Estimation of Grain Size in Randomly Packed Granular Material Using Laser-Induced Breakdown Spectroscopy
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Preparation
2.2. Setup and Data Acquisition
3. Spectroscopic Results
3.1. Response of Spectral Line Intensity with Grain Size
3.2. Response of Electron Density with Grain Size
3.3. Response of Plasma Temperature with Grain Size
4. Explanation and Discussion on Spectroscopic Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laceby, J.P.; Evrard, O.; Smith, H.; Blake, W.; Olley, J.M.; Minella, J.P.; Owens, P. The challenges and opportunities of addressing particle size effects in sediment source fingerprinting: A review. Earth Sci. Rev. 2017, 169, 85–103. [Google Scholar] [CrossRef]
- Vandenberghe, J. Grain size of fine-grained windblown sediment: A powerful proxy for process identification. Earth Sci. Rev. 2013, 121, 18–30. [Google Scholar] [CrossRef]
- Wang, Z.; Afgan, M.S.; Gu, W.; Song, Y.; Wang, Y.; Hou, Z.; Song, W.; Li, Z. Recent advances in laser-induced breakdown spectroscopy quantification: From fundamental understanding to data processing. TrAC Trends Anal. Chem. 2021, 143, 116385. [Google Scholar] [CrossRef]
- David, G.; Meslin, P.-Y.; Dehouck, E.; Gasnault, O.; Cousin, A.; Forni, O.; Berger, G.; Lasue, J.; Pinet, P.; Wiens, R.; et al. Laser-Induced Breakdown Spectroscopy (LIBS) characterization of granular soils: Implications for ChemCam analyses at Gale crater, Mars. Icarus 2021, 365, 114481. [Google Scholar] [CrossRef]
- Wisbrun, R.; Schechter, I.; Niessner, R.; Schroeder, H.; Kompa, K.L. Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy. Anal. Chem. 1994, 66, 2964–2975. [Google Scholar] [CrossRef]
- Xu, L.; Bulatov, V.; Gridin, V.V.; Schechter, I. Absolute analysis of particulate materials by laser-induced breakdown spectroscopy. Anal. Chem. 1997, 69, 2103–2108. [Google Scholar] [CrossRef] [PubMed]
- Stehrer, T.; Praher, B.; Viskup, R.; Jasik, J.; Wolfmeir, H.; Arenholz, E.; Heitz, J.; Pedarnig, J.D. Laser-induced breakdown spectroscopy of iron oxide powder. J. Anal. At. Spectrom. 2009, 24, 973–978. [Google Scholar] [CrossRef]
- Judge, E.J.; Barefield, J.E.; Berg, J.M.; Clegg, S.M.; Havrilla, G.J.; Montoya, V.M.; Le, L.A.; Lopez, L.N. Laser-induced breakdown spectroscopy measurements of uranium and thorium powders and uranium ore. Spectrochim. Acta Part B At. Spectrosc. 2013, 83–84, 28–36. [Google Scholar] [CrossRef]
- Li, X.-L.; Li, Y.-J.; Li, S.-T.; Zhou, M.-J.; Chen, L.-W.; Meng, J.; Qian, D.-B.; Yang, J.; Zhang, S.-F.; Wu, Y.; et al. Steplike behavior in grain-size-dependent optical emission of plasma induced by laser-ablating granular material. Phys. Rev. Appl. 2021, 16, 024017. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Li, S.; Zhou, M.; Qian, D.; Chen, L.; Yang, J.; Zhang, S.; Ma, X. Observation of different regimes of the grain size effect on plasma emission induced by laser ablating granular materials. J. Anal. At. Spectrom. 2021, 36, 1969–1976. [Google Scholar] [CrossRef]
- Duran, J. Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials; Springer: New York, NY, USA, 2000. [Google Scholar]
- Tsuyuki, K.; Miura, S.; Idris, N.; Kurniawan, K.H.; Lie, T.J.; Kagawa, K. Measurement of concrete strength using the emission intensity ratio between Ca(II) 396.8 nm and Ca(I) 422.6 nm in a Nd:YAG laser-induced plasma. Appl. Spectrosc. 2006, 60, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Salam, Z.; Galmed, A.; Tognoni, E.; Harith, M. Estimation of calcified tissues hardness via calcium and magnesium ionic to atomic line intensity ratio in laser induced breakdown spectra. Spectrochim. Acta Part B At. Spectrosc. 2007, 62, 1343–1347. [Google Scholar] [CrossRef]
- Abdel-Salam, Z.; Nanjing, Z.; Anglos, D.; Harith, M.A. Effect of experimental conditions on surface hardness measurements of calcified tissues via LIBS. Appl. Phys. A 2008, 94, 141–147. [Google Scholar] [CrossRef]
- Labutin, T.A.; Popov, A.; Lednev, V.; Zorov, N.B. Correlation between properties of a solid sample and laser-induced plasma parameters. Spectrochim. Acta Part B At. Spectrosc. 2009, 64, 938–949. [Google Scholar] [CrossRef]
- Aberkane, S.M.; Bendib, A.; Yahiaoui, K.; Boudjemai, S.; Abdelli-Messaci, S.; Kerdja, T.; Amara, S.; Harith, M. Correlation between Fe–V–C alloys surface hardness and plasma temperature via LIBS technique. Appl. Surf. Sci. 2014, 301, 225–229. [Google Scholar] [CrossRef]
- Huang, J.; Dong, M.; Lu, S.; Li, W.; Lu, J.; Liu, C.; Yoo, J.H. Estimation of the mechanical properties of steel via LIBS combined with canonical correlation analysis (CCA) and support vector regression (SVR). J. Anal. At. Spectrom. 2018, 33, 720–729. [Google Scholar] [CrossRef]
- Galmed, A.H.; Steenkamp, C.; Ahmed, I.; Du Plussis, A.; Von Bergmann, H.; Harith, M.A.; Maaza, M. Using laser-induced breakdown spectroscopy to monitor the surface hardness of titanium samples bombarded by carbon ions. Appl. Phys. A 2018, 124, 225. [Google Scholar] [CrossRef]
- Momcilovic, M.; Petrovic, J.; Ciganovic, J.; Cvijovic-Alagic, I.; Koldzic, F.; Zivkovic, S. Laser-induced plasma as a method for the metallic materials hardness estimation: An alternative approach. Plasma Chem. Plasma Process. 2020, 40, 499–510. [Google Scholar] [CrossRef]
- Sattar, H.; Ran, H.; Ding, W.; Imran, M.; Amir, M.; Ding, H. An approach of stand-off measuring hardness of tungsten heavy alloys using LIBS. Appl. Phys. A 2020, 126, 5. [Google Scholar] [CrossRef]
- Cowpe, J.; Moorehead, R.; Moser, D.; Astin, J.; Karthikeyan, S.; Kilcoyne, S.; Crofts, G.; Pilkington, R. Hardness determination of bio-ceramics using laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2011, 66, 290–294. [Google Scholar] [CrossRef] [Green Version]
- Abdulmadjid, S.N.; Pardede, M.; Suyanto, H.; Ramli, M.; Lahna, K.; Marpaung, A.M.; Hedwig, R.; Lie, Z.S.; Kurniawan, D.P.; Kurniawan, K.H.; et al. Evidence of feasible hardness test on Mars using ratio of ionic/neutral emission intensities measured with laser-induced breakdown spectroscopy in low pressure CO2 ambient gas. J. Appl. Phys. 2016, 119, 163304. [Google Scholar] [CrossRef]
- Marston, J.O.; Pacheco-Vázquez, F. Millimetric granular craters from pulsed laser ablation. Phys. Rev. E 2019, 99, 030901. [Google Scholar] [CrossRef] [PubMed]
- Harilal, S.S.; Diwakar, P.K.; Hassanein, A. Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy. Appl. Phys. Lett. 2013, 103, 041102. [Google Scholar] [CrossRef]
- Hafez, M.A.; Khedr, M.A.; Elaksher, F.F.; Gamal, Y.E. Characteristics of Cu plasma produced by a laser interaction with a solid target. Plasma Sources Sci. Technol. 2003, 12, 185–198. [Google Scholar] [CrossRef]
- Fernandez, A.; Mao, X.L.; Chan, W.T.; Shannon, M.A.; Russo, R.E. Correlation of spectral emission intensity in the inductively coupled plasma and laser-induced plasma during laser ablation of solid samples. Anal. Chem. 1995, 67, 2444–2450. [Google Scholar] [CrossRef]
- Zorba, V.; Mao, X.; Russo, R.E. Femtosecond laser induced breakdown spectroscopy of Cu at the micron/sub-micron scale. Spectrochim. Acta Part B At. Spectrosc. 2015, 113, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Patel, D.N.; Pandey, P.K.; Thareja, R.K. Stoichiometric investigations of laser-ablated brass plasma. Appl. Opt. 2012, 51, B192–B200. [Google Scholar] [CrossRef]
- Cheng, D.; Zhu, H.; Ke, L. Investigation of plasma spectra during selective laser micro sintering Cu-based metal powder. Rapid Prototyp. J. 2013, 19, 373–382. [Google Scholar] [CrossRef]
- Yu, L.; Lu, J.; Chen, W.; Wu, G.; Shen, K.; Feng, W. Analysis of pulverized coal by laser-induced breakdown spectroscopy. Plasma Sci. Technol. 2005, 7, 3041–3044. [Google Scholar]
Sample ID | |||
---|---|---|---|
S1 | 43 | 53 | 65 |
S2 | 59 | 72 | 92 |
S3 | 72 | 86 | 101 |
S4 | 77 | 100 | 123 |
S5 | 91 | 113 | 141 |
S6 | 123 | 145 | 185 |
S7 | 140 | 176 | 212 |
S8 | 197 | 245 | 215 |
S9 | 278 | 357 | 446 |
Wavelength λ (nm) | Transition | Transition Probability Aij (s−1) | Lower Level Energy Ei (eV) | Upper Level Energy Ej (eV) | Statistical Weight gi, gj |
---|---|---|---|---|---|
510.6 | 3d94s2–3d10(1S)4p | 2.0 × 106 | 1.389 | 3.817 | 6, 4 |
515.3 | 3d10(1S)4p–3d10(1S)4d | 6.0 × 107 | 3.786 | 6.191 | 2, 4 |
521.8 | 3d10(1S)4p–3d10(1S)4d | 7.5 × 107 | 3.817 | 6.192 | 4, 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Li, Y.; Li, X.; Chen, L.; Qian, D.; Zhang, S.; Ma, X. Estimation of Grain Size in Randomly Packed Granular Material Using Laser-Induced Breakdown Spectroscopy. Chemosensors 2022, 10, 144. https://doi.org/10.3390/chemosensors10040144
Li S, Li Y, Li X, Chen L, Qian D, Zhang S, Ma X. Estimation of Grain Size in Randomly Packed Granular Material Using Laser-Induced Breakdown Spectroscopy. Chemosensors. 2022; 10(4):144. https://doi.org/10.3390/chemosensors10040144
Chicago/Turabian StyleLi, Songting, Yaju Li, Xiaolong Li, Liangwen Chen, Dongbin Qian, Shaofeng Zhang, and Xinwen Ma. 2022. "Estimation of Grain Size in Randomly Packed Granular Material Using Laser-Induced Breakdown Spectroscopy" Chemosensors 10, no. 4: 144. https://doi.org/10.3390/chemosensors10040144
APA StyleLi, S., Li, Y., Li, X., Chen, L., Qian, D., Zhang, S., & Ma, X. (2022). Estimation of Grain Size in Randomly Packed Granular Material Using Laser-Induced Breakdown Spectroscopy. Chemosensors, 10(4), 144. https://doi.org/10.3390/chemosensors10040144