Self-Assembled Inkjet Printer for Droplet Digital Loop-Mediated Isothermal Amplification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inkjet Printer Apparatus
2.2. DNA Extraction
2.3. Microfluidic Chip Fabrication
2.4. LAMP Primers
2.5. Pretreatments and Assembly of Inkjet Chip
2.6. Droplet Digital LAMP
2.7. LAMP Feasibility
3. Results
3.1. Droplets Generation Using Inkjet Printer
3.2. The Feasibility of LAMP
3.3. ddLAMP by Inkjet Printer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Francesko, A.; Cardoso, V.F.; Lanceros-Méndez, S. Lab-On-a-Chip Technology and Microfluidics; Elsevier: Amsterdam, The Nederlands, 2019. [Google Scholar]
- Shang, Y. Molecular mechanisms of oestrogen and SERMs in endometrial carcinogenesis. Nat. Rev. Cancer 2006, 6, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, R.; Fockler, C.; Dollinger, G. Kinetic PCR analysis: Real-time monitoring of DNA amplification reactions. Biotechnology 1993, 11, 1026–1030. [Google Scholar] [CrossRef] [PubMed]
- Else, E.A.; Swoyer, R.; Zhang, Y.; Taddeo, F.J.; Bryan, J.T.; Lawson, J.; Van Hyfte, I.; Roberts, C.C. Comparison of real-time multiplex human papillomavirus (HPV) PCR assays with INNO-LiPA HPV genotyping extra assay. J. Clin. Microbiol. 2011, 49, 1907–1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gravitt, P.E.; Burk, R.D.; Lorincz, A. A comparison between real-time polymerase chain reaction and hybrid capture 2 for human papillomavirus DNA quantitation. Cancer Epidemiol. Prev. Biomark. 2003, 12, 477–484. [Google Scholar]
- Young, L.S.; Bevan, I.S.; Johnson, M.A.; Bolmfiled, P.I.; Woodman, C.B.J. The polymerase chain reaction: A new epidemiological tool for investigating cervical human papillomavirus infection. BMJ 1989, 298, 14–18. [Google Scholar] [CrossRef] [Green Version]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar] [CrossRef] [Green Version]
- Notomi, T.; Mori, Y.; Tomita, N. Loop-mediated isothermal amplification (LAMP): Principle, features, and future prospects. J. Microbol. 2015, 53, 1–5. [Google Scholar] [CrossRef]
- Tomita, N.; Mori, Y.; Kanda, H.; Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc. 2008, 3, 877–882. [Google Scholar] [CrossRef]
- Asiello, P.J.; Baeumner, A.J. Miniaturized isothermal nucleic acid amplification, a review. Lab Chip 2011, 11, 1420–1430. [Google Scholar] [CrossRef]
- Oliveira, B.; Veigas, B.; Fernandes, A.R.; Guas, H.; Baptista, P.V. Fast prototyping microfluidics: Integrating droplet digital lamp for absolute quantification of cancer biomarkers. Sensors 2020, 20, 1624. [Google Scholar] [CrossRef] [Green Version]
- Sanders, R.; Huggett, J.F.; Bushell, C.A.; Cowen, S.; Scott, D.J.; Foy, C.A. Evaluation of digital PCR for absolute DNA quantification. Anal. Chem. 2011, 83, 6474–6484. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Zhu, M.; Gao, Z.; Liao, C.; Jia, C.; Wang, H.; Zhou, H.; Zhao, J. A centrifugal microfluidic emulsifier integrated with oil storage structures for robust digital LAMP. Biomed. Microdevices 2020, 22, 18. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Jing, F.; Li, G.; Wu, Z.; Cheng, Z.; Zhang, J.; Zhang, H.; Jia, C.; Jin, Q.; Mao, H.; et al. Absolute quantification of lung cancer related microRNA by droplet digital PCR. Biosens. Bioelectron. 2015, 74, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Rane, T.D.; Chen, L.; Zec, H.C.; Wang, T.H. Microfluidic continuous flow digital loop-mediated isothermal amplification (LAMP). Lab Chip 2015, 15, 776–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, M.; Ruediger, J.; Landmann, E.; Bakheit, M.; Frischmann, S.; Rassler, D.; Homann, A.R.; Stetten, F.; Zengerle, R.; Paust, N. High dynamic range digital assay enabled by dual-volume centrifugal step emulsification. Anal. Chem. 2021, 93, 2854–2860. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.D.; Chang, W.H.; Luo, K.; Wang, C.H.; Liu, S.Y.; Yen, W.H.; Lee, G.B. Digital quantification of DNA via isothermal amplification on a self-driven microfluidic chip featuring hydrophilic film-coated polydimethylsiloxane. Biosens. Bioelectron. 2018, 99, 547–554. [Google Scholar] [CrossRef]
- Yu, Z.; Lyu, W.; Yu, M.; Wang, Q.; Qu, H.; Ismagilov, R.F.; Han, X.; Lai, D.; Shen, F. Self-partitioning SlipChip for slip-induced droplet formation and human papillomavirus viral load quantification with digital LAMP. Biosens. Bioelectron. 2020, 155, 112107. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Yan, S.; Zhang, X.; Ma, P.; Du, W.; Feng, X.; Liu, B.F. Monte Carlo modeling-based digital loop-mediated isothermal amplification on a spiral chip for absolute quantification of nucleic acids. Anal. Chem. 2017, 89, 3716–3723. [Google Scholar] [CrossRef]
- Yuan, H.; Chao, Y.; Shum, H.C. Droplet and microchamber-based digital loop-mediated isothermal amplification (dLAMP). Small 2020, 16, e1904469. [Google Scholar] [CrossRef]
- Kuznetsova, I.; Smirnov, A.; Anisimkin, V.; Gubin, S.; Kolesov, V. Inkjet printing of plate acoustic wave devices. Sensors 2020, 20, 3349. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Hong, H.-J.; Lee, C.-Y. Temperature-sensing inks using electrohydrodynamic inkjet printing technology. Materials 2021, 14, 5623. [Google Scholar] [CrossRef] [PubMed]
- Koch, L.; Deiwick, A.; Chichkov, B. Capillary-like formations of endothelial cells in defined patterns generated by laser bioprinting. Micromachines 2021, 12, 1538. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, K.; Nambala, P.; Reet, N.V.; Büscher, P.; Kawai, N.; Mutengo, M.M.; Musaya, J.; Namangala, B.; Sugimoto, C.; Yamagishi, J. Development of a bio-inkjet printed LAMP test kit for detecting human African trypanosomiasis. PLoS Negl. Trop. Dis. 2020, 14, e0008753. [Google Scholar] [CrossRef] [PubMed]
- Trantidou, T.; Elani, Y.; Parsons, E.; Ces, O. Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition. Microsyst. Nanoeng. 2017, 3, 16091. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Feng, X.; Zhang, W.; Li, N.; Zhang, X.; Lin, J.-M. Visual detection of high-risk HPV16 and HPV18 based on loop-mediated isothermal amplification. Talanta 2020, 217, 121015. [Google Scholar] [CrossRef]
- Fan, Z.; Zhou, Z.; Zhang, W.; Lin, J.-M. Inkjet printing based ultra-small MnO2 nanosheets synthesis for glutathione sensing. Talanta 2021, 225, 121989. [Google Scholar] [CrossRef]
- Oktavianty, O.; Haruyama, S.; Ishii, Y. Enhancing droplet quality of edible ink in single and multi-drop methods by optimization the waveform design of DoD inkjet printer. Processes 2022, 10, 91. [Google Scholar] [CrossRef]
- Lau, G.-K.; Milan, S. Ink-Jet printing of micro-electro-mechanical systems (MEMS). Micromachines 2017, 8, 194. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, E.; De, J.; Barreto, J.D.J.; Garcia-Hernandez, S.; González-Solorzano, M.G. Decrease of nozzle clogging through fluid flow control. Metals 2020, 10, 1420. [Google Scholar] [CrossRef]
- Rani, E.; Mohshim, S.A.; Ahmad, M.Z.; Goodacre, R.; Ahmad, S.A.A.; Lu, S.W. Polymer pen lithography-fabricated DNA arrays for highly sensitive and selective detection of unamplified ganoderma boninense DNA. Polymers 2019, 11, 561. [Google Scholar] [CrossRef] [Green Version]
- Marcuello, C.; Frempong, G.A.; Balsera, M.; Medina, M.; Lostao, A. Atomic force microscopy to elicit conformational transitions of ferredoxin-dependent flavin thioredoxin reductases. Antioxidants 2021, 10, 1437. [Google Scholar] [CrossRef] [PubMed]
- Marcuello, C.; Miguel, R.D.; Lostao, A. Molecular recognition of proteins through quantitative force maps at single molecule level. Biomolecules 2022, 12, 594. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Z.; Sun, Y.; Lin, J.-M. Self-Assembled Inkjet Printer for Droplet Digital Loop-Mediated Isothermal Amplification. Chemosensors 2022, 10, 247. https://doi.org/10.3390/chemosensors10070247
Fan Z, Sun Y, Lin J-M. Self-Assembled Inkjet Printer for Droplet Digital Loop-Mediated Isothermal Amplification. Chemosensors. 2022; 10(7):247. https://doi.org/10.3390/chemosensors10070247
Chicago/Turabian StyleFan, Zhaoxuan, Yucheng Sun, and Jin-Ming Lin. 2022. "Self-Assembled Inkjet Printer for Droplet Digital Loop-Mediated Isothermal Amplification" Chemosensors 10, no. 7: 247. https://doi.org/10.3390/chemosensors10070247
APA StyleFan, Z., Sun, Y., & Lin, J. -M. (2022). Self-Assembled Inkjet Printer for Droplet Digital Loop-Mediated Isothermal Amplification. Chemosensors, 10(7), 247. https://doi.org/10.3390/chemosensors10070247