Nanoparticle-Mediated Signaling for Aptamer-Based Multiplexed Detection of Cortisol and Neuropeptide Y in Serum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Assembly of Methylene-Blue-Modified Aptamers on Gold
2.3. NMR Spectra
2.4. Nanoparticle Conjugation
2.5. Instrumentation
2.6. Validation Using Human Samples
3. Results
3.1. Aptamer Conformation after Cortisol Binding
3.2. Nanoparticle-Mediated Signaling for Sensor Development
3.3. Multitarget Sensing and Validation with Serum Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Aptamer | Sequence |
---|---|
CSS3.51 | CTCTCGGGACGACGCCAGAAGTTTACGAGGATATGGTAACATAGTCGTCCC |
CSS3.42 | GGACGACGCCAGAAGTTTACGAGGATATGGTAACATAGTCGT |
CSS3.29 | GCCAGAAGTTTACGAGGATATGGTAACATA |
A15-1 | GAA TGG ATC CAC ATC CAT GG ATG GGC AAT TGC GGG GTG GAG AAT GGT TGC CGC ACT TCG GGC TTC ACT GCA GAC TTG ACG AAG CTT |
A15-1PF | ATG GGC AAT TGC GGG GTG GAG AAT GGT TGC CGC ACT TCG GGC |
A15-1SL | TGC GGG GTG GAG AAT GGT TGC CGC |
Sample Type | Signal | Sensitivity | LOD | LOQ | Linear Range |
---|---|---|---|---|---|
Cortisol in Buffer | OFF | 1.278 µA ng−1 mL | 0.2 ng/mL | 0.6 ng/mL | 1 pg/mL–1 µg/mL |
ON | 0.1682 µA ng−1 mL | 1.5 ng/mL | 4.5 ng/mL | 0.1–750 ng/mL | |
Cortisol in 50% Serum | ON | 0.6609 µA ng−1 mL | 0.9 ng/mL | 2.7 ng/mL | 1–250 ng/mL |
NPY in Buffer | OFF | 4.439 µA pg−1 mL | 0.1 pg/mL | 0.2 pg/mL | 0.2 pg/mL–2 ng/mL |
ON | 0.2971 µA pg−1 mL | 2.2 pg/mL | 6.7 pg/mL | 1–1000 pg/mL | |
NPY in 50% Serum | ON | 0.2954 µA pg−1 mL | 2.0 pg/mL | 5.9 pg/mL | 1–1000 pg/mL |
References
- Griffiths, B.B.; Hunter, R.G. Neuroepigenetics of Stress. Neuroscience 2014, 275, 420–435. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.G. Epigenetic effects of stress and corticosteroids in the brain. Front. Cell. Neurosci. 2012, 6, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pittenger, C.; Duman, R.S. Stress, depression, and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacology 2008, 33, 88–109. [Google Scholar] [CrossRef] [PubMed]
- Hanash, S. Disease proteomics. Nature 2003, 422, 226–232. [Google Scholar] [CrossRef]
- McKinley, R.A.; Bridges, N.; Walters, C.M.; Nelson, J. Modulating the brain at work using noninvasive transcranial stimulation. Neuroimage 2012, 59, 129–137. [Google Scholar] [CrossRef]
- Andrews, J.A.; Neises, K.D. Cells, biomarkers, and post-traumatic stress disorder: Evidence for peripheral involvement in a central disease. J. Neurochem. 2012, 120, 26–36. [Google Scholar] [CrossRef]
- Morgan, C.A.; Wang, S.; Rasmusson, A.; Hazlett, G.; Anderson, G.; Charney, D.S. Relationship among plasma cortisol, catecholamines, neuropeptide Y, and human performance during exposure to uncontrollable stress. Psychosom. Med. 2001, 63, 412–422. [Google Scholar] [CrossRef]
- McEwen, B.S. Editorial: Cortisol, Cushing’s syndrome, and a shrinking brain-new evidence for reversibility. J. Clin. Endocrinol. Metab. 2002, 87, 1947–1948. [Google Scholar] [CrossRef]
- Wijmenga, S.S.; van Buuren, B.N.M. The use of NMR methods for Conformation Studies of Nucleic Acids. Prog. NMR Spectrocopy 1998, 32, 287–387. [Google Scholar] [CrossRef]
- Martin, J.A.; Chavez, J.L.; Chushak, Y.; Chapleau, R.R.; Hagen, J.; Kelley-Loughnane, N. Tunable stringency aptamer selection and gold nanoparticle assay for detection of cortisol. Anal. Bioanal. Chem. 2014, 406, 4637–4647. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, H.; Ye, H.; Chen, Z.; Jaffrezic-Renault, N.; Guo, Z. An ultrasensitive aptamer-antibody sandwich cortisol sensor for the noninvasive monitoring of stress state. Biosens. Bioelectron. 2001, 190, 113451. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, R.E.; Umasankar, Y.; Manickam, P.; Nickel, J.C.; Iwasaki, L.R.; Kawamoto, B.K.; Todoki, K.C.; Scott, J.M.; Bhansali, S. Disposable aptamer-sensor aided by magnetic nanoparticle enrichment for detection of salivary cortisol variations in obstructive sleep apnea patients. Sci. Rep. 2017, 7, 17992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanghavi, B.J.; Moore, J.A.; Chavez, J.L.; Hagen, J.A.; Kelley-Loughnane, N.; Chou, C.F.; Swami, N.S. Aptamer-functionalized nanoparticles for surface immobilization-free electrochemical detection of cortisol in a microfluidic device. Biosens. Bioelectron. 2016, 78, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Sanghavi, B.J.; Varhue, W.; Chavez, J.L.; Chou, C.F.; Swami, N.S. Electrokinetic Preconcentration and Detection of Neuropeptides at Patterned Graphene-Modified Electrodes in a Nanochannel. Anal. Chem. 2014, 86, 4120–4125. [Google Scholar] [CrossRef]
- Fernandez, R.E.; Sanghavi, B.J.; Farmehini, V.; Chavez, J.L.; Hagen, J.; Kelley-Loughnane, N.; Chou, C.F.; Swami, N.S. Aptamer-functionalized graphene-gold nanocomposites for label-free detection of dielectrophoretic-enriched neuropeptide Y. Electrochem. Commun. 2016, 72, 144–147. [Google Scholar] [CrossRef]
- Sanghavi, B.J.; Sitaula, S.; Griep, M.H.; Karna, S.P.; Ali, M.F.; Swami, N.S. Real-Time Electrochemical Monitoring of Adenosine Triphosphate in the Picomolar to Micromolar Range Using Graphene-Modified Electrodes. Anal. Chem. 2013, 85, 8158–8165. [Google Scholar] [CrossRef] [Green Version]
- Rohani, A.; Sanghavi, B.J.; Salahi, A.; Liao, K.T.; Chou, C.F.; Swami, N.S. Frequency-selective electrokinetic enrichment of biomolecules in physiological media based on electrical double-layer polarization. Nanoscale 2017, 9, 12124–12131. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, C.; Wang, Z.; Yang, K.A.; Cheng, X.; Liu, W.; Yu, W.; Lin, S.; Zhao, Y.; Cheung, K.M.; et al. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Sci. Adv. 2020, 8, eabk0967. [Google Scholar] [CrossRef]
- Dalirirad, S.; Han, D.; Steckl, A.J. Aptamer-based lateral flow biosensor for rapid detection of salivary cortisol. ACS Omega 2020, 5, 32890–32898. [Google Scholar] [CrossRef]
- Hwang, T.; Shaka, A. Water Suppression That Works. Excitation Sculpting Using Arbitrary Waveforms and Pulsed Field Gradients. J. Magn. Reson. 1995, 112, 275–279. [Google Scholar] [CrossRef]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef] [PubMed]
- Neves, M.A.; Reinstein, O.; Johnson, P.E. Defining a stem length-dependent binding mechanism for the cocaine-binding aptamer. A combined NMR and calorimetry study. Biochemistry 2010, 49, 8478–8487. [Google Scholar] [CrossRef] [PubMed]
- Neves, M.A.; Reinstein, O.; Saad, M.; Johnson, P.E. Defining the secondary structural requirements of a cocaine-binding aptamer by a thermodynamic and mutation study. Biophys. Chem. 2010, 153, 9–16. [Google Scholar] [CrossRef]
- Shoara, A.A.; Churcher, Z.R.; Steele, T.W.; Johnson, P.E. Analysis of the role played by ligand-induced folding of the cocaine-binding aptamer in the photochrome aptamer switch assay. Talanta 2020, 217, 121022. [Google Scholar] [CrossRef]
- Bochman, M.L.; Paeschke, K.; Zakian, V.A. DNA secondary structures: Stability and function of G-quadruplex structures. Nat. Rev. Genet. 2012, 13, 770–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macaya, R.F.; Schultze, P.; Smith, F.W.; Roe, J.A.; Feigon, J. Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc. Natl. Acad. Sci. USA 1993, 90, 3745–3749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kikin, O.; D’Antonio, L.; Bagga, P.S. QGRS Mapper: A web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 2006, 34, W676–W682. [Google Scholar] [CrossRef]
- Pusomjit, P.; Teengam, P.; Thepsuparungsikul, N.; Sanongkiet, S.; Chailapakul, O. Impedimetric determination of cortisol using screen-printed electrode with aptamer-modified magnetic beads. Microchim. Acta 2021, 188, 41. [Google Scholar] [CrossRef]
- Ramirez-Villafaña, M.; Saldaña-Cruz, A.; Aceves-Aceves Perez-Guerrero, J.; Fajardo-Robledo, N.; Rubio-Arellano, E.; Nava-Valdivia, C.; Carrillo-Escalante, M.; Totsuka-Sutto, S.; Cardona-Müller, D.; Contreras-Haro, B.; et al. Serum Neuropeptide Y Levels Are Associated with TNF-α Levels and Disease Activity in Rheumatoid Arthritis. J. Immunol. Res. 2020, 2020, 8982163. [Google Scholar] [CrossRef]
- Papanicolaou, D.; Yanovski, J.; Cutler, G., Jr.; Chrousos, G.; Nieman, J. A Single Midnight Serum Cortisol Measurement Distinguishes Cushing’s Syndrome from Pseudo-Cushing States. J. Clin. Endocrinol. Metab. 1998, 83, 1163–1167. [Google Scholar] [CrossRef] [Green Version]
- Steckl, A.J.; Ray, P. Stress biomarkers in biological fluids and their point-of-use detection. ACS Sens. 2018, 3, 2025–2044. [Google Scholar] [CrossRef] [PubMed]
- Guber, H.A.; Farag, A.F. Henry’s Clinical Diagnosis and Management by Laboratory Methods; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Wissie, B. Cortisol Blood Test; US National Library of Medicine: Bethesda, MD, USA, 2013. Available online: http://www.nlm.nih.gov/medlineplus/ency/article/003693.htm (accessed on 1 January 2020).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sardesai, N.; Liu, Y.; Shia, R.; Mirau, P.; Chávez, J.L.; Swami, N.S. Nanoparticle-Mediated Signaling for Aptamer-Based Multiplexed Detection of Cortisol and Neuropeptide Y in Serum. Chemosensors 2022, 10, 153. https://doi.org/10.3390/chemosensors10050153
Sardesai N, Liu Y, Shia R, Mirau P, Chávez JL, Swami NS. Nanoparticle-Mediated Signaling for Aptamer-Based Multiplexed Detection of Cortisol and Neuropeptide Y in Serum. Chemosensors. 2022; 10(5):153. https://doi.org/10.3390/chemosensors10050153
Chicago/Turabian StyleSardesai, Naimesh, Yi Liu, Regina Shia, Peter Mirau, Jorge L. Chávez, and Nathan S. Swami. 2022. "Nanoparticle-Mediated Signaling for Aptamer-Based Multiplexed Detection of Cortisol and Neuropeptide Y in Serum" Chemosensors 10, no. 5: 153. https://doi.org/10.3390/chemosensors10050153
APA StyleSardesai, N., Liu, Y., Shia, R., Mirau, P., Chávez, J. L., & Swami, N. S. (2022). Nanoparticle-Mediated Signaling for Aptamer-Based Multiplexed Detection of Cortisol and Neuropeptide Y in Serum. Chemosensors, 10(5), 153. https://doi.org/10.3390/chemosensors10050153