Classification of Aviation Alloys Using Laser-Induced Breakdown Spectroscopy Based on a WT-PSO-LSSVM Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental System
2.2. Sample and Spectral
2.3. Algorithm Discrimination
2.3.1. Support Vector Machines (SVM)
2.3.2. Least Squares Support Vector Machine (LSSVM)
3. Results and Discussion
3.1. Data Acquisition
3.2. Spectral Data Pretreatment
3.3. Calibration Model
3.3.1. Model Establishment
3.3.2. Parameter Optimization
3.4. Model Evaluation
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gialanella, S.; Malandruccolo, A. Aerospace Alloys, 1st ed.; Springer: Cham, Switzerland, 2020; pp. 14–15. [Google Scholar] [CrossRef]
- Leach, A.M.; Hieftje, G.M. Identification of alloys using single shot laser ablation inductively coupled plasma time-of-flight mass spectrometry. J. Anal. Atom. Spectrom. 2002, 17, 852–857. [Google Scholar] [CrossRef]
- Suresh, P. Portable, Real-Time Alloy Identification of Metallic Wear Debris from Machinery Lubrication Systems: Laser-Induced Breakdown Spectroscopy Versus X-ray Fluorescence. In Proceedings of the International Society for Optics and Photonics, Baltimore, MD, USA, 21 May 2014. [Google Scholar] [CrossRef]
- Dadfarnia, S.; Shabani, A.M.H.; Tamaddon, F.; Maryam, R. Immobilized salen (N,N′-bis (salicylidene) ethylenediamine) as a complexing agent for on-line sorbent extraction/preconcentration and flow injection–flame atomic absorption spectrometry. Anal. Chim. Acta 2005, 539, 69–75. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, M.; Huang, S.; Peng, Z.; Chen, K. Active Optical Fiber Sensors Enabled by Femtosecond Laser Induced Nano-Scattering Centers. In Proceedings of the 2021 Conference on Lasers and Electro-Optics, San Jose, CA, USA, 29 October 2021. [Google Scholar] [CrossRef]
- Bol’Shakov, A.A.; Yoo, J.H.; Liu, C.; Plumer, R.; Russo, R.E. Laser-induced breakdown spectroscopy in industrial and security applications. Appl. Opt. 2010, 49, C132–C142. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, M.; Cai, J.; Chen, Y.; Chen, H.; Liu, C.; Yoo, J.; Lu, J. Study on the evaluation of the aging grade for industrial heat-resistant steel by laser-induced breakdown spectroscopy. J. Anal. Atom. Spectrom. 2022, 37, 139–147. [Google Scholar] [CrossRef]
- Guo, H.; Feng, Z.; Cui, M.; Deguchi, Y.; Tan, L.; Zhang, D.C.; Yao, C.; Zhang, D.H. Rapid Analysis of Steel Powder for 3D Printing Using Laser-Induced Breakdown Spectroscopy. ISIJ Int. 2022, 62, 883–890. [Google Scholar] [CrossRef]
- Sallé, B.; Cremers, D.A.; Maurice, S.; Roger, C.W. Laser-induced breakdown spectroscopy for space exploration applications: Influence of the ambient pressure on the calibration curves prepared from soil and clay samples. Spectrochim. Acta Part B 2005, 60, 479–490. [Google Scholar] [CrossRef]
- Knight, A.K.; Scherbarth, N.L.; Cremers, D.A.; Ferris, M.J. Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration. Appl. Spectrosc. 2000, 54, 331–340. [Google Scholar] [CrossRef]
- Fortes, F.J.; Guirado, S.; Metzinger, A.; Laserna, J.J. A study of underwater stand-off laser-induced breakdown spectroscopy for chemical analysis of objects in the deep ocean. J. Anal. Atom. Spectrom. 2015, 30, 1050–1056. [Google Scholar] [CrossRef]
- Cui, M.; Deguchi, Y.; Yao, C.; Wang, Z.; Tanak, S.; Zhang, D. Carbon detection in solid and liquid steel samples using ultraviolet long-short double pulse laser-induced breakdown spectroscopy. Spectrochim. Acta Part B 2020, 167, 105839. [Google Scholar] [CrossRef]
- Qiao, S.; Ding, Y.; Tian, D.; Yao, L. A review of laser-induced breakdown spectroscopy for analysis of geological materials. Appl. Spectrosc. Rev. 2015, 50, 26. [Google Scholar] [CrossRef]
- Fabre, C. Advances in Laser-Induced Breakdown Spectroscopy analysis for geology: A critical review. Spectrochim. Acta Part B 2020, 166, 105799. [Google Scholar] [CrossRef]
- Cui, M.; Deguchi, Y.; Li, G.; Wang, Z.; Guo, H.; Qin, Z.; Yao, C.; Zhang, D. Determination of manganese in submerged steel using Fraunhofer-type line generated by long-short double-pulse laser-induced breakdown spectroscopy. Spectrochim. Acta Part B 2021, 180, 106210. [Google Scholar] [CrossRef]
- Cui, M.; Guo, H.; Chi, Y.; Tan, L.; Yao, C.; Zhang, D.; Deguchi, Y. Quantitative analysis of trace carbon in steel samples using collinear long-short double-pulse laser-induced breakdown spectroscopy. Spectrochim. Acta Part B 2022, 191, 106398. [Google Scholar] [CrossRef]
- Cui, M.; Deguchi, Y.; Wang, Z.; Fujita, Y.; Liu, R.; Shiou, F.; Zhao, S. Enhancement and stabilization of plasma using collinear long-short double-pulse laser-induced breakdown spectroscopy. Spectrochim. Acta Part B 2018, 142, 14–22. [Google Scholar] [CrossRef]
- Zhan, L.; Ma, X.; Fang, W.; Wang, R.; Liu, Z.; Song, Y.; Zhao, H. A rapid classification method of aluminum alloy based on laser-induced breakdown spectroscopy and random forest algorithm. Plasma Sci. Technol. 2019, 21, 034018. [Google Scholar] [CrossRef]
- Liang, L.; Zhang, T.; Wang, K.; Tang, H.; Yang, X.; Zhu, X.; Duan, Y.; Li, H. Classification of steel materials by laser-induced breakdown spectroscopy coupled with support vector machines. Appl. Opt. 2014, 53, 544–552. [Google Scholar] [CrossRef]
- Campanella, B.; Grifoni, E.; Legnaioli, S.; Lorenzettia, G.; Pagnottaa, S.; Sorrentinoc, F.; Palleschiab, V. Classification of wrought aluminum alloys by Artificial Neural Networks evaluation of Laser Induced Breakdown Spectroscopy spectra from aluminum scrap samples. Spectrochim. Acta Part B 2017, 134, 52–57. [Google Scholar] [CrossRef]
- Lin, J.; Lin, X.; Guo, L.; Guo, Y.; Tang, Y.; Chu, Y.; Tang, S.; Che, C. Identification accuracy improvement for steel species using a least squares support vector machine and laser-induced breakdown spectroscopy. J. Anal. Atom. Spectrom. 2018, 33, 1545–1551. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support vector networks. Mach. Learn. 1995, 20, 273–295. [Google Scholar] [CrossRef]
- Tan, P.N.; Steinback, M.; Karpatne, A.; Kumar, V. Introduction to Data Mining, 1st ed.; Pearson Education Inc.: Boston, MA, USA, 2006; pp. 138–142. [Google Scholar] [CrossRef]
- Ding, Y.H.; Zhao, J.; Zhang, Y.; Long, C.; Xiong, L. Constrained Surface Recovery Using RBF and Its Efficiency Improvements. J. Multimed. 2010, 5, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Lu, S.; Shen, S.; Huang, J.; Lu, J.; Li, W. Feature selection of laser-induced breakdown spectroscopy data for steel aging estimation. Spectrochim. Acta Part B 2018, 150, 49–58. [Google Scholar] [CrossRef]
- Zou, X.; Guo, L.; Shen, M.; Li, X.; Hao, Z.; Zeng, D.; Lu, Y.; Wang, Z.; Zeng, X. Accuracy improvement of quantitative analysis in laser-induced breakdown spectroscopy using modified wavelet transform. Opt. Express 2014, 22, 10233–10238. [Google Scholar] [CrossRef] [PubMed]
- Schlenke, J.; Hildebrand, L.; Moros, J.; Laserna, J.J. Adaptive approach for variable noise suppression on laser- induced breakdown spectroscopy responses using stationary wavelet transform. Anal. Chim. Acta 2012, 754, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yu, H.; Sun, L.; Xin, Y.; Cong, Z. A method for resolving overlapped peaks in laser- induced breakdown spectroscopy (LIBS). Appl. Spectrosc. 2013, 67, 1087–1097. [Google Scholar] [CrossRef]
- Owens, P.M.; Isenhour, T.L. Infrared spectra compression procedure for resolution independent search systems. Anal. Chem. 1983, 55, 1548–1553. [Google Scholar] [CrossRef]
- Chen, S.; Lin, X.; Yuen, C.; Padmanabhan, S.; Beuerman, R.W.; Liu, Q. Recovery of Raman spectra with low signal-to-noise ratio using Wiener estimation. Opt. Express 2014, 22, 12102–12114. [Google Scholar] [CrossRef]
- Sidhik, S. Comparative study of Birge–Massart strategy and unimodal thresholding for image compression using wavelet transform. Optik 2015, 126, 5952–5955. [Google Scholar] [CrossRef]
- Farge, M. Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 1992, 24, 395–457. [Google Scholar] [CrossRef]
- NIST Atomic Spectra Database (Version 5.8). Available online: https://www.nist.gov/pml/atomic-spectra-database (accessed on 1 March 2020).
- Kohavi, R.; Provost, F. Special issue on applications of machine learning and the knowledge discovery process. Mach. Learn. 1998, 30, 127–132. [Google Scholar] [CrossRef]
No. | Sample Name | Composition (wt%) | |||||||
---|---|---|---|---|---|---|---|---|---|
Cr | Ni | Si | Mn | Mo | Al | Fe | other | ||
1 | GH4169 | 19.01 | 52.30 | 0.05 | 0.03 | 3.06 | 0.57 | 18.83 | 6.15 |
2 | 42CrMo | 0.90 | - | 0.17 | 0.50 | 0.15 | - | 97.90 | 0.38 |
3 | A100 | 2.90 | 11.00 | 0.10 | 0.10 | 1.10 | 0.015 | 60.76 | 24.03 |
Zn | Al | Mo | Fe | Zr | Si | Ti | other | ||
4 | TC4 | - | 5.50 | - | 0.50 | - | - | 90.15 | 3.85 |
5 | TC11 | 1.40 | 5.80 | 2.80 | 0.25 | 0.80 | 0.02 | 87.73 | 1.20 |
6 | TC17 | 1.90 | - | 3.90 | 0.06 | 1.90 | - | 88.44 | 3.80 |
Significant Element | Main Wavelength (nm) |
---|---|
Ni I | 352.454 |
Fe I | 357.199 373.486 404.581 438.354 |
Cr I | 425.435 427.480 428.972 |
Ti I | 468.19 498.173 |
Al I | 309.27 396.152 |
Mo I | 313.259 550.649 |
Models | Accuracy (%) | Precision (%) | Sensitivity (%) |
---|---|---|---|
SVM | 38.79 | 31.45 | 37.21 |
SVM–PSO | 64.33 | 67.46 | 68.58 |
LSSVM | 92.51 | 89.72 | 91.48 |
LSSVM–PSO | 99.98 | 99.56 | 99.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Cui, M.; Feng, Z.; Zhang, D.; Zhang, D. Classification of Aviation Alloys Using Laser-Induced Breakdown Spectroscopy Based on a WT-PSO-LSSVM Model. Chemosensors 2022, 10, 220. https://doi.org/10.3390/chemosensors10060220
Guo H, Cui M, Feng Z, Zhang D, Zhang D. Classification of Aviation Alloys Using Laser-Induced Breakdown Spectroscopy Based on a WT-PSO-LSSVM Model. Chemosensors. 2022; 10(6):220. https://doi.org/10.3390/chemosensors10060220
Chicago/Turabian StyleGuo, Haorong, Minchao Cui, Zhongqi Feng, Dacheng Zhang, and Dinghua Zhang. 2022. "Classification of Aviation Alloys Using Laser-Induced Breakdown Spectroscopy Based on a WT-PSO-LSSVM Model" Chemosensors 10, no. 6: 220. https://doi.org/10.3390/chemosensors10060220
APA StyleGuo, H., Cui, M., Feng, Z., Zhang, D., & Zhang, D. (2022). Classification of Aviation Alloys Using Laser-Induced Breakdown Spectroscopy Based on a WT-PSO-LSSVM Model. Chemosensors, 10(6), 220. https://doi.org/10.3390/chemosensors10060220