Photoluminescence Sensing of Chloride Ions in Sea Sand Using Alcohol-Dispersed CsPbBr3@SiO2 Perovskite Nanocrystal Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Instruments
2.3. Preparation of CsPbBr3@SiO2 PNCCs
2.4. Sensing and Sample Preparation
3. Results and Discussion
3.1. Synthesis of CsPbBr3@SiO2 PNCCs Based on TBB Nucleophilic Substitution
3.2. CsPbBr3@SiO2 PNCC Structure and Their Luminescent Characteristics
3.3. Optimization of the Sensing of Cl−
3.4. Analytical Performance of the Sensing Approach
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GB/T 14684-2011; The General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Sand for Construction. Standards Press of China: Beijing, China, 2011.
- Calderón-Santiago, M.; Priego-Capote, F.; Jurado-Gámez, B.; Luque de Castro, M.D. Optimization study for metabolomics analysis of human sweat by liquid chromatography–tandem mass spectrometry in high resolution mode. J. Chromatogr. A 2014, 1333, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Doorn, J.; Storteboom, T.T.R.; Mulder, A.M.; de Jong, W.H.A.; Rottier, B.L.; Kema, I.P. Ion chromatography for the precise analysis of chloride and sodium in sweat for the diagnosis of cystic fibrosis. Ann. Clin. Biochem. 2014, 52, 421–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubáň, P.; Greguš, M.; Pokojová, E.; Skřičková, J.; Foret, F. Double opposite end injection capillary electrophoresis with contactless conductometric detection for simultaneous determination of chloride, sodium and potassium in cystic fibrosis diagnosis. J. Chromatogr. A 2014, 1358, 293–298. [Google Scholar] [CrossRef]
- Bujes-Garrido, J.; Izquierdo-Bote, D.; Heras, A.; Colina, A.; Arcos-Martínez, M.J. Determination of halides using Ag nanoparticles-modified disposable electrodes. A first approach to a wearable sensor for quantification of chloride ions. Anal. Chim. Acta 2018, 1012, 42–48. [Google Scholar]
- Choi, D.-H.; Kim, J.S.; Cutting, G.R.; Searson, P.C. Wearable Potentiometric Chloride Sweat Sensor: The Critical Role of the Salt Bridge. Anal. Chem. 2016, 88, 12241–12247. [Google Scholar] [CrossRef] [PubMed]
- De Matteis, V.; Cannavale, A.; Blasi, L.; Quarta, A.; Gigli, G. Chromogenic device for cystic fibrosis precocious diagnosis: A “point of care” tool for sweat test. Sens. Actuators B Chem. 2016, 225, 474–480. [Google Scholar] [CrossRef]
- Chen, L.D.; Wang, W.J.; Wang, G.Z. Electrochemical Detection of Electrolytes Using a Solid-State Ion-Selective Electrode of Single-Piece Type Membrane. Biosensors 2021, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, K.; Akatsuka, T.; Abe, Y.; Komaba, S. Design of all-solid-state chloride and nitrate ion-selective electrodes using anion insertion materials of electrodeposited poly(allylamine)-MnO2 composite. Electrochim. Acta 2021, 389, 138749. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, C.; Jiao, Z.; Mu, S.; Zhang, Y.; Liu, X.; Zhang, H. A NIR Turn-on Fluorescent Sensor For Detection of Chloride Ions in vitro and in vivo. Spectrochim. Acta A 2020, 228, 117729. [Google Scholar] [CrossRef]
- Tutol, J.N.; Lee, J.; Chi, H.; Faizuddin, F.N.; Abeyrathna, S.S.; Zhou, Q.; Morcos, F.; Meloni, G.; Dodani, S.C. A single point mutation converts a proton-pumping rhodopsin into a red-shifted, turn-on fluorescent sensor for chloride. Chem. Sci. 2021, 12, 5655–5663. [Google Scholar] [CrossRef]
- Schazmann, B.; Alhashimy, N.; Diamond, D. Chloride Selective Calix[4]arene Optical Sensor Combining Urea Functionality with Pyrene Excimer Transduction. J. Am. Chem. Soc. 2006, 128, 8607–8614. [Google Scholar] [CrossRef] [Green Version]
- Madhu, S.; Kalaiyarasi, R.; Basu, S.K.; Jadhav, S.; Ravikanth, M. A boron-dipyrrin–mercury(ii) complex as a fluorescence turn-on sensor for chloride and applications towards logic gates. J. Mater. Chem. C 2014, 2, 2534–2544. [Google Scholar] [CrossRef]
- Bazany-Rodríguez, I.J.; Martínez-Otero, D.; Barroso-Flores, J.; Yatsimirsky, A.K.; Dorazco-González, A. Sensitive water-soluble fluorescent chemosensor for chloride based on a bisquinolinium pyridine-dicarboxamide compound. Sens. Actuators B Chem. 2015, 221, 1348–1355. [Google Scholar] [CrossRef]
- Kim, J.P.; Xie, Z.; Creer, M.; Liu, Z.; Yang, J. Citrate-based fluorescent materials for low-cost chloride sensing in the diagnosis of cystic fibrosis. Chem. Sci. 2017, 8, 550–558. [Google Scholar] [CrossRef] [Green Version]
- Riedinger, A.; Zhang, F.; Dommershausen, F.; Röcker, C.; Brandholt, S.; Nienhaus, G.U.; Koert, U.; Parak, W.J. Ratiometric Optical Sensing of Chloride Ions with Organic Fluorophore–Gold Nanoparticle Hybrids: A Systematic Study of Design Parameters and Surface Charge Effects. Small 2010, 6, 2590–2597. [Google Scholar] [CrossRef]
- Ding, L.; Lian, Y.; Lin, Z.; Zhang, Z.; Wang, X.D. Long-Term Quantitatively Imaging Intracellular Chloride Concentration Using a Core-/Shell-Structured Nanosensor and Time-Domain Dual-Lifetime Referencing Method. ACS Sens. 2020, 5, 3971–3978. [Google Scholar] [CrossRef]
- Xing, J.; Yan, F.; Zhao, Y.; Chen, S.; Yu, H.; Zhang, Q.; Zeng, R.; Demir, H.V.; Sun, X.; Huan, A.; et al. High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles. ACS Nano 2016, 10, 6623–6630. [Google Scholar] [CrossRef]
- Sadhanala, A.; Ahmad, S.; Zhao, B.; Giesbrecht, N.; Pearce, P.M.; Deschler, F.; Hoye, R.L.Z.; Gödel, K.C.; Bein, T.; Docampo, P.; et al. Blue-Green Color Tunable Solution Processable Organolead Chloride–Bromide Mixed Halide Perovskites for Optoelectronic Applications. Nano Lett. 2015, 15, 6095–6101. [Google Scholar] [CrossRef] [Green Version]
- Manser, J.S.; Christians, J.A.; Kamat, P.V. Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chem. Rev. 2016, 116, 12956–13008. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, Y.; Ding, C.; Kobayashi, S.; Izuishi, T.; Nakazawa, N.; Toyoda, T.; Ohta, T.; Hayase, S.; Minemoto, T.; et al. Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield. ACS Nano 2017, 11, 10373–10383. [Google Scholar] [CrossRef]
- Yan, F.; Xing, J.; Xing, G.; Quan, L.; Tan, S.T.; Zhao, J.; Su, R.; Zhang, L.; Chen, S.; Zhao, Y.; et al. Highly Efficient Visible Colloidal Lead-Halide Perovskite Nanocrystal Light-Emitting Diodes. Nano Lett. 2018, 18, 3157–3164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekenstein, Y.; Koscher, B.A.; Eaton, S.W.; Yang, P.; Alivisatos, A.P. Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies. J. Am. Chem. Soc. 2015, 137, 16008–16011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, F.; Tan, S.T.; Li, X.; Demir, H.V. Light Generation in Lead Halide Perovskite Nanocrystals: LEDs, Color Converters, Lasers, and Other Applications. Small 2019, 15, 1902079. [Google Scholar] [CrossRef] [PubMed]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.J.; Debbichi, L.; Lee, D.-K.; Park, N.-G.; Kim, H.; Kim, D. Light Emission Enhancement by Tuning the Structural Phase of APbBr3 (A = CH3NH3, Cs) Perovskites. J. Phys. Chem. Lett. 2019, 10, 2135–2142. [Google Scholar] [CrossRef]
- Han, Y.; Sun, J.; Ye, S.; Zhang, Q. A stimuli responsive material of perovskite quantum dots composited nano-porous glass. J. Mater. Chem. C 2018, 6, 11184–11192. [Google Scholar] [CrossRef]
- Sandeep, K.; Hamida, K.T. CsPbBr3 Perovskite–Coated Paper Substrate for the Cost-Effective Detection of Fluoride, Chloride, and Iodide Ions in Water. Phys. Status Solidi A 2021, 218, 2100101. [Google Scholar] [CrossRef]
- Vasavi Dutt, V.G.; Akhil, S.; Mishra, N. Corrigendum: Cesium Lead Bromide Perovskite Nanocrystals as a Simple and Portable Spectrochemical Probe for Rapid Detection of Chlorides. ChemistrySelect 2021, 6, 12547. [Google Scholar] [CrossRef]
- Li, F.; Feng, Y.; Huang, Y.; Yao, Q.; Huang, G.; Zhu, Y.; Chen, X. Colorimetric sensing of chloride in sweat based on fluorescence wavelength shift via halide exchange of CsPbBr3 perovskite nanocrystals. Microchim. Acta 2021, 188, 2. [Google Scholar] [CrossRef]
- Wan, S.; Ou, M.; Zhong, Q.; Wang, X. Perovskite-type CsPbBr3 quantum dots/UiO-66(NH2) nanojunction as efficient visible-light-driven photocatalyst for CO2 reduction. Chem. Eng. J. 2019, 358, 1287–1295. [Google Scholar] [CrossRef]
- Ou, M.; Tu, W.; Yin, S.; Xing, W.; Wu, S.; Wang, H.; Wan, S.; Zhong, Q.; Xu, R. Amino-Assisted Anchoring of CsPbBr3 Perovskite Quantum Dots on Porous g-C3N4 for Enhanced Photocatalytic CO2 Reduction. Angew. Chem. Int. Ed. 2018, 57, 13570–13574. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, Z.; Bian, Y.; Li, S.; Tang, X.; Du, J.; Zang, Z.; Zhou, M.; Hu, W.; Tian, Y.; et al. Enhanced Two-Photon-Pumped Emission from In Situ Synthesized Nonblinking CsPbBr3/SiO2 Nanocrystals with Excellent Stability. Adv. Opt. Mater. 2018, 6, 1700997. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Sun, H.; Zeng, H. Amino-Mediated Anchoring Perovskite Quantum Dots for Stable and Low-Threshold Random Lasing. Adv. Mater. 2017, 29, 1701185. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Hu, M.; Li, S.; Jiang, Y.; Zhang, X.; Hu, L.; Chen, H. The Solubility of Ternary System RbBr/CsBr-CH3OH/C2H5OH-H2O at Different Temperatures. Acta Phys.-Chim. Sin. 2007, 23, 695–700. [Google Scholar]
Sample | Emission Wavelength (nm) | Observed Color | Cl− (%) | RSD (%) | Added Amount (%) | Emission Wavelength (nm) | Observed Color | Found (%) | Recovery (%) |
---|---|---|---|---|---|---|---|---|---|
Sand 1 | 447.0 ± 0.2 | 2.30 | 0.33 | 0.50 | 438.6 ± 0.1 | 2.7 | 94.07 | ||
Sand 2 | 492.6 ± 0.2 | 0.59 | 1.35 | 0.50 | 477.0 ± 0.2 | 1.2 | 110.44 | ||
Sand 3 | 506.0 ± 0.1 | 0.055 | 8.29 | 0.20 | 500.2 ± 0.2 | 0.29 | 112.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Li, F.; Huang, Y.; Zhang, L.; Ye, M.; Jin, J.; Chen, X. Photoluminescence Sensing of Chloride Ions in Sea Sand Using Alcohol-Dispersed CsPbBr3@SiO2 Perovskite Nanocrystal Composites. Chemosensors 2022, 10, 170. https://doi.org/10.3390/chemosensors10050170
Li H, Li F, Huang Y, Zhang L, Ye M, Jin J, Chen X. Photoluminescence Sensing of Chloride Ions in Sea Sand Using Alcohol-Dispersed CsPbBr3@SiO2 Perovskite Nanocrystal Composites. Chemosensors. 2022; 10(5):170. https://doi.org/10.3390/chemosensors10050170
Chicago/Turabian StyleLi, Henggan, Feiming Li, Yipeng Huang, Linchun Zhang, Min Ye, Jingwen Jin, and Xi Chen. 2022. "Photoluminescence Sensing of Chloride Ions in Sea Sand Using Alcohol-Dispersed CsPbBr3@SiO2 Perovskite Nanocrystal Composites" Chemosensors 10, no. 5: 170. https://doi.org/10.3390/chemosensors10050170
APA StyleLi, H., Li, F., Huang, Y., Zhang, L., Ye, M., Jin, J., & Chen, X. (2022). Photoluminescence Sensing of Chloride Ions in Sea Sand Using Alcohol-Dispersed CsPbBr3@SiO2 Perovskite Nanocrystal Composites. Chemosensors, 10(5), 170. https://doi.org/10.3390/chemosensors10050170