56] |
NiL6 | B | 5 × 10−7–1 × 10−1 | 0.2 | −59.3 | [42] |
ZnL7 | B | 1.0 × 10−7–1.0 × 10−2 | 0.09 | −59.3 | [56] |
CuL1 | B | 7.9 × 10−5–1.0 × 10−1 | 13 | −67.6 | [47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Itterheimová, P.; Bobacka, J.; Šindelář, V.; Lubal, P. Perchlorate Solid-Contact Ion-Selective Electrode Based on Dodecabenzylbambus[6]uril. Chemosensors 2022, 10, 115. https://doi.org/10.3390/chemosensors10030115
Itterheimová P, Bobacka J, Šindelář V, Lubal P. Perchlorate Solid-Contact Ion-Selective Electrode Based on Dodecabenzylbambus[6]uril. Chemosensors. 2022; 10(3):115. https://doi.org/10.3390/chemosensors10030115
Chicago/Turabian StyleItterheimová, Petra, Johan Bobacka, Vladimír Šindelář, and Přemysl Lubal. 2022. "Perchlorate Solid-Contact Ion-Selective Electrode Based on Dodecabenzylbambus[6]uril" Chemosensors 10, no. 3: 115. https://doi.org/10.3390/chemosensors10030115
APA StyleItterheimová, P., Bobacka, J., Šindelář, V., & Lubal, P. (2022). Perchlorate Solid-Contact Ion-Selective Electrode Based on Dodecabenzylbambus[6]uril. Chemosensors, 10(3), 115. https://doi.org/10.3390/chemosensors10030115