Electrochemical Oxidation of Sodium Metabisulfite for Sensing Zinc Oxide Nanoparticles Deposited on Graphite Electrode
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Electrochemical Analysis
2.3. Sample Preparation
2.4. Scanning Electron Microscopy
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arunachalam, S.V.; Tammineni, V.S.; Espenti, C.S.; Mutyala, S. Chapter two—Metal oxide-modified electrochemical sensors for toxic chemicals. In Metal Oxides in Nanocomposite-Based Electrochemical Sensors for Toxic Chemicals; Elsevier: Amsterdam, The Netherlands, 2021; pp. 19–49. [Google Scholar]
- Lee, D.Y.; Kang, S.; Lee, Y.; Kim, J.Y.; Yoo, D.; Jung, W.; Lee, S.; Jeong, Y.Y.; Lee, K.; Jon, S. PEGylated Bilirubin-coated Iron Oxide Nanoparticles as a Biosensor for Magnetic Relaxation Switching-based ROS Detection in Whole Blood. Theranostics 2020, 10, 1997–2007. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Wang, L.; Shi, H.; Zhang, G.; Zhang, K.; Zhang, H.; Gong, F.; Wang, T.; Duan, H. Metal–organic-framework-derived ZnOiCo2O4 core–shell structures as an advanced electrode for high-performance supercapacitors. J. Mater. Chem. Mater. Energy Sustain. 2016, 4, 8233–8241. [Google Scholar] [CrossRef]
- Saranya, M.; Ramachandran, R.; Wang, F. Graphene-zinc oxide (G-ZnO) nanocomposite for electrochemical supercapacitor applications. J. Sci. Adv. Mater. Devices 2016, 1, 454–460. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, J.; Liu, Y.; Zhang, L.; Yuan, A. Porous ZnO/NiO Microspherical Structures Prepared by Thermolysis of Heterobimetallic Metal-Organic Framework as Supercapacitor Electrodes. J. Nanosci. Nanotechnol. 2017, 17, 2571–2577. [Google Scholar] [CrossRef]
- Kalpana, V.N.; Rajeswari, V.D. A review on green synthesis, biomedical applications, and toxicity studies of ZnO nanoparticles. Bioinorg. Chem. Appl. 2018, 2018, 3569758. [Google Scholar] [CrossRef] [PubMed]
- Raj, B.S.; Samraj, P.I. Zinc oxide nanoparticles: A biological and pharmaceutical review. Nanosci. Nanotechnol. Asia 2020, 10, e070820184647. [Google Scholar] [CrossRef]
- Melnikova, N.; Vorobyova, O.; Balakireva, A.; Malygina, D.; Solovyeva, A.; Belyaeva, K.; Orekhov, D.; Knyazev, A. The new pharmaceutical compositions of znic oxide nanoparticles and triterpenoids for the burn treatment. Pharmaceuticals 2020, 13, 207. [Google Scholar] [CrossRef]
- Yadav, M.S.; Singh, N.; Kumar, A. Synthesis and characterization of zinc oxide nanoparticles and activated charcoal based nanocomposite for supercapacitor electrode application. J. Mater. Sci. Mater. Electron. 2018, 29, 6853–6869. [Google Scholar] [CrossRef]
- Tashkhourian, J.; Hemmateenejad, B.; Beigizadeh, H.; Hosseini-Sarvari, M.; Razmi, Z. ZnO nanoparticles and multiwalled carbon nanotubes modified carbon paste electrode for determination of naproxen using electrochemical techniques. J. Electroanal. Chem. 2014, 714–715, 103–108. [Google Scholar] [CrossRef]
- Umar, A.; Rahman, M.; Vaseem, M.; Hahn, Y.-B. Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochem. Commun. 2009, 11, 118–121. [Google Scholar] [CrossRef]
- Kegela, J.; Povey, I.M.; Pemble, M.E. Zinc oxide for solar water splitting: A brief review of the material’s challenges and associated opportunities. Nano Energy 2018, 54, 409–428. [Google Scholar] [CrossRef]
- Kelly, S.R.; Shi, X.; Back, S.; Vallez, L.; Park, S.Y.; Siahrostami, S.; Zheng, X.; Nørskov, J.K. ZnO As an Active and Selective Catalyst for Electrochemical Water Oxidation to Hydrogen Peroxide. ACS Catal. 2019, 9, 4593–4599. [Google Scholar] [CrossRef]
- Yuan, K.; Cao, Q.; Li, X.; Chen, H.Y.; Deng, Y.; Wang, Y.Y.; Luo, W.; Lu, H.L.; Zhang, D.W. Synthesis of WO3@ZnWO4@ZnO-ZnO hierarchical nanocactus arrays for efficient photoelectrochemical water splitting. Nano Energy 2017, 41, 543–551. [Google Scholar] [CrossRef]
- Wang, L.; Yu, X.; Li, X.; Zhang, j.; Wang, M.; Che, R. MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 2020, 383, 123099. [Google Scholar] [CrossRef]
- Ancona, A.; Dumontel, B.; Garino, N.; Demarco, B.; Chatzitheodoridou, D.; Fazzini, W.; Engelke, H.; Cauda, V. Lipid-Coated Zinc Oxide Nanoparticles as Innovative ROS-Generators for Photodynamic Therapy in Cancer Cells. Nanomaterials 2018, 8, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorne, J.; Gillespie, M.; Chen, D.; Zhou, D. Nano-electrochemical of fluidized particles: Solid state reduction of ZnO nano-particles. J. Electrochem. Soc. 2013, 160, H203. [Google Scholar] [CrossRef]
- Alamdari, S.; Ghamsari, M.S.; Lee, C.; Han, W.; Park, H.-H.; Tafreshi, M.J.; Afarideh, H.; Ara, M.H.M. Preparation and Characterization of Zinc Oxide Nanoparticles Using Leaf Extract of Sambucus ebulus. Appl. Sci. 2020, 10, 3620. [Google Scholar] [CrossRef]
- Selim, Y.A.; Azb, M.A.; Ragab, I.; Abd El-Azim, M.H.M. Green Synthesis of Zinc Oxide Nanoparticles Using Aqueous Extract of Deverra tortuosa and their Cytotoxic Activities. Sci. Rep. 2020, 10, 3445. [Google Scholar] [CrossRef] [Green Version]
- Yusof, H.M.; Mohamad, R.; Zaidan, U.H.; Rahman, N.A. Sustainable microbial cell nanofactory for zinc oxide nanoparticles production by zinc-tolerant probiotic Lactobacillus plantarum strain TA4. Microb. Cell Factories 2020, 19, 10. [Google Scholar] [CrossRef]
- Safawo, T.; Sandeep, B.V.; Pola, S.; Tadesse, A. Synthesis and characterization of zinc oxide nanoparticles using tuber extract of anchote for antimicrobial and oxidant activity assessment. OpenNano 2018, 3, 56–63. [Google Scholar] [CrossRef]
- Navale, G.R.; Thripuranthaka, M.; Late, D.J.; Shinde, S.S. Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Nanotechnol. Nanomed. 2015, 3, 1033. [Google Scholar]
- Yu, K.-N.; Yoon, T.-J.; Minai-Tehrani, A.; Kim, J.-E.; Park, S.J.; Jeong, M.S.; Ha, S.-W.; Lee, J.-K.; Kim, J.S.; Cho, M.-H. Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation. Toxicol. Vitr. 2013, 27, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- Kaya, H.; Aydın, F.; Gürkan, M.; Yılmaz, S.; Ates, M.; Demir, V.; Arslan, Z. A comparative toxicity study between small and large size zinc oxide nanoparticles in tilapia (Oreochromis niloticus): Organ pathologies, osmoregulatory responses and immunological parameters. Chemosphere 2016, 144, 571–582. [Google Scholar] [CrossRef]
- Samei, M.; Sarrafzadeh, M.-H.; Faramarzi, M.A. The impact of morphology and size of zinc oxide nanoparticles on its toxicity to the freshwater microalga, Raphidocelis subcapitata. Environ. Sci. Pollut. Res. 2018, 26, 2409–2420. [Google Scholar] [CrossRef]
- Singh, T.A.; Das, J.; Sil, P.C. Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Adv. Colloid Interface Sci. 2020, 286, 102317. [Google Scholar] [CrossRef]
- Li, L.; Fernandez-Cruz, M.L.; Connolly, M.; Conde, E.; Fernández, M.; Schuster, M.; Navas, J.M. The potentiation effect makes the difference: Non-toxic concentrations of ZnO nanoparticles enhance Cu nanoparticle toxicity in vitro. Sci. Total Environ. 2015, 505, 253–260. [Google Scholar] [CrossRef]
- Vinardell, M.P.; Mitjans, M. Antitumor Activities of Metal Oxide Nanoparticles. Nanomaterials 2015, 5, 1004–1021. [Google Scholar] [CrossRef] [Green Version]
- Dimapilis, E.A.S.; Hsu, C.-S.; Mendoza, R.M.O.; Lu, M.-C. Zinc oxide nanoparticles for water disinfection. Sustain. Environ. Res. 2018, 28, 47–56. [Google Scholar] [CrossRef]
- Fréchette-Viens, L.; Hadioui, M.; Wilkinson, K.J. Quantification of ZnO nanoparticles and other Zn containing colloids in natural waters using a high sensitivity single particle ICP-MS. Talanta 2019, 200, 156–162. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, X.; Luo, L.; Wei, W.; Wang, Q.; Zhang, J. Quantitative Detection of Zinc Oxide Nanoparticle in Environmental Water by Cloud Point Extraction Combined ICP-MS. Adsorpt. Sci. Technol. 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Sonage, B.; Mohanan, P. Characterization of Zinc Oxide Nanoparticles used for Preparation of Nanofluids. Procedia Mater. Sci. 2014, 5, 1160–1164. [Google Scholar] [CrossRef] [Green Version]
- Mahamuni, P.P.; Patil, P.M.; Dhanavade, M.J.; Badiger, M.V.; Shadija, P.G.; Lokhande, A.C.; Bohara, R.A. Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochem. Biophys. Rep. 2019, 17, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Benehkohal, N.P.; Demopoulos, G.P. Electrophoretically self-assembled mixed metal oxide-TiO2 nano-composite film structures for photoelectrochemical energy conversion: Probing of charge recombination and electron transport resistances. J. Power Sources 2013, 240, 667–675. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, W.; Lai, E.P.C. Electrochemical Impedance Spectroscopy of Zinc Oxide Nanoparticles After Deposition on Screen Printed Electrode. J. Nanosci. Nanotechnol. 2021, 21, 5207–5214. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, C.; Kotteeswaran, P.; Murugan, A.; Raju, V.B.; Santosh, M.; Nagaswarupa, H.; Nagabhushana, H.; Prashantha, S.; Kumar, M.A.; Gurushantha, K. Electrochemical Studies of Nano Metal Oxide Reinforced Nickel Hydroxide Materials for Energy Storage Applications. Mater. Today Proc. 2017, 4, 12205–12214. [Google Scholar] [CrossRef]
- Najim, N.; Rusdi, R.; Hamzah, A.S.; Shaameri, Z.; Zain, M.M.; Kamarulzaman, N. Effects of the Absorption Behaviour of ZnO Nanoparticles on Cytotoxicity Measurements. J. Nanomater. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, M. Experimental study on dielectric relaxation of SiO2 nano-particle suspensions for developing a particle characterization method based on electrical impedance spectroscopy. Powder Technol. 2015, 281, 200–213. [Google Scholar] [CrossRef]
- Oliveira, C.M.; Barros, A.S.; Ferreira, A.C.; Silva, A.M. Study of quinones reactions with wine nucleophiles by cyclic voltammetry. Food Chem. 2016, 211, 1–7. [Google Scholar] [CrossRef]
- Wang, H.-W.; Bringans, C.; Hickey, A.; Windsor, J.; Kilmartin, P.; Phillips, A. Cyclic Voltammetry in Biological Samples: A Systematic Review of Methods and Techniques Applicable to Clinical Settings. Signals 2021, 2, 138–158. [Google Scholar] [CrossRef]
- Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef] [PubMed]
- Shabliy, T.; Gomelya, M.; Pohrebennyk, V.; Ivanenko, O.; Nosachova, Y. Development of New Water Deoxidization Systems for Heat and Power Plants. J. Ecol. Eng. 2022, 23, 193–205. [Google Scholar] [CrossRef]
- Larmené-Beld, K.H.M.; Van Berkel, S.; Wijnsma, R.; Taxis, K.; Frijlink, H.W. Prefilled Cyclic Olefin Sterilized Syringes of Norepinephrine Injection Solution Do Not Need to Be Stabilized by Antioxidants. AAPS PharmSciTech 2020, 21, 247. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. Sodium Metabisulfite. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Sodium-metabisulfite (accessed on 12 October 2021).
- Ratanajanchai, M.; Kanchanavasita, W.; Suputtamongkol, K.; Wonglamsam, A.; Thamapipol, S.; Sae-Khow, O. Heat-cured poly(methyl methacrylate) resin incorporated with different food preservatives as an anti-microbial denture base material. J. Dent. Sci. 2021, 16, 706–712. [Google Scholar] [CrossRef]
- Cosmetics Info. Sodium Metabisulfite. Available online: https://www.cosmeticsinfo.org/ingredients/sodium-metabisulfite/ (accessed on 2 April 2022).
- Campbell, J.R.; Maestrello, C.L.; Campbell, R.L. Allergic response to metabisulfite in lidocaine anesthetic solution. Anesth. Prog. 2001, 48, 21–26. [Google Scholar]
- Bakerpedia. Sodium Metabisulfite. Available online: https://bakerpedia.com/ingredients/sodium-metabisulfite/ (accessed on 12 October 2021).
- American Water Chemicals. Is Sodium Metabisulfite an Effective Disinfectant for My RO System? Available online: https://www.membranechemicals.com/faqs/sodium-metabisulfite-effective-disinfectant-ro-system/ (accessed on 12 October 2021).
- Jeong, S.; Lee, H.; Cho, C.H.; Yoo, S. Characterization of multi-functional, biodegradable sodium metabisulfite-incorporated films based on polycaprolactone for active food packaging application. Anal. Methods 2020, 25, 100512. [Google Scholar]
- Zaid, B.; Maddache, N.; Saidi, D.; Souami, N.; Bacha, N.; Ahmed, A.S. Electrochemical evaluation of sodium metabisulfite as environmentally friendly inhibitor for corrosion of aluminum alloy 6061 in a chloride solution. J. Alloys Compd. 2015, 629, 188–196. [Google Scholar] [CrossRef]
- Quintino, M.S.; Araki, K.; Toma, H.E.; Angnes, L. Amperometric quantification of sodium metabisulfite in pharmaceutical formulations utilizing tetraruthenated porphyrin film modified electrodes and batch injection analysis. Talanta 2006, 68, 1281–1286. [Google Scholar] [CrossRef]
- Gil, D.M.D.A.; Rebelo, M.J.F. Metabisulfite interference in biosensing and Folin-Ciocalteu analysis of polyphenols. Microchim. Acta 2009, 167, 253–258. [Google Scholar] [CrossRef]
- Durairaj, S.; Manikandan, V.; Dingle, S.; Wang, Q.; Chen, A. Nanomaterial-Based Electrochemical Sensor for the Detection of Sodium Metabisulfite in Stimulated Digestive Fluids. Available online: https://www.uoguelph.ca/foodscience/system/files/Durairaj%20-%20poster%20abstract%20GFSS%20symposium%202019.pdf (accessed on 28 March 2022).
- Pare, A.; Ghosh, S.K. Temperature Dependent Rheological Behavior of Zinc Oxide Based Water Nanofluid. In Proceedings of the 25th National and 3rd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2019); Begell House Inc.: Danbury, CT, USA, 2019; pp. 317–321. [Google Scholar]
- Moumene, M.; Rochefort, D.; Mohamedi, M. Electrochemical functionalization as a promising avenue for glucose oxidase immobilization at carbon nanotubes: Enhanced direct electron transfer process. Int. J. Electrochem. Sci. 2013, 8, 2009–2022. [Google Scholar]
- Krishnamoorthy, K.; Ananth, A.; Mok, Y.S.; Kim, S.-J. Plasma Assisted Synthesis of Graphene Nanosheets and Their Supercapacitor Applications. Sci. Adv. Mater. 2014, 6, 349–353. [Google Scholar] [CrossRef]
- Zhou, D.; Keller, A.A. Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Res. 2010, 44, 2948–2956. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.R. Chapter 7—Antioxidant agents. In Advances in Structure and Activity Relationship of Coumarin Derivatives; Penta, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 137–150. [Google Scholar]
- Zhang, W.; Lai, E.P. Electrochemical detection of zinc oxide nanoparticles in water contamination analysis based on surface catalytic reactivity. J. Nanopart. Res. 2020, 22, 95. [Google Scholar] [CrossRef]
- Al-Mohaimeed, A.; Al-Onazi, W.A.; El-Tohamy, M. Utility of Zinc Oxide Nanoparticles Catalytic Activity in the Electrochemical Determination of Minocycline Hydrochloride. Polymers 2020, 12, 2505. [Google Scholar] [CrossRef] [PubMed]
- Rupasinghe, R.A.T.P. Dissolution and Aggregation of zinc Oxide Nanoparticles at Circumneutral pH: A. Study of Size Effects in the Presence and Absence of Citric Acid. Master’s Thesis, University of Iowa, Iowa City, IA, USA, 2011. [Google Scholar]
- Castelli, I.E.; Thygesen, K.S.; Jacobsen, K.W. Calculated Pourbaix Diagrams of Cubic Perovskites for Water Splitting: Stability Against Corrosion. Top. Catal. 2014, 57, 265–272. [Google Scholar] [CrossRef]
- Gómez-Gil, J.M.; Laborda, E.; Molina, A. General Explicit Mathematical Solution for the Voltammetry of Nonunity Stoichiometry Electrode Reactions: Diagnosis Criteria in Cyclic Voltammetry. Anal. Chem. 2020, 92, 3728–3734. [Google Scholar] [CrossRef]
- LibreTexts. Important Parameters in CV. Available online: https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_(Analytical_Chemistry)/Analytical_Sciences_Digital_Library/JASDL/Courseware/Analytical_Electrochemistry%3A_The_Basic_Concepts/04_Voltammetric_Methods/A._Basics_of_Voltammetry/02_Potential_Sweep_Methods/b)_Cyclic_Voltammetry/ii)_Important_parameters_in_CV (accessed on 12 October 2021).
- Rajabi, H.; Noroozifar, M.; Khorasani-Motlagh, M. Graphite paste electrode modified with Lewatit® FO36 nano-resin for simultaneous determination of ascorbic acid, acetaminophen and tryptophan. Anal. Methods 2016, 8, 1924–1934. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Hunger, T.; Lapicque, F. Electrochemistry of the oxidation of sulfite and bisulfite ions at a graphite surface: An overall approach. Electrochim. Acta 1991, 36, 1073–1082. [Google Scholar] [CrossRef]
- Saranya, S.; Jency, F.J.; Geetha, B.; Deepa, P.N. Simultaneous detection of glutathione, threonine, and glycine at electrodeposited RuHCH/rGO-modified electrode. Ionics 2019, 25, 5537–5550. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Lai, E.P.C. Electrochemical Oxidation of Sodium Metabisulfite for Sensing Zinc Oxide Nanoparticles Deposited on Graphite Electrode. Chemosensors 2022, 10, 145. https://doi.org/10.3390/chemosensors10040145
Wang K, Lai EPC. Electrochemical Oxidation of Sodium Metabisulfite for Sensing Zinc Oxide Nanoparticles Deposited on Graphite Electrode. Chemosensors. 2022; 10(4):145. https://doi.org/10.3390/chemosensors10040145
Chicago/Turabian StyleWang, Kailai, and Edward P. C. Lai. 2022. "Electrochemical Oxidation of Sodium Metabisulfite for Sensing Zinc Oxide Nanoparticles Deposited on Graphite Electrode" Chemosensors 10, no. 4: 145. https://doi.org/10.3390/chemosensors10040145
APA StyleWang, K., & Lai, E. P. C. (2022). Electrochemical Oxidation of Sodium Metabisulfite for Sensing Zinc Oxide Nanoparticles Deposited on Graphite Electrode. Chemosensors, 10(4), 145. https://doi.org/10.3390/chemosensors10040145