Comparative Studies of Undoped/Al-Doped/In-Doped ZnO Transparent Conducting Oxide Thin Films in Optoelectronic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Starting Materials
2.2. Synthesis
2.3. Film Deposition and Thermal Annealing
2.4. Characterization
3. Results and Discussion
3.1. Microstructure Analysis
3.2. Surface Morphology Analysis
3.3. Optical Properties
3.4. Electrical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Salam, S.; Islam, M.; Akram, A. Sol-gel synthesis of intrinsic and aluminum-doped zinc oxide thin films as transparent conducting oxides for thin film solar cells. Thin Solid Films 2013, 529, 242–247. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kang, J.W.; Hwang, D.K.; Park, S.J. Recent advances in ZnO-based light-emitting diodes. IEEE Trans. Electron Devices 2010, 57, 26–41. [Google Scholar] [CrossRef]
- Sarma, B.; Barman, D.; Sarma, B.K. AZO (Al:ZnO) thin films with high figure of merit as stable indium free transparent conducting oxide. Appl. Surf. Sci. 2019, 479, 786–795. [Google Scholar] [CrossRef]
- Rahman, F. Zinc oxide light-emitting diodes: A review. Opt. Eng. 2019, 58, 1. [Google Scholar] [CrossRef]
- Ding, M.; Guo, Z.; Zhou, L.; Fang, X.; Zhang, L.; Zeng, L.; Xie, L.; Zhao, H. One-dimensional zinc oxide nanomaterials for application in high-performance advanced optoelectronic devices. Crystals 2018, 8, 223. [Google Scholar] [CrossRef] [Green Version]
- Baskoutas, S. Special issue: Zinc oxide nanostructures: Synthesis and characterization. Materials 2018, 11, 873. [Google Scholar] [CrossRef] [Green Version]
- Fiat Varol, S.; Babür, G.; Çankaya, G.; Kölemen, U. Synthesis of sol-gel derived nano-crystalline ZnO thin films as TCO window layer: Effect of sol aging and boron. RSC Adv. 2014, 4, 56645–56653. [Google Scholar] [CrossRef]
- Ocola, L.E.; Wang, Y.; Divan, R.; Chen, J. Multifunctional UV and gas sensors based on vertically nanostructured zinc oxide: Volume versus surface effect. Sensors 2019, 19, 2061. [Google Scholar] [CrossRef] [Green Version]
- Regmi, G.; Rohini, M.; Reyes-Figueroa, P.; Maldonado, A.; de la Luz Olvera, M.; Velumani, S. Deposition and characterization of ultrathin intrinsic zinc oxide (i-ZnO) films by radio frequency (RF) sputtering for propane gas sensing application. J. Mater. Sci. Mater. Electron. 2018, 29, 15682–15692. [Google Scholar] [CrossRef]
- Lee, J.; Seul, H.; Jeong, J.K. Solution-processed ternary alloy aluminum yttrium oxide dielectric for high performance indium zinc oxide thin-film transistors. J. Alloys Compd. 2018, 741, 1021–1029. [Google Scholar] [CrossRef]
- Gu, P.; Zhu, X.; Yang, D. Effect of annealing temperature on the performance of photoconductive ultraviolet detectors based on ZnO thin films. Appl. Phys. A Mater. Sci. Process. 2019, 125, 50. [Google Scholar] [CrossRef]
- Li, Y.; Feng, J.; Zhang, J.; He, B.; Wu, Y.; Zhao, Y.; Xu, C.; Wang, J. Towards high-performance linear piezoelectrics: Enhancing the piezoelectric response of zinc oxide thin films through epitaxial growth on flexible substrates. Appl. Surf. Sci. 2021, 556, 149798. [Google Scholar] [CrossRef]
- Laurenti, M.; Cauda, V. Porous zinc oxide thin films: Synthesis approaches and applications. Coatings 2018, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Tsoutsouva, M.G.; Panagopoulos, C.N.; Kompitsas, M. Laser energy density, structure and properties of pulsed-laser deposited zinc oxide films. Appl. Surf. Sci. 2011, 257, 6314–6319. [Google Scholar] [CrossRef]
- Özgür, Ü.; Avrutin, V.; Morkoç, H. Zinc Oxide Materials and Devices Grown by Molecular Beam Epitaxy. In Molecular Beam Epitaxy; Elsevier: Amsterdam, The Netherlands, 2018; pp. 343–375. ISBN 9780128121368. [Google Scholar]
- Yin, J.; Gao, F.; Wei, C.; Lu, Q. Water Amount Dependence on Morphologies and Properties of ZnO nanostructures in Double-solvent System. Sci. Rep. 2014, 4, 3736. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Zheng, G.; Miao, J.; Xian, F. Dependence of structural and optical properties of sol-gel derived ZnO thin films on sol concentration. Appl. Surf. Sci. 2012, 258, 7760–7765. [Google Scholar] [CrossRef]
- Lee, C.Y.; Kuo, Y.P.; Chen, P.Y.; Lu, H.H.; Lin, M.Y. Influence of annealing temperature on weak-cavity top-emission red quantum dot light emitting diode. Nanomaterials 2019, 9, 1639. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Li, L.; Lyu, X.; Zhang, W. Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit. Sci. Rep. 2016, 6, 20399. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Peng, H.; Chen, S. Highly transparent quantum-dot light-emitting diodes with sputtered indium-tin-oxide electrodes. J. Mater. Chem. C 2016, 4, 1838–1841. [Google Scholar] [CrossRef]
- Chichibu, S.F.; Shima, K.; Kojima, K.; Takashima, S.; Edo, M.; Ueno, K.; Ishibashi, S.; Uedono, A. Large electron capture-cross-section of the major nonradiative recombination centers in Mg-doped GaN epilayers grown on a GaN substrate. Appl. Phys. Lett. 2018, 112, 211901. [Google Scholar] [CrossRef]
- Ying, Z.; Zhu, Y.; Feng, X.; Xiu, J.; Zhang, R.; Ma, X.; Deng, Y.; Pan, H.; He, Z. Sputtered Indium-Zinc Oxide for Buffer Layer Free Semitransparent Perovskite Photovoltaic Devices in Perovskite/Silicon 4T-Tandem Solar Cells. Adv. Mater. Interfaces 2021, 8, 2170029. [Google Scholar] [CrossRef]
- Sanchez-Sobrado, O.; Mendes, M.J.; Mateus, T.; Costa, J.; Nunes, D.; Aguas, H.; Fortunato, E.; Martins, R. Photonic-structured TCO front contacts yielding optical and electrically enhanced thin-film solar cells. Sol. Energy 2020, 196, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Lai, F.I.; Hsieh, M.Y.; Yang, J.F.; Hsu, Y.C.; Kuo, S.Y. Antireflection layer of ZnO nanorod embedded in PDMS film for enhancing omnidirectional photovoltaic performance of CIGS photovoltaic cell. Int. J. Energy Res. 2021, 45, 1142–1149. [Google Scholar] [CrossRef]
- Jošt, M.; Köhnen, E.; Morales-Vilches, A.B.; Lipovšek, B.; Jäger, K.; Macco, B.; Al-Ashouri, A.; Krč, J.; Korte, L.; Rech, B.; et al. Textured interfaces in monolithic perovskite/silicon tandem solar cells: Advanced light management for improved efficiency and energy yield. Energy Environ. Sci. 2018, 11, 3511–3523. [Google Scholar] [CrossRef] [Green Version]
- Kranz, L.; Abate, A.; Feurer, T.; Fu, F.; Avancini, E.; Löckinger, J.; Reinhard, P.; Zakeeruddin, S.M.; Grätzel, M.; Buecheler, S.; et al. High-efficiency polycrystalline thin film tandem solar cells. J. Phys. Chem. Lett. 2015, 6, 2676–2681. [Google Scholar] [CrossRef]
- Hjiri, M.; Zahmouli, N.; Dhahri, R.; Leonardi, S.G.; El Mir, L.; Neri, G. Doped-ZnO nanoparticles for selective gas sensors. J. Mater. Sci. Mater. Electron. 2017, 28, 9667–9674. [Google Scholar] [CrossRef]
- Nimbalkar, A.R.; Patil, N.B.; Ganbavle, V.V.; Mohite, S.V.; Madhale, K.V.; Patil, M.G. Sol-gel derived aluminium doped zinc oxide thin films: A view of aluminium doping effect on physicochemical and NO2 sensing properties. J. Alloys Compd. 2019, 775, 466–473. [Google Scholar] [CrossRef]
- Khorramshahi, V.; Karamdel, J.; Yousefi, R. Acetic acid sensing of Mg-doped ZnO thin films fabricated by the sol–gel method. J. Mater. Sci. Mater. Electron. 2018, 29, 14679–14688. [Google Scholar] [CrossRef]
- Hjiri, M.; Dhahri, R.; El Mir, L.; Bonavita, A.; Donato, N.; Leonardi, S.G.; Neri, G. CO sensing properties of Ga-doped ZnO prepared by sol-gel route. J. Alloys Compd. 2015, 634, 187–192. [Google Scholar] [CrossRef]
- Navale, S.C.; Ravi, V.; Mulla, I.S.; Gosavi, S.W.; Kulkarni, S.K. Low temperature synthesis and NOx sensing properties of nanostructured Al-doped ZnO. Sens. Actuators B Chem. 2007, 126, 382–386. [Google Scholar] [CrossRef]
- Chaabouni, F.; Abaab, M.; Rezig, B. Metrological characteristics of ZNO oxygen sensor at room temperature. Sens. Actuators B Chem. 2004, 100, 200–204. [Google Scholar] [CrossRef]
- Koshizaki, N.; Oyama, T. Sensing characteristics of ZnO-based NOx sensor. Sens. Actuators B Chem. 2000, 66, 119–121. [Google Scholar] [CrossRef]
- Bharath, S.P.; Bangera, K.V.; Shivakumar, G.K. Enhanced gas sensing properties of indium doped ZnO thin films. Superlattices Microstruct. 2018, 124, 72–78. [Google Scholar] [CrossRef]
- Znaidi, L. Sol-gel-deposited ZnO thin films: A review. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2010, 174, 18–30. [Google Scholar] [CrossRef]
- Xu, L.; Li, X.; Chen, Y.; Xu, F. Structural and optical properties of ZnO thin films prepared by sol-gel method with different thickness. Appl. Surf. Sci. 2011, 257, 4031–4037. [Google Scholar] [CrossRef]
- Girtan, M.; Kompitsas, M.; Mallet, R.; Fasaki, I. On physical properties of undoped and Al and In doped zinc oxide films deposited on PET substrates by reactive pulsed laser deposition. Eur. Phys. J. Appl. Phys. 2010, 51, 33212. [Google Scholar] [CrossRef]
- Quang, L.H.; Swee Kuan, L.; Kia Liang, G.G. Structural and electrical properties of single crystal indium doped ZnO films synthesized by low temperature solution method. J. Cryst. Growth 2010, 312, 437–442. [Google Scholar] [CrossRef]
- Ilican, S.; Caglar, Y.; Caglar, M.; Yakuphanoglu, F. Electrical conductivity, optical and structural properties of indium-doped ZnO nanofiber thin film deposited by spray pyrolysis method. Phys. E Low-Dimens. Syst. Nanostruct. 2006, 35, 131–138. [Google Scholar] [CrossRef]
- Kumar, P.M.R.; Kartha, C.S.; Vijayakumar, K.P.; Abe, T.; Kashiwaba, Y.; Singh, F.; Avasthi, D.K. On the properties of indium doped ZnO thin films. Semicond. Sci. Technol. 2005, 20, 120–126. [Google Scholar] [CrossRef]
- Dhamodharan, P.; Chen, J.; Manoharan, C. Fabrication of In doped ZnO thin films by spray pyrolysis as photoanode in DSSCs. Surf. Interfaces 2021, 23, 100965. [Google Scholar] [CrossRef]
- Malek, M.F.; Mamat, M.H.; Khusaimi, Z.; Sahdan, M.Z.; Musa, M.Z.; Zainun, A.R.; Suriani, A.B.; Sin, N.D.M.; Hamid, S.B.A.; Rusop, M. Sonicated sol-gel preparation of nanoparticulate ZnO thin films with various deposition speeds: The highly preferred c-axis (002) orientation enhances the final properties. J. Alloys Compd. 2014, 582, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Abrahams, S.C.; Bernstein, J.L. Remeasurement of the structure of hexagonal ZnO. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1969, 25, 1233–1236. [Google Scholar] [CrossRef]
- Wang, Y.G.; Lau, S.P.; Lee, H.W.; Yu, S.F.; Tay, B.K.; Zhang, X.H.; Tse, K.Y.; Hng, H.H. Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature. J. Appl. Phys. 2003, 94, 1597–1604. [Google Scholar] [CrossRef]
- Chen, K.J.; Hung, F.Y.; Chang, S.J.; Hu, Z.S. Microstructures, optical and electrical properties of In-doped ZnO thin films prepared by sol-gel method. Appl. Surf. Sci. 2009, 255, 6308–6312. [Google Scholar] [CrossRef]
- Miller, J.B.; Hsieh, H.J.; Howard, B.H.; Broitman, E. Microstructural evolution of sol-gel derived ZnO thin films. Thin Solid Films 2010, 518, 6792–6798. [Google Scholar] [CrossRef]
- Tsay, C.Y.; Fan, K.S.; Chen, S.H.; Tsai, C.H. Preparation and characterization of ZnO transparent semiconductor thin films by sol-gel method. J. Alloys Compd. 2010, 495, 126–130. [Google Scholar] [CrossRef]
- Farag, A.A.M.; Cavas, M.; Yakuphanoglu, F.; Amanullah, F.M. Photoluminescence and optical properties of nanostructure Ni doped ZnO thin films prepared by sol-gel spin coating technique. J. Alloys Compd. 2011, 509, 7900–7908. [Google Scholar] [CrossRef]
- Wang, M.; Liang, W.; Yang, Y.; Yang, J.; Cheng, X.; Hahn, S.H.; Kim, E.J. Sol-gel derived transparent conducting ZnO:Al thin films: Effect of crystallite orientation on conductivity and self-assembled network texture. Mater. Chem. Phys. 2012, 134, 845–850. [Google Scholar] [CrossRef]
- Scherer, G.W. Sintering of Sol-Gel Films. J. Sol-Gel Sci. Technol. 1997, 8, 353–363. [Google Scholar] [CrossRef]
- Dong, B.Z.; Fang, G.J.; Wang, J.F.; Guan, W.J.; Zhao, X.Z. Effect of thickness on structural, electrical, and optical properties of ZnO: Al films deposited by pulsed laser deposition. J. Appl. Phys. 2007, 101, 033713. [Google Scholar] [CrossRef]
- Tauc, J. Optical Properties of Amorphous Semiconductors; Springer: Boston, MA, USA, 1974; ISBN 9781467344791. [Google Scholar]
- Burstein, E. Anomalous optical absorption limit in InSb. Phys. Rev. 1954, 93, 632–633. [Google Scholar] [CrossRef]
- Di Trolio, A.; Bauer, E.M.; Scavia, G.; Veroli, C. Blueshift of optical band gap in c-axis oriented and conducting Al-doped ZnO thin films. J. Appl. Phys. 2009, 105, 113109. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, R.G.; Purohit, L.P.; Mehra, R.M. Structural, Transport and Optical Properties of Boron-doped Zinc Oxide Nanocrystalline. J. Mater. Sci. Technol. 2011, 27, 481–488. [Google Scholar] [CrossRef]
- Al Farsi, B.; Souier, T.M.; Al Marzouqi, F.; Al Maashani, M.; Bououdina, M.; Widatallah, H.M.; Al Abri, M. Structural and optical properties of visible active photocatalytic Al doped ZnO nanostructured thin films prepared by dip coating. Opt. Mater. 2021, 113, 110868. [Google Scholar] [CrossRef]
- Babar, A.R.; Deshamukh, P.R.; Deokate, R.J.; Haranath, D.; Bhosale, C.H.; Rajpure, K.Y. Gallium doping in transparent conductive ZnO thin films prepared by chemical spray pyrolysis. J. Phys. D Appl. Phys. 2008, 41, 135404. [Google Scholar] [CrossRef]
- O’Leary, S.K.; Zukotynski, S.; Perz, J.M. Disorder and optical absorption in amorphous silicon and amorphous germanium. J. Non. Cryst. Solids 1997, 210, 249–253. [Google Scholar] [CrossRef]
- Ayik, C.; Studenyak, I.; Kranjec, M.; Kurik, M. Urbach Rule in Solid State Physics. Int. J. Opt. Appl. 2014, 4, 76–83. [Google Scholar] [CrossRef]
- Girtan, M.; Socol, M.; Pattier, B.; Sylla, M.; Stanculescu, A. On the structural, morphological, optical and electrical properties of sol-gel deposited ZnO:In films. Thin Solid Films 2010, 519, 573–577. [Google Scholar] [CrossRef] [Green Version]
- Jie, J.; Wang, G.; Han, X.; Yu, Q.; Liao, Y.; Li, G.; Hou, J.G. Indium-doped zinc oxide nanobelts. Chem. Phys. Lett. 2004, 387, 466–470. [Google Scholar] [CrossRef]
- Bae, S.Y.; Choi, H.C.; Na, C.W.; Park, J. Influence of in incorporation on the electronic structure of ZnO nanowires. Appl. Phys. Lett. 2005, 86, 1–3. [Google Scholar] [CrossRef]
- Caglar, M.; Ilican, S.; Caglar, Y. Influence of dopant concentration on the optical properties of ZnO: In films by sol-gel method. Thin Solid Films 2009, 517, 5023–5028. [Google Scholar] [CrossRef]
- Tang, K.; Gu, S.; Liu, J.; Ye, J.; Zhu, S.; Zheng, Y. Effects of indium doping on the crystallographic, morphological, electrical, and optical properties of highly crystalline ZnO films. J. Alloys Compd. 2015, 653, 643–648. [Google Scholar] [CrossRef]
- Saha, M.; Ghosh, S.; Ashok, V.D.; De, S.K. Carrier concentration dependent optical and electrical properties of Ga doped ZnO hexagonal nanocrystals. Phys. Chem. Chem. Phys. 2015, 17, 16067–16079. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Piqué, A.; Horwitz, J.S.; Murata, H.; Kafafi, Z.H.; Gilmore, C.M.; Chrisey, D.B. Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices. Thin Solid Films 2000, 377–378, 798–802. [Google Scholar] [CrossRef]
- Schroder, D.K. Semiconductor Material and Device Characterization; John Wiley & Sons, Ltd.: New York, NY, USA, 1990. [Google Scholar]
Sample | (002) Peak Angle (2θ) | FWHM of (002) Peak (ο) | Crystallite Size (nm) | Dislocation Density (1014 Lines/m2) | Lattice Parameter c (Å) | Strain of c-axis (%) | Stress (GPa) |
---|---|---|---|---|---|---|---|
ZnO | 34.392 | 0.317 | 27.35 | 13.37 | 5.210 | 0.07 | −16.36 |
AZO 1% | 34.457 | 0.373 | 23.26 | 18.48 | 5.202 | −0.1 | 22.58 |
AZO 3% | 34.372 | 0.485 | 17.90 | 31.21 | 5.214 | 0.14 | −33.04 |
AZO 5% | 34.338 | 0.787 | 11.04 | 82.05 | 5.219 | 0.24 | −55.4 |
IZO 1% | 34.406 | 0.420 | 20.67 | 23.41 | 5.209 | 0.05 | −10.78 |
IZO 3% | 34.279 | 0.618 | 14.05 | 50.66 | 5.228 | 0.41 | −94.62 |
IZO 5% | 34.355 | 1.733 | 5.01 | 39.84 | 5.216 | 0.19 | −44.27 |
Sample | Ra (nm) | Rrms (nm) |
---|---|---|
ZnO (reference) | 3.38 | 4.23 |
AZO 1% | 4.44 | 5.76 |
AZO 3% | 3.17 | 4.19 |
AZO 5% | 1.45 | 2.11 |
IZO 1% | 5.08 | 6.56 |
IZO 3% | 4.57 | 5.82 |
IZO 5% | 2.82 | 3.57 |
Sample | Thickness (nm) | Eg (eV) |
---|---|---|
ZnO (reference) | 234 | 3.26 |
AZO 1% | 244 | 3.28 |
AZO 3% | 247 | 3.29 |
AZO 5% | 261 | 3.30 |
IZO 1% | 245 | 3.24 |
IZO 3% | 270 | 3.22 |
IZO 5% | 289 | 3.19 |
M:ZnO | ZnO | B:ZnO | Al:ZnO | Ga:ZnO | In:ZnO |
---|---|---|---|---|---|
Ri3+(M) pm | 88 | 41 | 68 | 76 | 94 |
Sample | Thickness (nm) | Sheet Resistance Rs (MΩ) | Electrical Resistivity ρ (Ωcm) |
---|---|---|---|
ZnO (reference) | 234 | 69.47 | 1625.60 |
AZO 1% | 244 | 2.35 | 57.34 |
AZO 3% | 247 | 5.67 | 140.05 |
AZO 5% | 261 | 14.06 | 366.96 |
IZO 1% | 245 | 3.51 | 85.99 |
IZO 3% | 270 | 6.91 | 186.57 |
IZO 5% | 289 | 6.09 | 176 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koralli, P.; Fiat Varol, S.; Mousdis, G.; Mouzakis, D.E.; Merdan, Z.; Kompitsas, M. Comparative Studies of Undoped/Al-Doped/In-Doped ZnO Transparent Conducting Oxide Thin Films in Optoelectronic Applications. Chemosensors 2022, 10, 162. https://doi.org/10.3390/chemosensors10050162
Koralli P, Fiat Varol S, Mousdis G, Mouzakis DE, Merdan Z, Kompitsas M. Comparative Studies of Undoped/Al-Doped/In-Doped ZnO Transparent Conducting Oxide Thin Films in Optoelectronic Applications. Chemosensors. 2022; 10(5):162. https://doi.org/10.3390/chemosensors10050162
Chicago/Turabian StyleKoralli, Panagiota, Songül Fiat Varol, George Mousdis, Dionysios E. Mouzakis, Ziya Merdan, and Michael Kompitsas. 2022. "Comparative Studies of Undoped/Al-Doped/In-Doped ZnO Transparent Conducting Oxide Thin Films in Optoelectronic Applications" Chemosensors 10, no. 5: 162. https://doi.org/10.3390/chemosensors10050162
APA StyleKoralli, P., Fiat Varol, S., Mousdis, G., Mouzakis, D. E., Merdan, Z., & Kompitsas, M. (2022). Comparative Studies of Undoped/Al-Doped/In-Doped ZnO Transparent Conducting Oxide Thin Films in Optoelectronic Applications. Chemosensors, 10(5), 162. https://doi.org/10.3390/chemosensors10050162