Water Quality Carbon Nanotube-Based Sensors Technological Barriers and Late Research Trends: A Bibliometric Analysis
Abstract
:1. Introduction
2. CNT-Based Chemical Sensors and Their Operating Principles
2.1. CNT Sensors
2.1.1. CNTs Structures
2.1.2. Functionalization of CNTs
2.1.3. Production and CNTs Integration into Electronic Devices
- (a)
- Carbon arc-discharge technique [39,40]—Two carbon electrodes, kept in a vacuum chamber, are connected to a DC power source, and as the electrodes are brought closer together with the help of a guiding system, an electric arc occurs. To increase the speed of carbon nanotubes deposition, an inert gas is also supplied to the arc-discharge chamber. This technique is the fastest and simplest way to fabricate CNTs and is recognized to produce high quality CNTs. Different authors present different working currents and voltages for the DC power source and working pressures for the inert gas in order to obtain high quality CNTs [41]. Graphite anodes containing catalysts made from a mixture of Co, Ni, S, and Fe have also been used in the application of this technique.
- (b)
- Laser-ablation technique [42]—To synthesize CNTs using this technique, an intense laser beam pulse is transmitted on a carbon target, which is accommodated in the ablation chamber. The vacuum inside the chamber, usually around 500 torr, is maintained by filling it with helium or argon gas. An extremely hot cloud of evaporated particles is formed, which are further heated by the laser beam to form a plasma plume. Plasma plume expands and is cooled [43]. When the plasma cools during expansion along a steep temperature gradient, small carbon molecules and atoms, together with metal catalyst atoms, condense into larger structures. Interestingly, it has been proposed [44] that the confinement of the nanotubes in the reaction zone within the laser beam allows the nanotube to be purified and annealed during the formation process by the laser heating.
- (c)
- Chemical vapor deposition [45]—Catalytic CVD is the most widely used technique for synthesizing CNTs [46]. It involves the chemical decomposition of gaseous or volatile carbons compounds over metallic nanoparticles, which serve as catalytic as well as nucleation sites for the initial growth of CNTs. Due to the versatility of this technique, which implies an energy source, a large number of recipes for synthesizing different CNTs have been reported [47,48,49,50]. Because there is no infallible method of synthesizing CNTs, during the years of intensive usage of this method, several parameters that can affect the quality of CNTs have been identified, such as temperature, the catalyst purity, and nature of hydrocarbons [51]. Most popular CVD methods used for the synthesis of CNTs are: Thermal CCVD [52], Plasma Enhanced CCVD, Water-assisted CVD [53,54,55], Oxygen-assisted CVD [56], Hot-filament (HFCVD) [57,58], Microwave plasma (MPECVD) [59,60], Radiofrequency CVD (RF-CVD) [61]. Fifty-eight of the selected papers for our analysis used CVD methods for the synthesis of CNTs.
2.2. CNT-Based Electrochemical Sensors
2.2.1. Electrochemical Sensors
2.2.2. Electrochemical Transduction Methods
- (a)
- Potentiometry—for potentiometric sensors, the measured signal involves the determination of the potential difference between the working electrode and one or two reference electrodes (depending on the configuration), when there is no significant current flowing between them. The potential difference between working electrode, whose potential is dependent on the analyte concentration, and the reference electrode is proportional to the logarithm of the ion activity as it is described by the Nernst equation [69].
- (b)
- Voltammetry—involves the application of a potential. Depending on the way the voltage is applied, there are different types of voltammetry, the most notable being cyclic voltammetry, differential pulse voltammetry, and square wave voltammetry. A derivative of voltammetry that uses AC voltage applied at different frequencies is the electrochemical impedance spectroscopy (EIS), a technique used to evaluate electrochemical processes that occur at the electrode/electrolyte solution interface [71].
- (c)
- Amperometry—is based on the measurement of current resulting from the electrochemical oxidation or reduction of an electroactive species. It is an electrochemical technique in which a fixed potential is maintained at a Pt, Au, or C based working electrode or array of electrodes with respect to a reference electrode. The reference electrode may also serve as auxiliary electrode for low current values in the range of 10−9 to 10−6 A. The resulting current is directly correlated to the bulk concentration or the production/consumption rate of the electroactive species in the adjacent biocatalytic layer [72].
- (d)
- Conductometry—is based on the usage of interdigitated microelectrodes, by ion conductometric or impedimetric devices. This type of devices is used for monitoring of many enzymes reactions, such as that of urease and biological membrane receptors, using interdigitated microelectrodes [73]. Usually, two measurements are performed with the sensor (with and without enzyme), as the sensitivity of the measurement is affected by the parallel conductance of the sample solution.
2.2.3. Use of CNTs in Electrochemical Sensors
2.3. CNT-Based Chemical Sensors (Chemistors)
2.3.1. Chemical Sensors
2.3.2. Use of CNT in Chemistors
2.4. CNT-Based Optical Sensors
2.4.1. CNT-Based Optical Fiber Sensors
2.4.2. CNTs-Biosensors
2.5. CNT-Based FET Sensors
3. Materials and Methods
3.1. Data Sets—General Informations
3.2. Data Sets Method of Analysis
3.3. Mapping an Clustering Information
4. Results and Discussion
5. Strategies for Water Quality Sensor Performance Enhancement
- (a)
- Functionalization of carbon nanomaterials with organic molecules—Different organic molecules can be attached (anchored) to nanomaterials to form a complex network. It is expected that the attachment of long organic molecules will synergize while working in tandem with carbon nanomaterials by providing a high surface area, which can contribute to the detection process (adsorption and desorption process; the new and long molecules will act as pollutant trapping channels) [198].
- (b)
- The addition of metal oxides or noble metals—The addition of noble metals or different metal-oxides was proven to be a simple process, resulting in increased selectivity and sensitivity for systems used in practical applications. Colorimetric detection already is one of the employed methods for sensor response [199,200].
- (c)
- Improvement in 3D nanostructural sensor design—More practical ways to improve the design are related to favorable spatiality construction and/or the construction of a device matrix, with each component of the matrix being specialized for different pollutants. This configuration resembles an “animal’s nose”. By transforming a 2D structure into a 3D structure, nanostructured materials expose larger specific surface areas related to their occupied volume, presenting a higher surface/volume report that further implies a large number of sites capable of receiving different functionalities, showing the existence of numerous adsorption sites that were not present in the 2D configuration [201,202].
- (d)
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development. General Assembly 70 Session. 2015. Available online: https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf (accessed on 27 October 2021).
- United Nations. Sustainable Development Goals—Water and Sanitation. Available online: https://sdgs.un.org/topics/water-and-sanitation (accessed on 12 March 2022).
- EUR-Lex Access to European Union Law, Document 32020L2184. Available online: https://eur-lex.europa.eu/eli/dir/2020/2184/oj (accessed on 12 November 2021).
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; Von Gunten, U.; Wehrli, B. Global water pollution and human health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- Evans, A.E.; Mateo-Sagasta, J.; Qadir, M.; Boelee, E.; Ippolito, A. Agricultural water pollution: Key knowledge gaps and research needs. Opin. Environ. Sustain. 2019, 36, 20–27. [Google Scholar] [CrossRef]
- Quesada, H.B.; Baptista, A.T.A.; Cusioli, L.F.; Seibert, D.; de Oliveira Bezerra, C.; Bergamasco, R. Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review. Chemosphere 2019, 222, 766–780. [Google Scholar] [CrossRef] [PubMed]
- Wambu, E.W.; Ho, Y.S. A bibliometric analysis of drinking water research in Africa. Water SA 2016, 42, 612–620. [Google Scholar] [CrossRef] [Green Version]
- Florescu, D.; Ionete, R.E.; Sandru, C.; Iordache, A.; Culea, M. The influence of pollution monitoring parameters in characterizing the surface water quality from Romania southern area. Rom. J. Phys. 2011, 56, 1001–1010. [Google Scholar]
- Popescu, R.; Mimmo, T.; Dinca, O.R.; Capici, C.; Costinel, D.; Sandru, C.; Ionete, R.E.; Stefanescu, I.; Axente, D. Using stable isotopes in tracing contaminant sources in an industrial area: A case study on the hydrological basin of the Olt River, Romania. Sci. Total Environ. 2015, 533, 17–23. [Google Scholar] [CrossRef]
- Hang, H.; Asefa, T.; Bracciano, D.; Adams, A.; Wanakule, N. Proactive water shortage mitigation integrating system optimization and input uncertainity. J. Hydrol. 2019, 571, 711–722. [Google Scholar] [CrossRef]
- Flörke, M.; Schneider, C.; Robert, I.; McDonald, R.I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 2018, 1, 51–58. [Google Scholar] [CrossRef]
- Gomes, J.B.A.; Rodrigues, J.J.P.C.; Rabêlo, R.A.L.; Kumar, N.; Kozlov, S. IoT-Enabled Gas Sensors: Technologies, Applications, and Opportunities. Rev. J. Sens. Actuator Netw. 2019, 8, 57. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Li, X.; Shi, Y.; Li, L.; Wang, W.; He, L.; Liu, R. Recent Developments for Flexible Pressure Sensors: A Review. Micromachines 2018, 9, 580. [Google Scholar] [CrossRef] [Green Version]
- Huston, M.; DeBella, M.; DiBella, M.; Gupta, A. Green Synthesis of Nanomaterials. Nanomaterials 2021, 11, 2130. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Bao, J.; Li, K.; Argyle, M.D.; Tan, G.; Adidharma, H.; Zhang, K.; Fan, M.; Ning, P. Advance in Using Plasma Technology for Modification or Fabrication of Carbon-Based Materials and Their Applications in Environmental, Material, and Energy Fields. Adv. Funct. Mater. 2021, 31, 2006287. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Dresselhaus, G.; Jorio, A. Unusual Properties and Structure of Carbon Nanotubes. Annu. Rev. Mater. Res. 2004, 34, 247–278. [Google Scholar] [CrossRef]
- Cho, G.; Azzouzi, S.; Zucchi, G.; Lebental, B. Electrical and Electrochemical Sensors Based on Carbon Nanotubes for the Monitoring of Chemicals in Water—A Review. Sensors 2022, 22, 218. [Google Scholar] [CrossRef]
- Mahar, B.; Laslau, C.; Yip, R.; Sun, Y. Development of carbon nanotube-based sensors—A review. IEEE Sens. J. 2007, 7, 2. [Google Scholar] [CrossRef]
- Dresselhaus, G.; Dresselhaus, M.S.; Saito, R. Physical Properties of Carbon Nanotubes; World Scientific Publishing Company: Singapore, 1998. [Google Scholar]
- Krishnan, A.; Dujardin, E.; Ebbesen, T.W.; Yianilos, P.N.; Treacy, M.M.J. Young’s modulus of single-walled nanotubes. Phys. Rev. B 1998, 58, 14013. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; He, L.; Deng, Q.; Liu, Q.; Li, L.; Wang, W.; Liu, R. Synthesis and applications of silver nanowires for transparent conductive films. Micromachines 2019, 10, 330. [Google Scholar] [CrossRef] [Green Version]
- Carr, J.J. Sensors and Circuits: Sensors, Transducers, and Supporting Circuits for Electronic Instrumentation, Measurement, and Control; PTR Prentice Hall. Inc.: New Jersey, NJ, USA, 1993; ISBN 9780138056315. [Google Scholar]
- Peveler, W.J.; Yazdani, M.; Rotello, V.M. Selectivity and specificity: Pros and cons in sensing. ACS Sens. 2016, 1, 1282–1285. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Lu, J.G. Chemical sensing with ZnO nanowire field-effect transistor. IEEE Trans. Nanotechnol. 2006, 5, 393–396. [Google Scholar]
- Fan, S.-Y.; Khuntia, S.; Ahn, C.H.; Zhang, B.; Tai, L.-C. Electrochemical Devices to Monitor Ionic Analytes for Healthcare and Industrial Applications. Chemosensors 2022, 10, 22. [Google Scholar] [CrossRef]
- Noy, A.; Park, H.G.; Fornasiero, F.; Holt, J.K.; Grigoropoulos, C.P.; Bakajin, O. Nanofluidics in carbon nanotubes. Nano Today 2007, 2, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Whitby, M.; Quirke, N. Fluid flow in carbon nanotubes and nanopipes. Nat. Nanotechnol. 2007, 2, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Saleh, T.A. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene-An overview. Environ. Sci. Pollut. Res. 2013, 20, 2828–2843. [Google Scholar] [CrossRef] [PubMed]
- Fiyadh, S.S.; AlSaadi, M.A.; Jaafar, W.Z.; AlOmar, M.K.; Fayaed, S.S.; Mohd, N.S.; El-Shafie, A. Review on heavy metal adsorption processes by carbon nanotubes. J. Clean. Prod. 2019, 230, 783–793. [Google Scholar] [CrossRef]
- Awad, A.M.; Jalab, R.; Benamor, A.; Nasser, M.S.; Ba-Abbad, M.M.; El-Naas, M.; Mohammad, A.W. Adsorption of organic pollutants by nanomaterial-based adsorbents: An overview. J. Mol. Liq. 2020, 301, 112335. [Google Scholar] [CrossRef]
- Tang, R.; Shi, Y.; Hou, Z.; Wei, L. Carbon Nanotube-Based Chemiresistive Sensors. Sensors 2017, 17, 882. [Google Scholar] [CrossRef]
- Hirsch, A. Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 2002, 41, 1853–1859. [Google Scholar] [CrossRef]
- Star, A.; Stoddart, J.F.; Steuerman, D.; Diehl, M.; Boukai, A.; Wong, E.W.; Yang, X.; Chung, S.-W.; Choi, H.; Heath, J.R. Preparation and Properties of Polymer-Wrapped Single-Walled Carbon Nanotubes. Angew. Chem. Int. Ed. 2001, 40, 1721–1725. [Google Scholar] [CrossRef]
- Sadegh, H.; Shahryari-ghoshekandi, R. Functionalization of carbon nanotubes and its application in nanomedicine: A review. Nanomed. J. 2015, 2, 231–248. [Google Scholar] [CrossRef]
- Salah, L.S.; Ouslimani, N.; Bousba, D.; Huynen, I.; Danlée, Y.; Aksas, H. Carbon Nanotubes (CNTs) from Synthesis to Functionalized (CNTs) Using Conventional and New Chemical Approaches. J. Nanomater. 2021, 2021, 4972770. [Google Scholar] [CrossRef]
- Abousalman-Rezvani, Z.; Eskandari, P.; Roghani-Mamaqani, H.; Salami-Kalajahi, M. Functionalization of carbon nanotubes by combination of controlled radical polymerization and “grafting to” method. Adv. Colloid Interface Sci. 2020, 278, 102126. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.P.; Fu, K.; Lin, Y.; Huang, W. Functionalized Carbon Nanotubes: Properties and Applications. Acc. Chem. Res. 2002, 35, 1096–1104. [Google Scholar] [CrossRef] [PubMed]
- Jun, L.Y.; Mubarak, N.M.; Yee, M.J.; Yon, L.S.; Bing, C.H.; Khalid, M.; Abdullah, E.C. An overview of functionalised carbon nanomaterial for organic pollutant removal. J. Ind. Eng. Chem. 2018, 67, 175–186. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Journet, C.; Maser, W.K.; Bernier, P.; Loiseau, A.; Lamy de la Chapelle, M.; Lefrant, S.; Deniard, P.; Lee, R.; Fischer, J.E. Large-scale production of single-walled carbon nanotubes by the electric arc technique. Nature 1997, 388, 756–758. [Google Scholar] [CrossRef]
- Neha, A.; Sharma, N.N. Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diam. Rel. Mat. 2014, 50, 135–150. [Google Scholar] [CrossRef]
- Yudasaka, M.; Komatsu, T.; Ichihashi, T.; Iijima, S. Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal. Chem Phys. Lett 1997, 278, 102–106. [Google Scholar] [CrossRef]
- Chrzanowska, J.; Hoffman, J.; Małolepszy, A.; Mazurkiewicz, M.; Kowalewski, T.A.; Szymanski, Z.; Stobinski, L. Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength. Phys. Status Solidi B 2015, 252, 1860–1867. [Google Scholar] [CrossRef] [Green Version]
- Scott, C.D.; Arepalli, S.; Nikolaev, P.; Smalley, R.E. Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. A 2001, 72, 573–580. [Google Scholar] [CrossRef]
- Andrews, R.; Jacques, D.; Rao, A.M.; Derbyshire, F.; Qian, D.; Fan, X.; Chen, J. Continuous production of aligned carbon nanotubes: A step closer to commercial realization. Chem. Phys. Lett. 1999, 303, 467–474. [Google Scholar] [CrossRef]
- Kumar, M.; Ando, Y. Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 2010, 10, 3739–3758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, M.T.; Milne, W.I. Plasma Enhanced Chemical Vapour Deposition of Horizontally Aligned Carbon Nanotubes. Materials 2013, 6, 2262–2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magrez, A.; Seo, J.W.; Smajda, R.; Mionić, M.; Forró, L. Catalytic CVD Synthesis of Carbon Nanotubes: Towards High Yield and Low Temperature Growth. Materials 2010, 3, 4871–4891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Zhang, H.; Ge, S.; Song, J.; Wang, J.; Zhang, S. Synthesis of Carbon Nanotube Arrays with High Aspect Ratio via Ni-Catalyzed Pyrolysis of Waste Polyethylene. Nanomaterials 2018, 8, 556. [Google Scholar] [CrossRef] [Green Version]
- Vandeginste, V. A Review of Fabrication Technologies for Carbon Electrode-Based Micro-Supercapacitors. Appl. Sci. 2022, 12, 862. [Google Scholar] [CrossRef]
- Ahmad, M.; Silva, S.R.P. Low temperature growth of carbon nanotubes—A review. Carbon 2020, 158, 24–44. [Google Scholar] [CrossRef]
- Steiner, S.A.; Baumann, T.F.; Bayer, B.C.; Blume, R.; Worsley, M.A.; MoberlyChan, W.J.; Shaw, E.L.; Schlogl, R.; Hart, A.J.; Hofmann, S.; et al. Nanoscale Zirconia as a Non-metallic Catalyst for Graphitization of Carbon and Growth of Single- and Multiwall Carbon Nanotubes. J. Am. Chem. Soc. 2009, 131, 12144–12154. [Google Scholar] [CrossRef]
- Tempel, H.; Joshi, R.; Schneider, J.J. Ink jet printing of ferritin as method for selective catalyst patterning and growth of multiwalled carbon nanotubes. Mater. Chem. Phys. 2010, 121, 178–183. [Google Scholar] [CrossRef]
- Smajda, R.; Andresen, J.C.; Duchamp, M.; Meunier, R.; Casimirius, S.; Hernadi, K.; Forro, L.; Magrez, A. Synthesis and mechanical properties of carbon nanotubes produced by the water-assisted CVD process. Phys. Status Solidi B 2009, 246, 2457–2460. [Google Scholar] [CrossRef]
- Patole, S.P.; Alegaonkar, P.S.; Lee, H.C.; Yoo, J.B. Optimization of water assisted chemical vapor deposition parameters for super growth of carbon nanotubes. Carbon 2008, 46, 1987–1993. [Google Scholar] [CrossRef]
- Byon, H.R.; Lim, H.; Song, H.J.; Choi, H.C. A synthesis of high purity single-walled carbon nanotubes from small diameters of cobalt nanoparticles by using oxygen-assisted chemical vapor deposition process. Bull. Korean Chem. Soc. 2007, 28, 2056–2060. [Google Scholar]
- Chen, Y.M.; Zhang, H.Y. The Super-Capacitor Properties of Aligned Carbon Nanotubes Array Prepared by Radio Frequency Plasma-Enhanced Hot Filament Chemical Vapor Deposition in Advances in Composites; Bu, J.L., Jiang, Z.Y., Jiao, S., Eds.; Trans Tech Publications Ltd.: Zurich, Switzerland, 2011; Volume 150–151, pp. 1560–1563. [Google Scholar]
- Varshney, D.; Weiner, B.R.; Morell, G. Growth and field emission study of a monolithic carbon nanotube/diamond composite. Carbon 2010, 48, 3353–3358. [Google Scholar] [CrossRef]
- Kim, H.D.; Lee, J.H.; Choi, W.S. Direct Growth of Carbon Nanotubes with a Catalyst of Nickel Nanoparticle-coated Alumina Powders. J. Korean Phys. Soc. 2011, 58, 112–115. [Google Scholar] [CrossRef]
- Brown, B.; Parker, C.B.; Stoner, B.R.; Glass, J.T. Growth of vertically aligned bamboo-like carbon nanotubes from ammonia/methane precursors using a platinum catalyst. Carbon 2011, 49, 266–274. [Google Scholar] [CrossRef]
- Xu, Y.; Dervishi, E.; Biris, A.R.; Biris, A.S. Chirality-enriched semiconducting carbon nanotubes synthesized on high surface area MgO-supported catalyst. Mater. Lett. 2011, 65, 1878–1881. [Google Scholar] [CrossRef]
- Yan, J.; Fan, Z.; Zhi, L. Functionalized carbon nanotubes and their enhanced polymers. Polym. Sci. A Compr. Ref. 2012, 8, 439–478. [Google Scholar]
- Vekselman, V.; Feurer, M.; Huang, T.; Stratton, B.; Raitses, Y. Complex structure of the carbon arc discharge for synthesis of nanotubes. Plasma Sources Sci. Technol. 2017, 26, 065019. [Google Scholar] [CrossRef] [Green Version]
- Myhra, S.; Rivière, J.C. Characterization of Nanostructures, 1st ed.; CRC Press: Boca Raton, FL, USA, 2012; p. 350. [Google Scholar]
- Brachetti-Sibaja, S.B.; Palma-Ramírez, D.; Torres-Huerta, A.M.; Domínguez-Crespo, M.A.; Dorantes-Rosales, H.J.; Rodríguez-Salazar, A.E.; Ramírez-Meneses, E. CVD Conditions for MWCNTs Production and Their Effects on the Optical and Electrical Properties of PPy/MWCNTs, PANI/MWCNTs Nanocomposites by In Situ Electropolymerization. Polymers 2021, 13, 351. [Google Scholar] [CrossRef]
- Monea, B.F.; Ionete, E.I.; Spiridon, S.I.; Ion-Ebrasu, D.; Petre, E. Carbon Nanotubes and Carbon Nanotube Structures Used for Temperature Measurement. Sensors 2019, 19, 2464. [Google Scholar] [CrossRef] [Green Version]
- Kimbrough, J.; Williams, L.; Yuan, Q.; Xiao, Z. Dielectrophoresis-Based Positioning of Carbon Nanotubes for Wafer-Scale Fabrication of Carbon Nanotube Devices. Micromachines 2021, 12, 12. [Google Scholar] [CrossRef]
- Yáñez-Sedeño, P.; Pingarrón, J.M.; Riu, J.; Rius, F.X. Electrochemical sensing based on carbon nanotubes, TrAC Trends. A Chem. 2010, 29, 939–953. [Google Scholar] [CrossRef]
- Raja, P.M.V.; Barron, A.R. Ion Selective Electrode Analysis. Available online: https://chem.libretexts.org/@go/page/55822 (accessed on 1 February 2022).
- Wang, Y.; Xu, H.; Zhang, J.; Li, G. Electrochemical Sensors for Clinic Analysis. Sensors 2008, 8, 2043–2081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tortolini, C.; Tasca, F.; Venneri, M.A.; Marchese, C.; Antiochia, R. Gold Nanoparticles/Carbon Nanotubes and Gold Nanoporous as Novel Electrochemical Platforms for L-Ascorbic Acid Detection: Comparative Performance and Application. Chemosensors 2021, 9, 229. [Google Scholar] [CrossRef]
- Motoc, S.; Manea, F.; Baciu, A.; Orha, C.; Pop, A. Electrochemical Method for Ease Determination of Sodium Diclofenac Trace Levels in Water Using Graphene—Multi-Walled Carbon Nanotubes Paste Electrode. Int. J. Environ. Res. Public Health 2022, 19, 29. [Google Scholar] [CrossRef]
- Cullen, D.C.; Sethi, R.S.; Lowe, C.R. Multi-analyte miniature conductance biosensor. Anal. Chim. Acta 1990, 231, 33–40. [Google Scholar] [CrossRef]
- Bogdanovskaya, V.; Vernigor, I.; Radina, M.; Sobolev, V.; Andreev, V.; Nikolskaya, N. Modified Carbon Nanotubes: Surface Properties and Activity in Oxygen Reduction Reaction. Catalysts 2021, 11, 1354. [Google Scholar] [CrossRef]
- Mazloum-Ardakani, M.; Sheikh-Mohseni, M.A. Carbon nanotubes in electrochemical sensors. In Carbon Nanotubes—Growth and Applications; InTech: Rijeka, Croatia, 2011; pp. 395–412. [Google Scholar]
- Singer, G.; Siedlaczek, P.; Sinn, G.; Rennhofer, H.; Mičušík, M.; Omastová, M.; Unterlass, M.M.; Wendrinsky, J.; Milotti, V.; Fedi, F.; et al. Acid Free Oxidation and Simple Dispersion Method of MWCNT for High-Performance CFRP. Nanomaterials 2018, 8, 912. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zou, H.; Qing, Q.; Yang, Y.; Li, Q.; Liu, Z.; Guo, A.X.; Du, Z. Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes. J. Phys. Chem. B 2003, 107, 3712–3718. [Google Scholar] [CrossRef]
- Luo, H.; Shi, Z.; Li, N.; Gu, Z.; Zhuang, Q. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal. Chem. 2001, 73, 915–920. [Google Scholar] [CrossRef]
- Cao, Q.; Han, S.J.; Tulevski, G.S.; Zhu, Y.; Lu, D.D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8, 180–186. [Google Scholar] [CrossRef]
- Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T.M. Carbon nanotube chemical sensors. Chem. Rev. 2018, 119, 599–663. [Google Scholar] [CrossRef]
- Liu, L.; Ye, X.; Wu, K.; Han, R.; Zhou, Z.; Cui, T. Humidity Sensitivity of Multi-Walled Carbon Nanotube Networks Deposited by Dielectrophoresis. Sensors 2009, 9, 1714–1721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komatsu, N.; Wang, F. A Comprehensive Review on Separation Methods and Techniques for Single-Walled Carbon Nanotubes. Materials 2010, 3, 3818–3844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, P.C.; Siddiqui, N.A.; Marom, G.; Kim, J.K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. App. Sci. 2010, 41, 10–1345. [Google Scholar] [CrossRef]
- Penza, M.; Cassano, G.; Aversa, P.; Cusano, A.; Cutolo, A.; Giordano, M.; Nicolais, L. Carbon nanotube acoustic and optical sensors for volatile organic compound detection. Nanotechnology 2005, 6, 2536–2547. [Google Scholar] [CrossRef]
- Consales, M.; Campopiano, S.; Cutolo, A.; Penza, M.; Aversa, P.; Cassano, G.; Giordano, M.; Cusano, A. Carbon nanotubes thin films fiber optic and acoustic VOCs sensors: Performances analysis. Sens. Act B 2006, 118, 232–242. [Google Scholar] [CrossRef]
- Kruss, S.; Hilmer, A.J.; Zhang, J.; Reuel, N.F.; Mu, B.; Strano, M.S. Carbon nanotubes as optical biomedical sensors. Adv. Drug Deliv. 2013, 65, 1933–1950. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, Y.; Jin, W.; Hu, Y.; Cui, Y. Carbon Nanotube Field-Effect Transistor-Based Chemical and Biological Sensors. Sensors 2021, 21, 995. [Google Scholar] [CrossRef]
- Zahoor, F.; Hussin, F.A.; Khanday, F.A.; Ahmad, M.R.; Mohd Nawi, I.; Ooi, C.Y.; Rokhani, F.Z. Carbon Nanotube Field Effect Transistor (CNTFET) and Resistive Random Access Memory (RRAM) Based Ternary Combinational Logic Circuits. Electronics 2021, 10, 79. [Google Scholar] [CrossRef]
- Ruhil, S.; Sehgal, J.S.; Rohilla, K. Carbon Nanotubes Field Effect Transistor: A Review. Int. J. Sci. Res. 2015, 4, 2183–2185. [Google Scholar]
- Principal Rivers of the World. Available online: https://www.infoplease.com/world/geography/principal-rivers-world (accessed on 25 December 2021).
- Kwak, S.J.; Russell, C.S. Contingent valuation in Korean environmental planning: A pilot application to the protection of drinking water quality in Seoul. Environ. Resour. Econ. 1994, 4, 511–526. [Google Scholar] [CrossRef]
- Alotaibi, B.A.; Abbas, A.; Ullah, R.; Nayak, R.K.; Azeem, M.I.; Kassem, H.S. Climate Change Concerns of Saudi Arabian Farmers: The Drivers and Their Role in Perceived Capacity Building Needs for Adaptation. Sustainability 2021, 13, 12677. [Google Scholar] [CrossRef]
- Steffen, W.; Vertessy, R.; Dean, A.; Hughes, L.; Bambrick, H.; Gergis, J.; Rice, M. Deluge and Drought: Australia’s Water Security in a Changing Climate. Available online: https://www.climatecouncil.org.au/wp-content/uploads/2018/11/Climate-Council-Water-Security-Report.pdf (accessed on 10 January 2022).
- Wolters, W.; Smit, R.; Nour El-Din, M.; Sayed Ahmed, E.; Froebrich, J.; Ritzema, H. Issues and Challenges in Spatial and Temporal Water Allocation in the Nile Delta. Sustainability 2016, 8, 383. [Google Scholar] [CrossRef] [Green Version]
- Munawar, H.S.; Hammad, A.W.A.; Waller, S.T. Remote Sensing Methods for Flood Prediction: A Review. Sensors 2022, 22, 960. [Google Scholar] [CrossRef]
- Jaywant, S.A.; Arif, K.M. A Comprehensive Review of Microfluidic Water Quality Monitoring Sensors. Sensors 2019, 19, 4781. [Google Scholar] [CrossRef] [Green Version]
- Ul Alam, A.; Clyne, D.; Deen, M.J. A Low-Cost Multi-Parameter Water Quality Monitoring System. Sensors 2021, 21, 3775. [Google Scholar] [CrossRef]
- Gupta, P.; Rahm, C.E.; Jiang, D.; Gupta, V.K.; Heineman, W.R.; Justin, G.; Alvarez, N.T. Parts per Trillion Detection of Heavy Metals in As-Is Tap Water Using Carbon Nanotube Microelectrodes. Anal. Chim. Acta 2021, 1155, 338353. [Google Scholar] [CrossRef]
- Alam, A.U.; Clyne, D.; Jin, H.; Hu, N.X.; Deen, M.J. Fully Integrated, Simple, and Low-Cost Electrochemical Sensor Array for in Situ Water Quality Monitoring. ACS Sens. 2020, 5, 412–422. [Google Scholar] [CrossRef]
- Balram, D.; Lian, K.Y.; Sebastian, N.; Rasana, N. Ultrasensitive Detection of Cytotoxic Food Preservative Tert-Butylhydroquinone Using 3D Cupric Oxide Nanoflowers Embedded Functionalized Carbon Nanotubes. J. Hazard. Mater. 2021, 406, 124792. [Google Scholar] [CrossRef]
- Kallmyer, N.E.; Huynh, T.; Graves, J.C.; Musielewicz, J.; Tamiev, D.; Reuel, N.F. Influence of Sonication Conditions and Wrapping Type on Yield and Fluorescent Quality of Noncovalently Functionalized Single-Walled Carbon Nanotubes. Carbon NY 2018, 139, 609–613. [Google Scholar] [CrossRef]
- Amr, A.E.G.E.; Kamel, A.H.; Al-Omar, M.A.; Elsayed, E.A.; Sayed, A.Y.A.; Abd-Rabboh, H.S.M. An All-Solid-State Potentiometric Sensor Modified with Multi-Walled Carbon Nanotube (Multi-Walled Carbon Nanotube) for Silicate Assessment and Water-Quality Testing. Anal. Methods 2021, 13, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.U.; Deen, M.J. Bisphenol A Electrochemical Sensor Using Graphene Oxide and Beta-Cycdetection Limitextrin-Functionalized Multi-Walled Carbon Nanotube. Anal. Chem. 2020, 92, 5532–5539. [Google Scholar] [CrossRef] [PubMed]
- Rughoobur, G.; Sugime, H.; DeMiguel-Ramos, M.; Mirea, T.; Zheng, S.; Robertson, J.; Flewitt, A.J. Carbon Nanotube Isolation Layer Enhancing In-Liquid Quality-Factors of Thin Film Bulk Acoustic Wave Resonators for Gravimetric Sensing. Sens. Actuators B Chem. 2018, 261, 398–407. [Google Scholar] [CrossRef] [Green Version]
- Chajanovsky, I.; Cohen, S.; Shtenberg, G.; Suckeveriene, R.Y. Development and Characterization of Integrated Nano-Sensors for Organic Residues and PH Field Detection. Sensors 2021, 21, 5842. [Google Scholar] [CrossRef]
- Zubiarrain-Laserna, A.; Angizi, S.; Akbar, M.A.; Divigalpitiya, R.; Selvaganapathy, P.R.; Kruse, P. Detection of free chlorine in water using graphene-like carbon based chemiresistive sensors. RSC Adv. 2022, 12, 2485–2496. [Google Scholar] [CrossRef] [PubMed]
- Coelho, M.K.L.; da Silva, D.N.; Pereira, A.C. Development of Electrochemical Sensor Based on Carbonaceal and Metal Phthalocyanines Materials for Determination of Ethinyl Estradiol. Chemosensors 2019, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Li, R.; Song, K.L. Amperometric Determination of Nitrite by Using a Nanocomposite Prepared from Gold Nanoparticles, Reduced Graphene Oxide and Multi-Walled Carbon Nanotube. Microchim. Acta 2019, 186, 624. [Google Scholar] [CrossRef]
- Son, M.; Cho, D.G.; Lim, J.H.; Park, J.; Hong, S.; Ko, H.J.; Park, T.H. Real-Time Monitoring of Geosmin and 2-Methylisoborneol, Representative Odor Compounds in Water Pollution Using Bioelectronic Nose with Human-like Performance. Biosens. Bioelectron. 2015, 74, 199–206. [Google Scholar] [CrossRef]
- Dalmieda, J.; Kruse, P. Metal Cation Detection in Drinking Water. Sensors 2019, 19, 5134. [Google Scholar] [CrossRef] [Green Version]
- Ray, J.; Netchaev, A.; Mimun, C.; Hubley, C.; Henderson, D.; Barnes, E.; Thurmer, C.; Moores, L. Chemical Collection, Refinement, and Adsorption Beacon. In Proceedings of the 14th IEEE Sensors Applications Symposium (SAS), Sophia Antipolis, France, 11–13 March 2019. [Google Scholar]
- Jang, I.R.; Park, J.; Kim, H.J. High Precision Mass Sensing of In-Liquid Particles Using Cnt Coated Quartz Crystal Microbalance. In Proceedings of the 18th IEEE Sensors Conference, Montreal, QC, Canada, 27–30 October 2019. [Google Scholar]
- Tao, Z.; Si, H.; Zhang, X.; Liao, J.; Lin, S. Highly sensitive and selective H2O2 sensors based on ZnO TFT using PBNCs/Pt-NPs/TNTAs as gate electrode. Sens. Actuators B Chem. 2021, 349, 130791. [Google Scholar] [CrossRef]
- Kierkowicz, M.; González-Domínguez, J.M.; Pach, E.; Sandoval, S.; Ballesteros, B.; Da Ros, T.; Tobias, G. Filling Single-Walled Carbon Nanotubes with Lutetium Chloride: A Sustainable Production of Nanocapsules Free of Nonencapsulated Material. ACS Sustain. Chem. Eng. 2017, 5, 2501–2508. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Rallini, M.; Ubertini, F.; Materazzi, A.L.; Kenny, J.M. Investigations on scalable fabrication procedures for self-sensing carbon nanotube cement-matrix composites for SHM applications. Cem. Concr. Compos. 2016, 65, 200–213. [Google Scholar] [CrossRef]
- Chauhan, N.; Jain, U.; Soni, S. Sensors for Food Quality Monitoring. In Nanoscience for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2019; pp. 601–626. [Google Scholar]
- Amin, H.M.A.; El-Kady, M.F.; Atta, N.F.; Galal, A. Gold Nanoparticles Decorated Graphene as a High Performance Sensor for Determination of Trace Hydrazine Levels in Water. Electroanalysis 2018, 30, 1757–1766. [Google Scholar] [CrossRef]
- Lu, Y.; Lan, Q.; Zhang, C.; Liu, B.; Wang, X.; Xu, X.; Liang, X. Trace-Level Sensing of Phosphate for Natural Soils by a Nano-Screen-Printed Electrode. Environ. Sci. Technol. 2021, 55, 13093–13102. [Google Scholar] [CrossRef] [PubMed]
- Mo, H.; Tang, Y.; Wang, X.; Liu, J.; Kong, D.; Chen, Y.; Wan, P.; Cheng, H.; Sun, T.; Zhang, L.; et al. Development of a Three-Dimensional Structured Carbon Fiber Felt/Beta-PbO2 Electrode and Its Application in Chemical Oxygen Demand Determination. Electrochim. Acta 2015, 176, 1100–1107. [Google Scholar] [CrossRef]
- Zhang, C.; Hao, T.; Lin, H.; Wang, Q.; Wu, Y.; Kang, K.; Ji, X.; Guo, Z. One-step electrochemical sensor based on an integrated probe toward sub-ppt level Pb2+ detection by fast scan voltammetry. Anal. Chim. Acta 2020, 1128, 174–183. [Google Scholar] [CrossRef]
- Ahmad, R.; Mahmoudi, T.; Ahn, M.-S.; Yoo, J.-Y.; Hahn, Y.-B. Fabrication of sensitive non-enzymatic nitrite sensor using silver-reduced graphene oxide nanocomposite. J. Colloid Interface Sci. 2018, 516, 67–75. [Google Scholar] [CrossRef]
- Fernandes, A.M.; Abdalhai, M.H.; Ji, J.; Xi, B.-W.; Xie, J.; Sun, J.; Noeline, R.; Lee, B.H.; Sun, X. Development of highly sensitive electrochemical genosensor based on multiwalled carbon nanotubes–chitosan–bismuth and lead sulfide nanoparticles for the detection of pathogenic Aeromonas. Biosens. Bioelectron. 2015, 63, 399–406. [Google Scholar] [CrossRef]
- Qian, L.; Durairaj, S.; Prins, S.; Chen, A. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens. Bioelectron. 2021, 175, 112836. [Google Scholar] [CrossRef]
- Shimizu, F.M.; Pasqualeti, A.M.; Todão, F.R.; de Oliveira, J.F.A.; Vieira, L.C.S.; Gonçalves, S.P.C.; da Silva, G.H.; Cardoso, M.B.; Gobbi, A.L.; Martinez, D.S.T.; et al. Monitoring the Surface Chemistry of Functionalized Nanomaterials with a Microfluidic Electronic Tongue. ACS Sens. 2018, 3, 716–726. [Google Scholar] [CrossRef]
- Ahmad, R.; Ahn, M.-S.; Hahn, Y.-B. A Highly Sensitive Nonenzymatic Sensor Based on Fe2O3 Nanoparticle Coated ZnO Nanorods for Electrochemical Detection of Nitrite. Adv. Mater. Interfaces 2017, 4, 1700691. [Google Scholar] [CrossRef]
- Duarte, R.R.; Giarola, J.D.F.; da Silva, D.N.; Saczk, A.A.; Tarley, C.R.T.; Ribeiro, E.S.; Pereira, A.C. Development of Electrochemical HRP-MWCNT-Based Screen-Printed Biosensor for the Determination of Phenolic Compounds in Effluent from Washing Coffee Beans. Rev. Virtual Química 2021, 13, 43–60. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef] [PubMed]
- Keivani, Z.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. An electrochemical strategy to determine thiosulfate, 4-chlorophenol and nitrite as three important pollutants in water samples via a nanostructure modified sensor. J. Colloid Interface Sci. 2017, 507, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Huang, Y. Electrochemical sensor using NH2-MIL-88(Fe)-rGO composite for trace Cd2+, Pb2+, and Cu2+ detection. J. Electroanal. Chem. 2017, 807, 253–260. [Google Scholar] [CrossRef]
- Abdalhai, M.H.; Fernandes, A.M.; Xia, X.; Musa, A.; Ji, J.; Sun, X. Electrochemical Genosensor To Detect Pathogenic Bacteria (Escherichia coli O157:H7) As Applied in Real Food Samples (Fresh Beef) To Improve Food Safety and Quality Control. J. Agric. Food Chem. 2015, 63, 5017–5025. [Google Scholar] [CrossRef]
- Samandari, L.; Bahrami, A.; Shamsipur, M.; Farzin, L.; Hashemi, B. Electrochemical preconcentration of ultra-trace Cd2+ from environmental and biological samples prior to its determination using carbon paste electrode impregnated with ion imprinted polymer nanoparticles. Int. J. Environ. Anal. Chem. 2019, 99, 172–186. [Google Scholar] [CrossRef]
- Ren, B.; Sudarsanam, P.; Kandjani, A.E.; Hillary, B.; Amin, M.H.; Bhargava, S.K.; Jones, L.A. Electrochemical Detection of As (III) on a Manganese Oxide-Ceria (Mn2O3/CeO2) Nanocube Modified Au Electrode. Electroanalysis 2018, 30, 928–936. [Google Scholar] [CrossRef]
- Costa-Rama, E.; Nouws, H.; Delerue-Matos, C.; Blanco-López, M.; Fernández-Abedul, M. Preconcentration and sensitive determination of the anti-inflammatory drug diclofenac on a paper-based electroanalytical platform. Anal. Chim. Acta 2019, 1074, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Guo, Z.; Zheng, X.; Yang, H.; Feng, W.; Kong, J. An electrochemical aptasensor based on eATRP amplification for the detection of bisphenol A. Analyst 2019, 144, 5691–5699. [Google Scholar] [CrossRef]
- Salman, S.; Znad, H.; Hasan, N.; Hasan, M. Optimization of innovative composite sensor for Pb(II) detection and capturing from water samples. Microchem. J. 2021, 160, 105765. [Google Scholar] [CrossRef]
- Shi, S. Electrochemically Co-Deposition of Palladium Nanoparticles and Poly(1,5-diaminonaphthalene) onto Multiwalled Carbon Nanotubes (MWCNTs) Modified Electrode and its Application for Amperometric Determination of Nitrite. Int. J. Electrochem. Sci. 2019, 14, 7983–7994. [Google Scholar] [CrossRef]
- An, Q.; Gan, S.; Xu, J.; Bao, Y.; Wu, T.; Kong, H.; Zhong, L.; Ma, Y.; Song, Z.; Niu, L. A multichannel electrochemical all-solid-state wearable potentiometric sensor for real-time sweat ion monitoring. Electrochem. Commun. 2019, 107, 106553. [Google Scholar] [CrossRef]
- Katowah, D.F.; Mohammed, G.I.; Adeosun, W.A.; Asiri, A.M.; Hussein, M.A. Impact of CuO nanoparticles on the performance of ternary conductive C-PANI/(OXSWCNTs-GO-CS)/CuO network as a selective chlorophenol sensor. Polym. Technol. Mater. 2021, 60, 1433–1449. [Google Scholar] [CrossRef]
- Khalil, M.M.; Farghali, A.A.; El Rouby, W.M.A.; Abd-Elgawad, I.H. Preparation and characterization of novel MWCNTs/Fe-Co doped TNTs nanocomposite for potentiometric determination of sulpiride in real water samples. Sci. Rep. 2020, 10, 8067. [Google Scholar] [CrossRef]
- Moretti, E.D.S.; Giarola, J.D.F.; Kuceki, M.; Prete, M.C.; Pereira, A.C.; Tarley, C.R.T. A nanocomposite based on multi-walled carbon nanotubes grafted by molecularly imprinted poly(methacrylic acid–hemin) as a peroxidase-like catalyst for biomimetic sensing of acetaminophen. RSC Adv. 2016, 6, 28751–28760. [Google Scholar] [CrossRef] [Green Version]
- Robak, J.; Burnat, B.; Leniart, A.; Kisielewska, A.; Brycht, M.; Skrzypek, S. The effect of carbon material on the electroanalytical determination of 4-chloro-3-methylphenol using the sol-gel derived carbon ceramic electrodes. Sens. Actuators B Chem. 2016, 236, 318–325. [Google Scholar] [CrossRef]
- Liu, M.; Guan, Q.; Liu, S. Nitrogen-doped hollow carbon spheres for electrochemical detection of heavy metal ions. Ionics 2017, 24, 2783–2793. [Google Scholar] [CrossRef]
- Ning, J.; Luo, X.; Wang, M.; Li, J.; Liu, D.; Rong, H.; Chen, D.; Wang, J. Ultrasensitive Electrochemical Sensor Based on Polyelectrolyte Composite Film Decorated Glassy Carbon Electrode for Detection of Nitrite in Curing Food at Sub-Micromolar Level. Molecules 2018, 23, 2580. [Google Scholar] [CrossRef] [Green Version]
- Yen, Y.-K.; Lai, C.-Y. Portable Real-Time Detection of Pb (II) Using a CMOS MEMS-Based Nanomechanical Sensing Array Modified with PEDOT:PSS. Nanomaterials 2020, 10, 2454. [Google Scholar] [CrossRef]
- Dasgupta, N.; Ranjan, S.; Mundekkad, D.; Ramalingam, C.; Shanker, R.; Kumar, A. Nanotechnology in agro-food: From field to plate. Food Res. Int. 2015, 69, 381–400. [Google Scholar] [CrossRef]
- Celebanska, A.; Jedraszko, J.; Lesniewski, A.; Jubete, E.; Opallo, M. Stripe-shaped Electrochemical Biosensor for Organophosphate Pesticide. Electroanalysis 2018, 30, 2731–2737. [Google Scholar] [CrossRef]
- Moaaz, E.M.; Mahmoud, A.M.; Fayed, A.S.; Rezk, M.R.; Abdel-Moety, E.M. Determination of Tedizolid Phosphate Using Graphene Nanocomposite Based Solid Contact Ion Selective Electrode; Green Profile Assessment by Eco-scale and GAPI Approach. Electroanalysis 2021, 33, 1895–1901. [Google Scholar] [CrossRef]
- Manikandan, V.S.; Liu, Z.; Chen, A. Simultaneous detection of hydrazine, sulfite, and nitrite based on a nanoporous gold microelectrode. J. Electroanal. Chem. 2018, 819, 524–532. [Google Scholar] [CrossRef]
- Santhosh, R.S.; Amarendra, V. Nanotechnology—From a Marine Discovery Perspective. In Springer Handbook of Marine Biotechnology; Kim, S.K., Ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Hussien, E.M.; Derar, A.R. 3D spongy-like Au film for highly stable solid contact potentiometric ion selective electrode: Application to drug analysis. SN Appl. Sci. 2019, 1, 338. [Google Scholar] [CrossRef] [Green Version]
- Dragone, R.; Grasso, G.; Muccini, M.; Toffanin, S.; Grasso, G. Portable Bio/Chemosensoristic Devices: Innovative Systems for Environmental Health and Food Safety Diagnostics. Front. Public Health 2017, 5, 80. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.R.; Nilghaz, A.; Chen, L.; Chou, K.C.; Lu, X. Modification of thread-based microfluidic device with polysiloxanes for the development of a sensitive and selective immunoassay. Sens. Actuators B Chem. 2018, 260, 1043–1051. [Google Scholar] [CrossRef]
- Silva, S.C.; Cardoso, R.; Richter, E.M.; Munoz, R.; Nossol, E. Reduced graphene oxide/multi-walled carbon nanotubes/prussian blue nanocomposites for amperometric detection of strong oxidants. Mater. Chem. Phys. 2020, 250, 123011. [Google Scholar] [CrossRef]
- Ribeiro, M.V.D.M.; Melo, I.D.S.; Lopes, F.D.C.D.C.; Moita, G.C. Development and validation of a method for the determination of folic acid in different pharmaceutical formulations using derivative spectrophotometry. Braz. J. Pharm. Sci. 2016, 52, 741–750. [Google Scholar] [CrossRef] [Green Version]
- Riedel, J.; Berthold, M.; Guth, U. Pyrolytic deposited graphite electrodes for voltammetric sensors: An alternative to nano structured electrodes. Sens. Actuators A Phys. 2016, 241, 212–215. [Google Scholar] [CrossRef]
- Serban, B.-C.; Buiu, O.; Bumbac, M.; Dumbravescu, N.; Avramescu, V.; Brezeanu, M.; Radulescu, C.; Craciun, G.; Nicolescu, C.M.; Romanitan, C.; et al. Ternary Holey Carbon Nanohorns/TiO2/PVP Nanohybrids as Sensing Films for Resistive Humidity Sensors. Coatings 2021, 11, 1065. [Google Scholar] [CrossRef]
- Peng, W.-C.; Wang, S.-B.; Li, X.-Y. Shape-controlled synthesis of one-dimensional α-MnO2 nanocrystals for organic detection and pollutant degradation. Sep. Purif. Technol. 2016, 163, 15–22. [Google Scholar] [CrossRef]
- Chaibun, T.; La-O-Vorakiat, C.; O’Mullane, A.P.; Lertanantawong, B.; Surareungchai, W. Fingerprinting Green Curry: An Electrochemical Approach to Food Quality Control. ACS Sens. 2018, 3, 1149–1155. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xie, X.; Bi, H.; Jia, H.; Zhu, C.; Wan, N.; Huang, J.; Nie, M.; Li, D.; Sun, L. Solution-assisted ultrafast transfer of graphene-based thin films for solar cells and humidity sensors. Nanotechnology 2017, 28, 134004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magro, C.; Mateus, E.P.; Raposo, M.; Ribeiro, A. Overview of electronic tongue sensing in environmental aqueous matrices: Potential for monitoring emerging organic contaminants. Environ. Rev. 2019, 27, 202–214. [Google Scholar] [CrossRef] [Green Version]
- De Faria, L.V.; Lisboa, T.P.; Alves, G.F.; de Farias, D.M.; Matos, M.A.C.; Munoz, R.; Matos, R.C. Electrochemical Study of Different Sensors for Simple and fast Quantification of Ciprofloxacin in Pharmaceutical Formulations and Bovine Milk. Electroanalysis 2020, 32, 2266–2272. [Google Scholar] [CrossRef]
- Dubey, R.; Dutta, D.; Sarkar, A.; Chattopadhyay, P. Functionalized carbon nanotubes: Synthesis, properties and applications in water purification, drug delivery, and material and biomedical sciences. Nanoscale Adv. 2021, 3, 5722–5744. [Google Scholar] [CrossRef]
- Yan, Y.; Huang, Q.; Wei, C.; Hu, S.; Zhang, H.; Zhang, W.; Yang, W.; Dong, P.; Zhu, M.; Wang, Z. Microwave-assisted synthesis of carbon dots–zinc oxide/multi-walled carbon nanotubes and their application in electrochemical sensors for the simultaneous determination of hydroquinone and catechol. RSC Adv. 2016, 6, 115317–115325. [Google Scholar] [CrossRef]
- Teodoro, K.B.; Shimizu, F.M.; Scagion, V.P.; Correa, D.S. Ternary nanocomposites based on cellulose nanowhiskers, silver nanoparticles and electrospun nanofibers: Use in an electronic tongue for heavy metal detection. Sens. Actuators B Chem. 2019, 290, 387–395. [Google Scholar] [CrossRef]
- Tang, B.; Xiong, Z.; Yun, X.; Wang, X. Rolling up graphene oxide sheets through solvent-induced self-assembly in dispersions. Nanoscale 2018, 10, 4113–4122. [Google Scholar] [CrossRef]
- Solís, R.R.; Dinc, Ö.; Fang, G.; Nadagouda, M.N.; Dionysiou, D.D. Activation of inorganic peroxides with magnetic graphene for the removal of antibiotics from wastewater. Environ. Sci. Nano 2021, 8, 960–977. [Google Scholar] [CrossRef] [PubMed]
- Hoang, T.H.C.; van Nguyen, T.; Pham, T.B.; Pham, V.D.; Le Roux, X.; Monfray, S.; Boeuf, F.; Vivien, L.; Cassan, E.; Alonso-Ramos, C. Silicon slotted photonic crystal cavities fabricated by deep-ultraviolet lithography. J. Opt. Soc. Am. B 2021, 38, 2898. [Google Scholar] [CrossRef]
- Mohtasebi, A.; Broomfield, A.D.; Chowdhury, T.; Selvaganapathy, P.R.; Kruse, P. Reagent-Free Quantification of Aqueous Free Chlorine via Electrical Readout of Colorimetrically Functionalized Pencil Lines. ACS Appl. Mater. Interfaces 2017, 9, 20748–20761. [Google Scholar] [CrossRef] [PubMed]
- Servin, A.; Elmer, W.; Mukherjee, A.; De la Torre-Roche, R.; Hamdi, H.; White, J.C.; Bindraban, P.; Dimkpa, C. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J. Nanopart. Res. 2015, 17, 92. [Google Scholar] [CrossRef]
- Zhou, X.; Deng, J.; Fang, C.; Yu, R.; Lei, W.; He, X.; Zhang, C. Preparation and characterization of lysozyme@carbon nanotubes/waterborne polyurethane composite and the potential application in printing inks. Prog. Org. Coat. 2020, 142, 105600. [Google Scholar] [CrossRef]
- Al-Hamadani, Y.; Chu, K.H.; Son, A.; Heo, J.; Her, N.; Jang, M.; Park, C.M.; Yoon, Y. Stabilization and dispersion of carbon nanomaterials in aqueous solutions: A review. Sep. Purif. Technol. 2015, 156, 861–874. [Google Scholar] [CrossRef]
- Giordano, C.; Filatrella, G.; Sarno, M.; Di Bartolomeo, A. Multi-walled carbon nanotube films for the measurement of the alcoholic concentration. Micro Nano Lett. 2019, 14, 304–308. [Google Scholar] [CrossRef] [Green Version]
- Kruse, P. Review on water quality sensors. J. Phys. D Appl. Phys. 2018, 51, 203002. [Google Scholar] [CrossRef] [Green Version]
- Apetrei, C.; Iticescu, C.; Georgescu, L.P. Multisensory System Used for the Analysis of the Water in the Lower Area of River Danube. Nanomaterials 2019, 9, 891. [Google Scholar] [CrossRef] [Green Version]
- MeIzer, K.; Bhatt, V.D.; Schuster, T.; Jaworska, E.; Maksymiuk, K.; Michalska, A.; Scarpa, G.; Lugli, P. Multi Ion-Sensor Arrays: Towards an ‘Electronic Tongue’. In Proceedings of the 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO), Sendai, Japan, 22–25 August 2016; pp. 475–478. [Google Scholar]
- Hassan, S.S.; Kamel, A.H.; Amr, A.E.-G.E.; Hashem, H.M.; Bary, E.A. Imprinted Polymeric Beads-Based Screen-Printed Potentiometric Platforms Modified with Multi-Walled Carbon Nanotubes (MWCNTs) for Selective Recognition of Fluoxetine. Nanomaterials 2020, 10, 572. [Google Scholar] [CrossRef] [Green Version]
- Akbari, E.; Buntat, Z.; Nikoukar, A.; Kheirandish, A.; Khaledian, M.; Afroozeh, A. Sensor application in Direct Methanol Fuel Cells (DMFCs). Renew. Sustain. Energy Rev. 2016, 60, 1125–1139. [Google Scholar] [CrossRef]
- Vikesland, P.J. Nanosensors for water quality monitoring. Nat. Nanotechnol. 2018, 13, 651–660. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Dai, J.; Li, T.; Bao, Y.; Yang, F.; Zhang, X.; Uyama, H. Novel Strategy for the Investigation on Chirality Selection of Single-Walled Carbon Nanotubes with DNA by Electrochemical Characterization. Anal. Chem. 2018, 90, 12810–12814. [Google Scholar] [CrossRef] [PubMed]
- Cristian, M.S.; Florentin, T.A.; Mihaela, S.C.; Costel, D. In House Development and Testing of Nanostructured Inks for Inkjet Printed Sensors. In Proceedings of the 2018 International Conference and Exposition on Electrical And Power Engineering (EPE), Iasi, Romania, 19–18 October 2018; pp. 873–876. [Google Scholar]
- McGuinness, N.B.; Garvey, M.; Whelan, A.; John, H.; Zhao, C.; Zhang, G.S.; Dionysiou, D.D.; Byrne, J.A.; Pillai, S.C. Nano-technology Solutions for Global Water Challenges. Water Challenges and Solutions on the Global Scale. In Proceedings of the Symposium on Water Challenges and Solutions on the Global Scale held at the 248th ACS National Meeting and Exposition, Washington, DC, USA, 3 December 2015; Volume 1206, pp. 375–411. [Google Scholar]
- Crespo, G.A. Recent Advances in Ion-selective membrane electrodes for in situ environmental water analysis. Electrochim. Acta 2017, 245, 1023–1034. [Google Scholar] [CrossRef]
- Kharisov, B.I.; Kharissova, O.V.; García, B.O.; Méndez, Y.P.; de la Fuente, I.G. State of the art of nanoforest structures and their applications. RSC Adv. 2015, 5, 105507–105523. [Google Scholar] [CrossRef]
- Saha, N.; Benlikaya, R.; Slobodian, P.; Sáha, P. Breathable and Polyol Based Hydrogel Food Packaging. J. Biobased Mater. Bioenergy 2015, 9, 136–144. [Google Scholar] [CrossRef]
- Massaglia, G.; Chiodoni, A.; Salvador, G.P.; Delmondo, L.; Muñoz-Tabares, J.A.; Bocchini, S.; Sacco, A.; Bianco, S.; Saracco, G.; Quaglio, M. Defining the role of nanonetting in the electrical behaviour of composite nanofiber/nets. RSC Adv. 2017, 7, 38812–38818. [Google Scholar] [CrossRef] [Green Version]
- Nurazzi, N.; Abdullah, N.; Demon, S.; Halim, N.; Mohamad, I. The Influence of Reaction Time on Non-Covalent Functionalisation of P3HT/MWCNT Nanocomposites. Polymer 2021, 13, 1916. [Google Scholar] [CrossRef]
- Rovina, K.; Siddiquee, S.; Shaarani, S.M. A Review of Extraction and Analytical Methods for the Determination of Tartrazine (E 102) in Foodstuffs. Crit. Rev. Anal. Chem. 2016, 47, 309–324. [Google Scholar] [CrossRef]
- Vikrant, K.; Tsang, D.C.W.; Raza, N.; Giri, B.S.; Kukkar, D.; Kim, K.-H. Potential Utility of Metal–Organic Framework-Based Platform for Sensing Pesticides. ACS Appl. Mater. Interfaces 2018, 10, 8797–8817. [Google Scholar] [CrossRef]
- Cui, J.; Song, Z.; Xin, L.; Zhao, S.; Yan, Y.; Liu, G. Exfoliation of graphite to few-layer graphene in aqueous media with vinylimidazole-based polymer as high-performance stabilizer. Carbon 2016, 99, 249–260. [Google Scholar] [CrossRef]
- Zhou, X.; Song, R.; Wang, D.; Fang, C.; Wang, Q.; Deng, J. Assembly and integration of conductive polypyrrole 2D nanofilm on protein nanolayer and the multiple potential applications. Polymer 2021, 227, 123873. [Google Scholar] [CrossRef]
- Xin, X.; Judy, J.D.; Sumerlin, B.B.; He, Z. Nano-enabled agriculture: From nanoparticles to smart nanodelivery systems. Environ. Chem. 2020, 17, 413. [Google Scholar] [CrossRef]
- Muenchen, D.K.; Martinazzo, J.; de Cezaro, A.M.; Rigo, A.A.; Brezolin, A.N.; Manzoli, A.; Leite, F.D.; Steffens, C.; Steffens, J. Pesticide Detection in Soil Using Biosensors and Nanobiosensors. Biointerface Res. Appl. Chem. 2016, 6, 1659–1675. [Google Scholar]
- Chaudhary, S.; Kaur, Y.; Jayee, B.; Chaudhary, G.R.; Umar, A. NiO nanodisks: Highly efficient visible-light driven photocatalyst, potential scaffold for seed germination of Vigna Radiata and antibacterial properties. J. Clean. Prod. 2018, 190, 563–576. [Google Scholar] [CrossRef]
- Hu, H.; Wang, S.; Feng, X.; Pauly, M.; Decher, G.; Long, Y. In-plane aligned assemblies of 1D-nanoobjects: Recent approaches and applications. Chem. Soc. Rev. 2020, 49, 509–553. [Google Scholar] [CrossRef] [PubMed]
- Švorc, L.; Strežová, I.; Kianičková, K.; Stanković, D.M.; Otřísal, P.; Samphao, A. An advanced approach for electrochemical sensing of ibuprofen in pharmaceuticals and human urine samples using a bare boron-doped diamond electrode. J. Electroanal. Chem. 2018, 822, 144–152. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. How to normalize cooccurrence data? An analysis of some well-known similarity measures. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 1635–1651. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. Visualizing bibliometric networks. In Measuring Scholarly Impact; Ding, Y., Rousseau, R., Wolfram, D., Eds.; Springer: Cham, Switzerland, 2014; pp. 285–320. [Google Scholar]
- Speranza, G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. Nanomaterials 2021, 11, 967. [Google Scholar] [CrossRef]
- Du, J.; Hu, X.; Zhang, G.; Wu, X.; Gong, D. Colorimetric detection of cadmium in water using L-cysteine Functionalized gold–silver nanoparticles. Anal. Lett. 2018, 51, 2906–2919. [Google Scholar] [CrossRef]
- Hsu, C.-W.; Lin, Z.-Y.; Chan, T.-Y.; Chiu, T.-C.; Hu, C.-C. Oxidized multiwalled carbon nanotubes decorated with silver nanoparticles for fluorometric detection of dimethoate. Food Chem. 2017, 224, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Balamurugan, J.; Thanh, T.D.; Karthikeyan, G.; Kim, N.H.; Lee, J.H. A novel hierarchical 3D N-Co-CNT@NG nanocomposite electrode for non-enzymatic glucose and hydrogen peroxide sensing applications. Biosens. Bioelectron. 2017, 89, 970–977. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Lim, T.; Yoo, H.; Hu, J.; Kang, S.; Kim, S.; Jung, W. Fabrication of Three-Dimensional Multilayer Structures of Single-Walled Carbon Nanotubes Based on the Plasmonic Carbonization. Nanomaterials 2021, 11, 2213. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; Hossain, M. Nanomaterials-patterned flexible electrodes for wearable health monitoring: A review. J. Mater. Sci. 2021, 56, 14900–14942. [Google Scholar] [CrossRef] [PubMed]
Pollutant Types | Pollutant Sources | Source Type | Processes Governing Pollutant Transport and Bioavailability | Water Quality Issues | Challenges |
---|---|---|---|---|---|
Persistent organic pollutants (POPs)—e.g., PCBs, PBDEs, PAHs, PCDDs, PCDFs | Agriculture, fuel combustion, waste disposal sites, wastewater and sewage, sludge | Long-term global persistent organic pollutants (globally distributed point and diffuse) | Bioaccumulation and biomagnification; runoff—pollution magnitude caused mainly by the soil hydraulic properties (permeability, water flow patterns), topography, and meteorological conditions | Persistent in the environment and prone to long-range transport; bioaccumulation to the food web; diverse health effects (e.g., reproductive and endocrine disorders) | Persistent in the environment and prone to long-range transport; bioaccumulation to the food web; diverse health effects (e.g., reproductive and endocrine disorders) |
Inorganic pollutants, including heavy metals (e.g., Cr, Ni, Cu, Zn, Cd, Pb, Hg, U, Pu) and metalloids (e.g., Se, As) | Agriculture, mining, geogenic source | Point sources | Oxidation/reduction, complexation, adsorption, and precipitation/dissolution reactions; runoff and erosion (from cultivation, mining land; | Health effects (e.g., cancer, high blood pressure, and neurological dysfunctions) | Alternative drinking water sources (deep aquifers or rainwater); more sustainable mining practices; green methods and eco-friendly materials for removal of pollutants |
Pesticides/fertilizers | Agriculture | Diffuse | Bioaccumulation and biomagnification; eutrophication; runoff and erosion (from cultivation land | Health effects (e.g., endocrine disruption) | Green agricultural practices; control of pesticide runoff from agricultural land. |
Pharmaceuticals (e.g., antibiotics, beta blockers, contraceptives, lipid regulators, painkillers, antidepressant) | Industry, residential, urban wastewater and sewage | Point sources | Bioaccumulation | Health effects (e.g., endocrine disruption); ecotoxicological effects in rivers, feminization of fish | Wastewater polishing treatment, such as activated carbon and ozonation, and nanofiltration/reverse osmosis |
Viruses and microbiological pathogens | urban wastewater | Point sources | Health effects (e.g., hepatitis, acute diarrhea, legionellosis, typhoid fever) | Adequate drinking water disinfection technique | |
Diverse pollutants (e.g., oil, non-biodegradable plastics, radioactive substances) | Hazardous waste, loss from storage facilities, spillage during transport) | Point sources | Long-term contamination of drinking water resources | Containment of pollutants, monitoring of mitigation processes including natural attenuation |
Parameter | SWCNT | MWCNT | Cu | Ag |
---|---|---|---|---|
diameter | 0.4–20 nm | 1–300 nm | 100–200 nm | |
length | 100 nm–10 μm | 1–150 μm | 5–100 μm | |
electrical conductivity | 106–107 S/m | 106–107 S/m | 6 × 107 S/m | 6.3 × 107 S/m |
thermal conductivity | > 3000 W/mK | > 3000 W/mK | 400 W/mK | 430 W/mK |
Young’s modulus | 1 TPa | 110–128 GPa | 83 GPa |
Objective | Document References |
---|---|
Sensitivity | [96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133] |
Low detection limit | [41,98,100,102,107,108,109,118,119,120,121,122,123,124,125,126,127,128,129,130,131,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151] |
Selectivity | [102,106,109,110,113,116,120,121,122,123,125,129,130,135,137,138,140,142,144,148,150,152] |
Linear range (linearity) | [102,104,105,106,108,113,119,120,121,125,126,128,143,144,148,149,151,153] |
Stability (long term) | [100,107,113,125,135,136,137,138,143,147,148,152,154] |
Reproducibility | [100,101,112,113,118,125,126,131,135,141,143,147,155] |
Faster response | [98,122,127,156,153,157,158,159,160] |
Accuracy and precision | [102,107,111,118,137,161] |
Discrimination between different pollutants (simultaneous determination) | [97,135,155,162,163,164] |
Quick recovery (fast recovery, significant range) | [103,151,156,163,165] |
Repeatability | [131,132,135,166] |
Portable | [96,123,135,144] |
Efficient detection | [130,132,154] |
Large-scale manufacturing, large volume production | [104,115,167] |
Easy to fabricate (simple) | [128,168,169] |
Easy human machine interface (easy to use, user friendly operation) | [97,99,160] |
Life expectancy (long life expectancy, aging) | [103,139] |
Cost efficiency (increase cost efficiency, facile process) | [124,170] |
Quantification capabilities | [126,150] |
High quality nanocomposites | [111,171] |
Autonomous & continuous monitoring (wearable sensors) | [137,172] |
Technology adaptation (the ability to be connected to smartphone) | [97,99] |
Reduced size | [172] |
Raw materials economy (raw basic materials, abundant row materials) | - |
Keyword | CNTs | Water | System | Quality | Biosensor | Property | Nanomaterial | Nanocomposite | Nanotechnology | Surface | Dispersion | Synthesis |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Occurrences | 80 | 61 | 44 | 37 | 36 | 35 | 34 | 19 | 16 | 16 | 14 | 7 |
Keyword | Detection | Range | Electrochemical Sensor | Mu m | Ion | Limit | Pb2 * | Cu2 * | Tap Water | Cyclic Voltammetry | Drinking Water | Heavy Metal | Cd2 * | Water Quality | NH2 * |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Occurrences | 103 | 40 | 32 | 29 | 25 | 23 | 20 | 11 | 10 | 9 | 9 | 9 | 9 | 7 | 7 |
Keyword | Electrode | Determination | Detection Limit | Mwcnts | Performance | Sample | Electron Microscopy | Graphene Oxide | Quality Control | Sem | Quantification |
---|---|---|---|---|---|---|---|---|---|---|---|
Occurrences | 92 | 55 | 35 | 31 | 26 | 26 | 13 | 13 | 12 | 11 | 10 |
Keyword | Sensor | Concentration | Stability | Selectivity | Free Chlorine | Graphene | Reproducibility | High Sensitivity | Nitrite | Pcat |
---|---|---|---|---|---|---|---|---|---|---|
Occurrences | 153 | 39 | 23 | 19 | 18 | 18 | 14 | 7 | 7 | 7 |
Keyword | Water Sample | Dna | Low Cost | BPA |
---|---|---|---|---|
Occurrences | 20 | 17 | 11 | 9 |
Keyword | Sensitivity |
---|---|
Occurrences | 33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasture, A.-M.; Ionete, E.I.; Lungu, F.A.; Spiridon, S.I.; Patularu, L.G. Water Quality Carbon Nanotube-Based Sensors Technological Barriers and Late Research Trends: A Bibliometric Analysis. Chemosensors 2022, 10, 161. https://doi.org/10.3390/chemosensors10050161
Nasture A-M, Ionete EI, Lungu FA, Spiridon SI, Patularu LG. Water Quality Carbon Nanotube-Based Sensors Technological Barriers and Late Research Trends: A Bibliometric Analysis. Chemosensors. 2022; 10(5):161. https://doi.org/10.3390/chemosensors10050161
Chicago/Turabian StyleNasture, Ana-Maria, Eusebiu Ilarian Ionete, Florin Alexandru Lungu, Stefan Ionut Spiridon, and Laurentiu Gabriel Patularu. 2022. "Water Quality Carbon Nanotube-Based Sensors Technological Barriers and Late Research Trends: A Bibliometric Analysis" Chemosensors 10, no. 5: 161. https://doi.org/10.3390/chemosensors10050161
APA StyleNasture, A. -M., Ionete, E. I., Lungu, F. A., Spiridon, S. I., & Patularu, L. G. (2022). Water Quality Carbon Nanotube-Based Sensors Technological Barriers and Late Research Trends: A Bibliometric Analysis. Chemosensors, 10(5), 161. https://doi.org/10.3390/chemosensors10050161