A Simple Ratiometric Electrochemical Aptasensor Based on the Thionine–Graphene Nanocomposite for Ultrasensitive Detection of Aflatoxin B2 in Peanut and Peanut Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Apparatus
2.3. Synthesis of THI-rGO
2.4. Fabrication of the Aptasensor
2.5. Analysis of AFB2
2.6. Real Sample Pretreatment
3. Results and Discussion
3.1. Characterization of THI-rGO Nanocomposite
3.2. Feasibility of the Ratiometric Electrochemical Aptasensor for AFB2 Assay
3.3. Optimization of Experimental Conditions
3.4. Determination of AFB2
3.5. Selectivity, Reproducibility, and Stability of Proposed Aptasensor
3.6. Analysis of AFB2 in Peanut Powder and Peanut Oil
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shotwell, O.L.; Hesseltine, C.W.; Stubblefield, R.D.; Sorenson, W.G. Production of aflatoxin on rice. Appl. Environ. Microbiol. 1966, 14, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Andrade, P.D.; Silva, J.L.G.D.; Caldas, E.D. Simultaneous analysis of aflatoxins B1, B2, G1, G2, M1 and ochratoxin A in breast milk by high-performance liquid chromatography/fluorescence after liquid-liquid extraction with low temperature purification (LLE-LTP). J. Chromatogr. A 2013, 1304, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Lorini, C.; Rossetti, F.; Palazzoni, S.; Comodo, N.; Bonaccorsi, G. Biological contamination by micromycetes in dried Boletus edulis: Research of aflatoxin B1, B2, G1, G2 and ochratoxin A. Ann. Ig. 2008, 20, 553–562. [Google Scholar]
- Wogan, G.N.; Kensler, T.W.; Groopman, J.D. Present and future directions of translational research on aflatoxin and hepatocellular carcinoma. A Review. Food Addit. Contam. A 2012, 29, 249–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodnik, V.; Anderluh, G. Toxin detection by surface plasmon resonance. Sensors 2009, 9, 1339–1354. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.C.; Huang, H.J.; Xu, W.; Chen, D.Y.; Yu, J.; Li, J.; Li, L.J. Fecal metabolome profiling of liver cirrhosis and hepatocellular carcinoma patients by ultra-performance liquid chromatography-mass spectrometry. Anal. Chim. Acta 2011, 691, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.W.; Kale, S.; Yu, J. Aflatoxins: Background, toxicology, and molecular biology. Foodborne Dis. 2007, 655, 355–373. [Google Scholar]
- Lai, X.W.; Sun, D.L.; Ruan, C.Q.; Zhang, H.; Liu, C.L. Rapid analysis of aflatoxins B 1, B 2, and ochratoxin A in rice samples using dispersive liquid-liquid microextraction combined with HPLC. J. Sep. Sci. 2014, 37, 92–98. [Google Scholar] [CrossRef]
- Ediage, E.N.; Mavungu, J.D.D.; Monbaliu, S. A validated multianalyte LC-MS/MS method for quantification of 25 mycotoxins in cassava flour, peanut cake and maize samples. J. Agric. Food Chem. 2011, 59, 5173–5180. [Google Scholar] [CrossRef]
- Moscone, D.; Arduini, F.; Amine, A. A rapid enzymatic method for aflatoxin B detection. Microb. Toxins 2011, 739, 217–235. [Google Scholar]
- Rackus, D.G.; Shamsi, M.H.; Wheeler, A.R. Electrochemistry, biosensors and microfluidics: A convergence of fields. Chem. Soc. Rev. 2015, 44, 5320–5340. [Google Scholar] [CrossRef] [PubMed]
- Nemiroski, A.; Christodouleas, D.C.; Hennek, J.W.; Kumar, A.A.; Maxwell, E.J.; Fernandez-Abedul, M.T.; Whitesides, G.M. Universal mobile electrochemical detector designed for use in resource-limited applications. Proc. Natl. Acad. Sci. USA 2014, 111, 11984–11989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, X.D.; Li, Z.H.; Zhang, J.J.; Shi, J.Y.; Zou, X.B.; Huang, X.W.; Zhang, D.; Sun, Y.; Yang, Z.K.; Holmes, M.; et al. Natural biomaterial-based edible and pH-sensitive films combined with electrochemical writing for intelligent food packaging. J. Agric. Food Chem. 2018, 66, 12836–12846. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.A.; Jiang, Y.J.; Zhu, M.C.; Xu, Y.W.; Guo, Z.M.; Shi, J.Y.; Han, E.; Zou, X.B.; Wang, D. Electrochemical DNA sensor for inorganic mercury (II) ion at attomolar level in dairy product using Cu(II)-anchored metal-organic framework as mimetic catalyst. Chem. Eng. J. 2020, 383, 123182. [Google Scholar] [CrossRef]
- Zhang, X.A.; Huang, C.Y.; Jiang, Y.J.; Jiang, Y.X.; Shen, J.Z.; Han, E. Structure-switching electrochemical aptasensor for single-step and specific detection of trace mercury in dairy products. J. Agric. Food Chem. 2018, 66, 10106–10112. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Zhao, Y.; Li, C.; Jie, G.F. Versatile electrochemiluminescence and electrochemical “On–Off” assays of methyltransferases and aflatoxin B1 based on a novel multifunctional DNA nanotube. Anal. Chem. 2019, 91, 3546–3554. [Google Scholar] [CrossRef]
- Wu, S.S.; Wei, M.; Wei, W.; Liu, Y.; Liu, S.Q. Electrochemical aptasensor for aflatoxin B1 based on smart host-guest recognition of β-cyclodextrin polymer. Biosens. Bioelectron. 2019, 129, 58–63. [Google Scholar] [CrossRef]
- Ma, X.Y.; Wang, W.F.; Chen, X.J.; Xia, Y.; Duan, N.; Wu, S.J.; Wang, Z.P. Selection, characterization and application of aptamers targeted to Aflatoxin B2. Food Control 2015, 47, 545–551. [Google Scholar] [CrossRef]
- Luan, Y.; Chen, J.; Xie, G.; Li, C.; Peng, H.; Ma, Z.H.; Lu, A.X. Visual and microplate detection of aflatoxin B2 based on NaCl-induced aggregation of aptamer-modified gold nanoparticles. Microchim. Acta 2015, 182, 995–1001. [Google Scholar] [CrossRef]
- Geleta, G.S.; Zhao, Z.; Wang, Z. A sensitive electrochemical aptasensor for detection of Aflatoxin B2 based on a polyacrylamide/phytic acid/polydopamine hydrogel modified screen printed carbon electrode. Anal. Methods 2018, 10, 4689–4694. [Google Scholar] [CrossRef]
- Ahmadi, A.; Danesh, N.M.; Ramezani, M.; Alibolandi, M.; Lavaee, P.; Emrani, A.S.; Abnous, K.; Taghdisi, S.M. A rapid and simple ratiometric fluorescent sensor for patulin detection based on a stabilized DNA duplex probe containing less amount of aptamer-involved base pairs. Talanta 2019, 204, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Wei, W.; Wang, J.; Ji, S.; Chen, G.C.; Lu, J.S. Fluorescence resonance energy transfer aptasensor between nanoceria and graphene quantum dots for the determination of ochratoxin A. Anal. Chim. Acta 2018, 1000, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; Xie, P.; Yang, Z.H.; Yuan, R.; Zhang, K.Q. Highly sensitive electrochemical nuclear factor kappa B aptasensor based on target-induced dual-signal ratiometric and polymerase-assisted protein recycling amplification strategy. Biosens. Bioelectron. 2018, 102, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.N.; Wang, L.L.; Zhang, M.; Jia, L.P.; Zhang, W.; Shang, L.; Jia, W.L.; Wang, H.S. A novel one-step triggered “signal-on/off” electrochemical sensing platform for lead based on the dual-signal ratiometric output and electrode-bound DNAzyme assembly. Sens. Actuators B Chem. 2018, 257, 678–684. [Google Scholar] [CrossRef]
- Zhu, C.X.; Liu, D.; Li, Y.Y.; Shen, X.L.; Ma, S.; Liu, Y.; You, T.Y. Ratiometric electrochemical aptasensor for ultrasensitive detection of Ochratoxin A based on a dual signal amplification strategy: Engineering the binding of methylene blue to DNA. Biosens. Bioelectron. 2020, 150, 111814. [Google Scholar] [CrossRef]
- Zhang, L.M.; Han, Y.Y.; Zhao, F.; Shi, G.Y.; Tian, Y. A selective and accurate ratiometric electrochemical biosensor for monitoring of Cu2+ ions in a rat brain. Anal. Chem. 2015, 87, 2931–2936. [Google Scholar] [CrossRef]
- Hu, R.; Zhang, X.; Chi, K.N.; Yang, T.; Yang, Y.H. Bifunctional MOFs-based ratiometric electrochemical sensor for multiplex heavy metal ions. ACS Appl. Mater. Interfaces 2020, 12, 30770–30778. [Google Scholar] [CrossRef]
- Qin, X.; Yin, Y.; Yu, H.; Guo, W.; Pei, M. A novel signal amplification strategy of an electrochemical aptasensor for kanamycin, based on thionine functionalized graphene and hierarchical nanoporous PtCu. Biosens. Bioelectron. 2016, 77, 752–758. [Google Scholar] [CrossRef]
- Lai, W.; Zhuang, J.; Tang, J.; Chen, G.; Tang, D.P. One-step electrochemical immunosensing for simultaneous detection of two biomarkers using thionine and ferrocene as distinguishable signal tags. Microchim. Acta 2012, 178, 357–365. [Google Scholar] [CrossRef]
- Li, Y.Y.; Liu, D.; Zhu, C.X.; Shen, X.L.; Liu, Y.; You, T.Y. Sensitivity programmable ratiometric electrochemical aptasensor based on signal engineering for the detection of aflatoxin B1 in peanut. J. Hazard. Mater. 2020, 387, 122001. [Google Scholar] [CrossRef]
- Tao, D.; Shui, B.Q.; Gu, Y.Y.; Cheng, J.; Zhang, W.Y.; Jaffrezic-Renault, N.; Song, S.Z.; Guo, Z.Z. Development of a label-free electrochemical aptasensor for the detection of Tau381 and its preliminary application in AD and non-AD patients’ sera. Biosensors 2019, 9, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; Chen, H.; Ma, L.; Liu, D.; Wang, Z. A label-free electrochemical impedance aptasensor for cylindrospermopsin detection based on thionine–graphene nanocomposites. Analyst 2015, 140, 5570–5577. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Wang, Y.; Yang, H.; Dong, Y.; Zhang, K.; Lu, Y.; Deng, R. Enzyme-free amplified and ultrafast detection of aflatoxin B1 using dual-terminal proximity aptamer probes. Food Chem. 2019, 283, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.L.; Hou, Q.; Waterhouse, G.I.N.; Hou, J.Y.; Ai, S.Y.; Li, X.Y. A simple aptamer-based fluorescent aflatoxin B1 sensor using humic acid as quencher. Talanta 2019, 205, 120131. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Xie, J.; Ye, Y.; Cao, X.; Zheng, H.; Xu, X.; Zhang, Q. A label-free electrochemical DNA biosensor based on thionine functionalized reduced graphene oxide. Carbon 2018, 129, 730–737. [Google Scholar] [CrossRef]
- Han, J.; Ma, J.; Ma, Z. One-step synthesis of graphene oxide–thionine–Au nanocomposites and its application for electrochemical immunosensing. Biosens. Bioelectron. 2013, 47, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Luo, L.; Wang, Z. DNA electrochemical biosensor based on thionine-graphene nanocomposite. Biosens. Bioelectron. 2012, 35, 507–511. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, T.A.S.L.; Fernandes, T.F.D.; Matos, M.J.S.; Araujo, E.N.D.; Mazzoni, M.S.C.; Neves, B.R.A.; Plentz, F. Thionine self-assembled structures on graphene: Formation, organization, and doping. Langmuir 2018, 34, 6903–6911. [Google Scholar] [CrossRef]
- Niyogi, S.; Bekyarova, E.; Ithis, M.E.; Zhang, H.; Shepperd, K.; Hicks, J.; Sprinkle, M.; Berger, C.; Lau, C.N.; de Heer, W.A.; et al. Spectroscopy of covalently functionalized graphene. Nano Lett. 2010, 10, 4061–4066. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Li, M.; Zhang, Y.; Yuan, J.; Shen, Y.; Niu, L.; Ivaaka, A. Thionine-interlinked multi-walled carbon nanotube/gold nanoparticle composites. Carbon 2007, 45, 2111–2115. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, C.; Jiang, Y.; Shen, J.; Geng, P.; Zhang, W.; Huang, Q. An electrochemical glycan biosensor based on a thionine-bridged multiwalled carbon nanotube/gold nanoparticle composite-modified electrode. RSC Adv. 2016, 6, 112981–112987. [Google Scholar] [CrossRef]
- Alinajafi, H.A.; Ensafi, A.A.; Rezaei, B. Reduced graphene oxide decorated with thionine, excellent nanocomposite material for a powerful electrochemical supercapacitor. Int. J. Hydrog. Energy 2018, 43, 19102–19110. [Google Scholar] [CrossRef]
- Hassan, O.H.; Ibrahim, M.A.; Kudin, T.I.T. Physical investigation of thionine-graphene nanocomposite synthesized using different concentrations of graphene oxide. Gading J. Sci. Technol. 2019, 2, 66–74. [Google Scholar]
- Mohammadi, A.; Heydari-Bafrooei, E.; Foroughi, M.M.; Mohammadi, M. Electrochemical aptasensor for ultrasensitive detection of PCB77 using thionine-functionalized MoS2-rGO nanohybrid. Microchem. J. 2020, 155, 104747. [Google Scholar] [CrossRef]
- Hu, B.L.; Quhe, R.G.; Chen, C.; Zhuge, F.; Zhu, X.J.; Peng, S.S.; Chen, X.X.; Pan, L.; Wu, Y.Z.; Zheng, W.G.; et al. Electrically controlled electron transfer and resistance switching in reduced graphene oxide noncovalently functionalized with thionine. J. Mater. Chem. 2012, 22, 16422–16430. [Google Scholar] [CrossRef]
- Zhu, B.C.; Travas-Sejdic, J. PNA versus DNA in electrochemical gene sensing based on conducting polymers: Study of charge and surface blocking effects on the sensor signal. Analyst 2018, 143, 687–694. [Google Scholar] [CrossRef]
- Zuo, X.L.; Song, S.P.; Zhang, J.; Pan, D.; Wang, L.H.; Fan, C.H. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J. Am. Chem. Soc. 2007, 129, 1042–1043. [Google Scholar] [CrossRef]
- Bravo-Anaya, L.M.; Armando Slotero, J.F.; Rinaudo, M. DNA/chitosan electrostatic complex. Int. J. Biol. Macromol. 2016, 88, 345–353. [Google Scholar] [CrossRef]
- Hu, W.W.; Chen, Y.J.; Ruaan, R.C.; Chen, W.Y.; Cheng, Y.C.; Chien, C.C. The regulation of DNA adsorption and release through chitosan multilayers. Carbohyd. Polym. 2014, 99, 394–402. [Google Scholar] [CrossRef]
- Ma, P.L.; Lacertu, M.; Winnik, F.M.; Buschmann, M.D. Stability and binding affinity of DNA/chitosan complexes by polyanion competition. Carbohyd. Polym. 2017, 176, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Campos, W.E.O.; Rosas, L.B.; Neto, A.P.; Mello, R.A.; Vasconcelos, A.A. Extended validation of a sensitive and robust method for simultaneous quantification of aflatoxins B1, B2, G1 and G2 in Brazil nuts by HPLC-FLD. J. Food Compos. Anal. 2017, 60, 90–96. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, M.J.; Kim, H.J.; Cho, S.K.; Park, H.J.; Jeong, M.H. Analytical method development and monitoring of Aflatoxin B1, B2, G1, G2 and Ochratoxin A in animal feed using HPLC with fluorescence detector and photochemical reaction device. Cogent Food Agric. 2017, 3, 1419788. [Google Scholar] [CrossRef]
- Masinde, L.A.; Sheng, W.; Xu, X.; Zhang, Y.; Yuan, M.; Kennedy, I.R.; Wang, S. Colloidal gold based immunochromatographic strip for the simple and sensitive determination of aflatoxin B1 and B2 in corn and rice. Microchim. Acta 2013, 180, 921–928. [Google Scholar] [CrossRef]
- Wan, Q.Y.; Ru, X.; Wang, X.X.; Wang, Y.; Yan, C. Determination of four aflatoxins by pressurized capillary electrochromatography-laser induced fluorescence detection. Chin. J. Anal. Chem. 2015, 7, 1063–1068. [Google Scholar]
- Hassani, N.E.A.E.; Bouchikhi, B.; Bari, N.E. Recent development of an electrochemical imprinted sensor for the detection of trace-level of unmetabolized aflatoxin B2 in dairy milk. J. Electroanal. Chem. 2020, 865, 114123. [Google Scholar] [CrossRef]
Method | Linear Range (ng mL−1) | Detection Limit (ng mL−1) | Ref. |
---|---|---|---|
HPLC-FLD 1 | 0.2–7.0 | 0.1 | [51] |
HPLC-FLD 1 | 1.74–17.4 | 0.66 | [52] |
Immunochromatography | 0.5–2.5 | 0.16 | [53] |
pCEC-FLD 2 | 102–3 × 103 | 10 | [54] |
UV-vis | 2.5 × 10−2–10 | 8.3 × 10−3 | [19] |
Electrochemistry | 10−4–102 | 10−4 | [20] |
Electrochemistry | 10−7–10−3 | 2 × 10−7 and 6 × 10−7 | [55] |
Ratiometric electrochemistry | 10−3–10 | 1.9 × 10−4 | This work |
Sample | Spiked (ng mL−1) | Developed Aptasensor | HPLC-MS/MS | ||
---|---|---|---|---|---|
Detected (ng mL−1) | Recovery (%) | RSD (%) | Detected (ng mL−1) | ||
0.0100 | 0.0108 | 108 | 6.9 | - a | |
Peanut | 1.00 | 0.986 | 98.6 | 6.2 | 0.997 |
10.0 | 10.4 | 104 | 6.1 | 10.8 | |
0.0100 | 0.0108 | 108 | 9.1 | - a | |
Peanut oil | 1.00 | 1.07 | 107 | 5.3 | 0.903 |
10.0 | 10.4 | 104 | 5.5 | 10.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, F.; Li, Y.; Gong, Q.; Liu, D.; Meng, S.; Zhu, C.; You, T. A Simple Ratiometric Electrochemical Aptasensor Based on the Thionine–Graphene Nanocomposite for Ultrasensitive Detection of Aflatoxin B2 in Peanut and Peanut Oil. Chemosensors 2022, 10, 154. https://doi.org/10.3390/chemosensors10050154
Jia F, Li Y, Gong Q, Liu D, Meng S, Zhu C, You T. A Simple Ratiometric Electrochemical Aptasensor Based on the Thionine–Graphene Nanocomposite for Ultrasensitive Detection of Aflatoxin B2 in Peanut and Peanut Oil. Chemosensors. 2022; 10(5):154. https://doi.org/10.3390/chemosensors10050154
Chicago/Turabian StyleJia, Fan, Yuye Li, Qingfa Gong, Dong Liu, Shuyun Meng, Chengxi Zhu, and Tianyan You. 2022. "A Simple Ratiometric Electrochemical Aptasensor Based on the Thionine–Graphene Nanocomposite for Ultrasensitive Detection of Aflatoxin B2 in Peanut and Peanut Oil" Chemosensors 10, no. 5: 154. https://doi.org/10.3390/chemosensors10050154
APA StyleJia, F., Li, Y., Gong, Q., Liu, D., Meng, S., Zhu, C., & You, T. (2022). A Simple Ratiometric Electrochemical Aptasensor Based on the Thionine–Graphene Nanocomposite for Ultrasensitive Detection of Aflatoxin B2 in Peanut and Peanut Oil. Chemosensors, 10(5), 154. https://doi.org/10.3390/chemosensors10050154