Chalcone-Based Colorimetric Chemosensor for Detecting Ni2+
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.2. Synthesis of DPP
2.3. UV-Vis Titrations
2.4. Job Plot
2.5. Interference Tolerance Test
2.6. pH Effect
2.7. Water Sample Test by the Spiking Method
2.8. Test Strip
2.9. Calculations
3. Results and Discussion
3.1. Spectroscopic Studies of DPP with Ni2+
3.2. Theoretical Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Khan, R.I.; Ramu, A.; Pitchumani, K. Design and one-pot synthesis of a novel pyrene based fluorescent sensor for selective “turn on”, naked eye detection of Ni2+ ions, and live cell imaging. Sens. Actuators B Chem. 2018, 266, 429–437. [Google Scholar] [CrossRef]
- Manna, A.K.; Mondal, J.; Rout, K.; Patra, G.K. A benzohydrazide based two-in-one Ni2+/Cu2+ fluorescent colorimetric chemosensor and its applications in real sample analysis and molecular logic gate. Sens. Actuators B Chem. 2018, 275, 350–358. [Google Scholar] [CrossRef]
- Velmurugan, K.; Prabhu, J.; Raman, A.; Duraipandy, N.; Kiran, M.S.; Easwaramoorthi, S.; Tang, L.; Nandhakumar, R. Dual Functional Fluorescent Chemosensor for Discriminative Detection of Ni2+ and Al3+ Ions and Its Imaging in Living Cells. ACS Sustain. Chem. Eng. 2018, 6, 16532–16543. [Google Scholar] [CrossRef]
- Sharma, N.; Gulati, A. Selective binding of Ni2+ and Cu2+ metal ions with naphthazarin esters isolated from Arnebia euchroma. Biotechnol. Prog. 2020, 36, e2985. [Google Scholar] [CrossRef]
- Goswami, S.; Chakraborty, S.; Adak, M.K.; Halder, S.; Quah, C.K.; Fun, H.K.; Pakhira, B.; Sarkar, S. A highly selective ratiometric chemosensor for Ni2+ in a quinoxaline matrix. New J. Chem. 2014, 38, 6230–6235. [Google Scholar] [CrossRef]
- Chakraborty, S.; Rayalu, S. Detection of nickel by chemo and fluoro sensing technologies. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2021, 245, 118915. [Google Scholar] [CrossRef]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human health and environmental toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.J.; Kumarasamy, K.; Devendhiran, T.; Chen, Y.C.; Dong, T.Y.; Lin, M.C. BODIPY-based hydroxypyridyl derivative as a highly Ni2+-selective fluorescent chemosensor. J. Mol. Struct. 2021, 1246, 131281. [Google Scholar] [CrossRef]
- Bai, C.B.; Liu, X.Y.; Zhang, J.; Qiao, R.; Dang, K.; Wang, C.; Wei, B.; Zhang, L.; Chen, S.S. Using Smartphone APP to Determine the CN- Concentration Quantitatively in Tap Water: Synthesis of the Naked-Eye Colorimetric Chemosensor for CN- and Ni2+ Based on Benzothiazole. ACS Omega 2020, 5, 2488–2494. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.M.; Kim, M.S.; Lee, M.; Lim, M.H.; Kim, C. Single fluorescent chemosensor for multiple targets: Sequential detection of Al3+ and pyrophosphate and selective detection of F- in near-perfect aqueous solution. New J. Chem. 2017, 41, 15590–15600. [Google Scholar] [CrossRef]
- Subhasri, A.; Balachandran, S.; Mohanraj, K.; Kumar, P.S.; Jothi, K.J.; Anbuselvan, C. Synthesis, Computational and cytotoxicity studies of aryl hydrazones of β-diketones: Selective Ni2+ metal Responsive fluorescent chemosensors. Chemosphere 2022, 297, 134150. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Chen, J.; Shi, J.; Li, Z.; Xu, L.; Jiang, W.; Yang, S.; Gao, B. An acylhydrazone coumarin as chemosensor for the detection of Ni2+ with excellent sensitivity and low LOD: Synthesis, DFT calculations and application in real water and living cells. Inorg. Chim. Acta 2021, 516, 2–9. [Google Scholar] [CrossRef]
- Bahadir, Z.; Ozdes, D.; Bulut, V.N.; Duran, C.; Elvan, H.; Bektas, H.; Soylak, M. Cadmium and nickel determinations in some food and water samples by the combination of carrier element-free coprecipitation and flame atomic absorption spectrometry. Toxicol. Environ. Chem. 2013, 95, 737–746. [Google Scholar] [CrossRef]
- Cate, D.M.; Dungchai, W.; Cunningham, J.C.; Volckens, J.; Henry, C.S. Simple, distance-based measurement for paper analytical devices. Lab Chip 2013, 13, 2397–2404. [Google Scholar] [CrossRef]
- Xu, Z.; Yoon, J.; Spring, D.R. Fluorescent chemosensors for Zn2+. Chem. Soc. Rev. 2010, 39, 1996–2006. [Google Scholar] [CrossRef] [Green Version]
- Salimi, F.; Zarei, K.; Karami, C. Naked Eye Detection of Cr3+ and Ni2+ Ions by Gold Nanoparticles Modified with Ribavirin. Silicon 2018, 10, 1755–1761. [Google Scholar] [CrossRef]
- Cheah, P.W.; Heng, M.P.; Saad, H.M.; Sim, K.S.; Tan, K.W. Specific detection of Cu2+ by a pH-independent colorimetric rhodamine based chemosensor. Opt. Mater. 2021, 114, 110990. [Google Scholar] [CrossRef]
- Lee, J.J.; Choi, Y.W.; You, G.R.; Lee, S.Y.; Kim, C. A phthalazine-based two-in-one chromogenic receptor for detecting Co2+ and Cu2+ in an aqueous environment. Dalton Trans. 2015, 44, 13305–13314. [Google Scholar] [CrossRef]
- Pothulapadu, C.A.S.; Jayaraj, A.; Swathi, N.; Priyanka, R.N.; Sivaraman, G. Novel Benzothiazole-Based Highly Selective Ratiometric Fluorescent Turn-On Sensors for Zn2+and Colorimetric Chemosensors for Zn2+, Cu2+, and Ni2+Ions. ACS Omega 2021, 6, 24473–24483. [Google Scholar] [CrossRef]
- Nilghaz, A.; Ballerini, D.R.; Fang, X.Y.; Shen, W. Semiquantitative analysis on microfluidic thread-based analytical devices by ruler. Sens. Actuators B Chem. 2014, 191, 586–594. [Google Scholar] [CrossRef]
- Kang, J.H.; Lee, S.Y.; Ahn, H.M.; Kim, C. A novel colorimetric chemosensor for the sequential detection of Ni2+ and CN− in aqueous solution. Sens. Actuators B Chem. 2017, 242, 25–34. [Google Scholar] [CrossRef]
- Fukushima, Y.; Aikawa, S. Colorimetric detection of Ni2+ based on an anionic triphenylmethane dye and a cationic polyelectrolyte in aqueous solution. Tetrahedron Lett. 2019, 60, 675–680. [Google Scholar] [CrossRef]
- Inoue, K.; Aikawa, S.; Fukushima, Y. Colorimetric chemosensor for Ni2+ based on alizarin complexone and a cationic polyelectrolyte in aqueous solution. J. Appl. Polym. Sci. 2019, 136, 6–11. [Google Scholar] [CrossRef]
- Yin, G.; Yao, J.; Hong, S.; Zhang, Y.; Xiao, Z.; Yu, T.; Li, H.; Yin, P. A dual-responsive colorimetric probe for the detection of Cu2+ and Ni2+ species in real water samples and human serum. Analyst 2019, 144, 6962–6967. [Google Scholar] [CrossRef]
- Erten, G.; Karcı, F.; Demirçalı, A.; Söyleyici, S. 1H-pyrazole- azomethine based novel diazo derivative chemosensor for the detection of Ni2+. J. Mol. Struct. 2020, 1206, 122713. [Google Scholar] [CrossRef]
- Kong, L.; Jiao, C.; Luan, L.; Li, S.; Ma, X.; Wang, Y. Reversible Ni2+ fluorescent probe based on ICT mechanism and its application in bio-imaging of Zebrafish. J. Photochem. Photobiol. A Chem. 2022, 422, 113555. [Google Scholar] [CrossRef]
- Choi, Y.W.; Lee, J.J.; You, G.R.; Kim, C. Fluorescence “on-off-on” chemosensor for the sequential recognition of Hg2+ and cysteine in water. RSC Adv. 2015, 5, 38308–38315. [Google Scholar] [CrossRef]
- Molina, P.; Tárraga, A.; Otón, F. Imidazole derivatives: A comprehensive survey of their recognition properties. Org. Biomol. Chem. 2012, 10, 1711–1724. [Google Scholar] [CrossRef]
- Helal, A.; Kim, H.S. Thiazole-based chemosensor: Synthesis and ratiometric fluorescence sensing of zinc. Tetrahedron Lett. 2009, 50, 5510–5515. [Google Scholar] [CrossRef]
- Cao, X.F.; Chu, W.J.; Cao, Y.B.; Yang, Y.S. Design and synthesis of novel antifungal triazole derivatives with good activity and water solubility. Chin. Chem. Lett. 2013, 24, 303–306. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Cao, X.; Liu, X.; He, H.; Yang, Y. Design and synthesis of pyridine-substituted itraconazole analogues with improved antifungal activities, water solubility and bioavailability. Bioorg. Med. Chem. Lett. 2011, 21, 4779–4783. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, K.; Li, L.L.; Yu, K.K.; Liu, X.Y.; Li, M.Y.; Wang, N.; Liu, Y.H.; Yu, X.Q. Pyridine-Si-xanthene: A novel near-infrared fluorescent platform for biological imaging. Chin. Chem. Lett. 2019, 30, 1063–1066. [Google Scholar] [CrossRef]
- Sulpizio, C.; Breibeck, J.; Rompel, A. Recent progress in synthesis and characterization of metal chalcone complexes and their potential as bioactive agents. Coord. Chem. Rev. 2018, 374, 497–524. [Google Scholar] [CrossRef]
- Singh, G.; Singh, J.; Mangat, S.S.; Singh, J.; Rani, S. Chalcomer assembly of optical chemosensors for selective Cu2+ and Ni2+ ion recognition. RSC Adv. 2015, 5, 12644–12654. [Google Scholar] [CrossRef]
- Singh, G.; Arora, A.; Rani, S.; Kalra, P.; Kumar, M. A Click-Generated Triethoxysilane Tethered Ferrocene-Chalcone-Triazole Triad for Selective and Colorimetric Detection of Cu2+ Ions. ChemistrySelect 2017, 2, 3637–3647. [Google Scholar] [CrossRef]
- El-Nahass, M.N. D–π–A chalcone analogue metal ions selective turn-on-off-on fluorescent chemosensor with cellular imaging and corrosion protection. J. Mol. Struct. 2021, 1239, 130527. [Google Scholar] [CrossRef]
- Park, S.; Suh, B.; Kim, C. A chalcone-based fluorescent chemosensor for detecting Mg2+ and Cd2+. Luminescence 2022, 37, 332–339. [Google Scholar] [CrossRef]
- Singh, N.; Chandra, R. A naked-eye colorimetric sensor based on chalcone for the sequential recognition of copper(ii) and sulfide ions in semi-aqueous solution: Spectroscopic and theoretical approaches. New J. Chem. 2021, 45, 10340–10348. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Chlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision C.01; Gaussian, Inc.: Wallingford, UK, 2016. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Hariharan, P.C.; Pople, J.A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Francl, M.M.; Pietro, W.J.; Hehre, W.J.; Binkley, J.S.; Gordon, M.S.; DeFrees, D.J.; Pople, J.A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982, 77, 3654–3665. [Google Scholar] [CrossRef] [Green Version]
- Wadt, W.R.; Hay, P.J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 1985, 82, 284–298. [Google Scholar] [CrossRef]
- Klamt, A.; Moya, C.; Palomar, J. A Comprehensive Comparison of the IEFPCM and SS(V)PE Continuum Solvation Methods with the COSMO Approach. J. Chem. Theory Comput. 2015, 11, 4220–4225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.J.; Park, G.J.; Kim, Y.S.; Lee, S.Y.; Lee, H.J.; Noh, I.; Kim, C. A water-soluble carboxylic-functionalized chemosensor for detecting Al3+ in aqueous media and living cells: Experimental and theoretical studies. Biosens. Bioelectron. 2015, 69, 226–229. [Google Scholar] [CrossRef]
- Prasad, Y.R.; Kumar, P.P.; Kumar, P.R.; Rao, A.S. Synthesis and Antimicrobial Activity of Some New Chalcones of 2-Acetyl Pyridine. J. Chem. 2008, 5, 144–148. [Google Scholar] [CrossRef]
- Rout, K.C.; Mondal, B. Copper(II) complex as selective turn-on fluorescent probe for nitrite ion. Inorg. Chim. Acta 2015, 437, 54–58. [Google Scholar] [CrossRef]
Sensor | Detection Limit (μM) | Test Strip | Reference |
---|---|---|---|
0.057 | Yes | [21] | |
0.074 | No | [22] | |
0.037 | No | [23] | |
0.0012 | No | [24] | |
- | No | [25] | |
1.78 | No | [26] | |
0.36 | This work |
Sample | Ni2+ Added (μM) | Ni2+ Found (μM) | Recovery (%) | R.S.D (n = 3) (%) |
---|---|---|---|---|
Drinking water | 0.0 | 0.0 | - | - |
6 | 6.09 | 101.48 | 0.37 | |
Tap water | 0.0 | 0.0 | - | - |
6 | 5.98 | 99.68 | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, S.; Kim, C. Chalcone-Based Colorimetric Chemosensor for Detecting Ni2+. Chemosensors 2022, 10, 151. https://doi.org/10.3390/chemosensors10050151
Moon S, Kim C. Chalcone-Based Colorimetric Chemosensor for Detecting Ni2+. Chemosensors. 2022; 10(5):151. https://doi.org/10.3390/chemosensors10050151
Chicago/Turabian StyleMoon, Sungjin, and Cheal Kim. 2022. "Chalcone-Based Colorimetric Chemosensor for Detecting Ni2+" Chemosensors 10, no. 5: 151. https://doi.org/10.3390/chemosensors10050151
APA StyleMoon, S., & Kim, C. (2022). Chalcone-Based Colorimetric Chemosensor for Detecting Ni2+. Chemosensors, 10(5), 151. https://doi.org/10.3390/chemosensors10050151