Novel Gas-Sensitive Material for Monitoring the Status of SF6 Gas-Insulated Switches: Gese Monolayer
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Geometric Structure and Adsorption Parameter Analysis
3.2. Electron Density Analysis for Adsorption System
3.3. Band Structure Analysis
3.4. Desorption Time Analysis
4. Discussion and Conclusions
- (1)
- The GeSe monolayer has a good adsorption effect on SO2 and is not sensitive to other decomposition components of SF6, so it can selectively adsorb SO2 molecules.
- (2)
- The adsorption behavior of SOF2, SO2F2, H2S and HF will not significantly change the electronic structure of the GeSe monolayer, while the adsorption of SO2 will shift the overall density of states of the GeSe monolayer, resulting in a significant reduction in the band gap of the adsorption system and an increase in the conductivity of the material.
- (3)
- SO2 can be desorbed from the GeSe monolayer in only 14.63 s at 398 k. The GeSe monolayer is a potential gas sensing material for the selective detection of SO2 with a rapid recovery speed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.X.; Yu, L.; Gui, Y.G.; Hu, W.H. First-principles study of SF6 decomposed gas adsorbed on au-decorated graphene. Appl. Surf. Sci. 2016, 367, 259–269. [Google Scholar] [CrossRef]
- Diego, C.A.; Nery, V.E.; Daniela, E.O. Fe–doped graphene nanosheet as an adsorption platform of harmful gas molecules (CO, CO2, SO2 and H2S), and the co–adsorption in O2 environments. Appl. Surf. Sci. 2018, 427, 227–236. [Google Scholar]
- Yao, W.; Zhou, S.; Wang, Z.; Lu, Z.; Hou, C. Antioxidant behaviors of graphene in marine environment: A first–principles simulation. Appl. Surf. Sci. 2020, 499, 143962. [Google Scholar] [CrossRef]
- Sun, S.S.; Meng, F.C.; Wang, H.Y.; Wang, H. Novel two-dimensional semiconductor SnP3: Highest ability, tunable bandgaps and high carrier mobility explored using first-principles calculations. Mater. Chem. 2018, 6, 11890. [Google Scholar] [CrossRef]
- Chen, D.C.; Zhang, X.X.; Xiong, H.; Tang, J.; Xiao, S.; Zhang, D.Z. A First-Principles Study of the SF6 Decomposed Products Adsorbed Over Defective WS2 Monolayer as Promising Gas Sensing Device. IEEE Trans. Device Mater. Reliab. 2019, 19, 473–483. [Google Scholar] [CrossRef]
- Liu, Y.P.; Zhou, Q.; Mi, H.W.; Wang, J.X.; Zeng, W. Gas-sensing mechanism of Cr doped SnP3 monolayer to SF6 partial discharge decomposition components. Appl. Surf. Sci. 2021, 546, 149084. [Google Scholar] [CrossRef]
- Rajput, K.; He, J.; Frauenheim, T.; Roy, D.R. Monolayer PC3: A promising material for environmentally toxic nitrogen-containing multi gases. J. Hazard. Mater. 2022, 422, 12761. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhou, Y.; Wang, Y.H.; Zhang, R.J.; Li, J.; Li, X.; Zang, Z.G. Conductometric room temperature ammonia sensors based on titanium dioxide nanoparticles decorated thin black phosphorus nanosheets. Sens. Actuat. B Chem. 2021, 349, 130770. [Google Scholar] [CrossRef]
- Cui, H.; Liu, T.; Zhang, Y.; Zhang, X.X. Ru-InN monolayer as a gas scavenger to guard the operation status of SF6 insulation devices: A First-Principles theory. IEEE Sens. J. 2019, 19, 5249–5255. [Google Scholar] [CrossRef]
- Chen, D.C.; Zhang, X.X.; Tang, J.; Cui, Z.L.; Cui, H. Pristine and Cu decorated hexagonal InN monolayer, a promising candidate to detect and scavenge SF6 decompositions based on first-principle study. J. Hazard. Mater. 2019, 363, 346–357. [Google Scholar] [CrossRef]
- Gui, Y.G.; Tang, C.; Zhou, Q.; Xu, L.N.; Zhao, Z.Y.; Zhang, X.X. The sensing mechanism of N-doped SWCNTs toward SF6 decomposition products: A first-principle study. Appl. Surf. Sci. 2018, 440, 846–852. [Google Scholar] [CrossRef]
- Wang, X.D.; Wang, J. Effects of Pt and Au adsorption on the gas sensing performance of SnS2 monolayers: A DFT study. Mater. Sci. Semicond. Process. 2021, 121, 105416. [Google Scholar] [CrossRef]
- Xu, S.; Wang, G.; Liu, H.M.; Wang, L.J.; Wang, H.F. A DMol(3) study on the reaction between trans-resveratrol and hydroperoxyl radical: Dissimilarity of antioxidant activity among O-H groups of trans-resveratrol. Theochem. J. Mol. Struct. 2007, 809, 79–85. [Google Scholar] [CrossRef]
- Gao, X.; Zhou, Q.; Wang, J.X.; Xu, L.N.; Zeng, W. Adsorption of SO2 molecule on Ni-doped and Pd-doped graphene based on first-principle study. Appl. Surf. Sci. 2020, 517, 146180. [Google Scholar] [CrossRef]
- Gui, Y.; Zhang, X.; Lv, P.; Wang, S.; Tang, C.; Zhou, Q. Ni-CNT Chemical Sensor for SF₆ Decomposition Components Detection: A Combined Experimental and Theoretical Study. Sensors 2018, 18, 3493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.H.; Shrisha; Motora, K.G.; Chen, G.Y.; Kuo, D.H.; Gultom, N.S. Highly Efficient MoS2/CsxWO3 Nanocomposite Hydrogen Gas Sensors. Front. Mater. 2022, 25, 831725. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Jiang, Y.D.; Duan, Z.H.; Wu, Y.W.; Zhao, Q.N.; Liu, B.H.; Huang, Q.; Yuan, Z.; Li, X.; Tai, H.L. Edge-enriched MoS2 nanosheets modified porous nanosheet-assembled hierarchical In2O3 microflowers for room temperature detection of NO2 with ultrahigh sensitivity and selectivity. J. Hazard. Mater. 2022, 434, 128836. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, X.X.; Chen, D.C.; Tang, J. Pt & Pd decorated CNT as a workable media for SOF2 sensing: A DFT study. Appl. Surf. Sci. 2019, 471, 335–341. [Google Scholar]
- Liu, D.K.; Gui, Y.G.; Ji, C.; Tang, C.; Zhou, Q.; Li, J. Adsorption of SF6 decomposition components over Pd (111): A density functional theory study. Appl. Surf. Sci. 2019, 465, 172–179. [Google Scholar] [CrossRef]
- Liu, Y.P.; Zhou, Q.; Li, B.L.; Zeng, W. Adsorption performance of Noble-Metal decorated InN monolayer to CO: A computational study. IEEE Sens. J. 2021, 21, 26586–26593. [Google Scholar] [CrossRef]
- Ding, W.D.; Hayashi, R.; Ochi, K.; Suehiro, J.; Imasaka, K.; Hara, M. Analysis of PD-generated SF6 decomposition gases adsorbed on carbon nanotubes. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 1200–1207. [Google Scholar] [CrossRef]
- Xu, L.N.; Gui, Y.G.; Li, W.J.; Li, Q.M.; Chen, X.P. Gas-sensing properties of Ptn-doped WSe2 to SF6 decomposition products. J Ind. Eng. Chem. 2021, 97, 452–459. [Google Scholar] [CrossRef]
- Liu, L.; Li, S.C.; Zhuang, J.; Wang, L.Y.; Zhang, J.B.; Li, H.Y. Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning. Sens. Actuator B Chem. 2011, 155, 782–788. [Google Scholar] [CrossRef]
- Sun, H.; Tao, L.Q.; Li, T.; Gao, X.; Sang, T.Y.; Li, Y.B. TiO(2-)Doped GeSe Monolayer: A highly selective gas sensor for SF6 decomposed species detection based on DFT method. Appl. Surf. Sci. 2022, 572, 6. [Google Scholar] [CrossRef]
- Chen, D.C.; Zhang, X.X.; Tang, J.; Cui, H.; Li, Y. Noble metal (Pt or Au)-doped monolayer MoS2 as a promising adsorbent and gas-sensing material to SO2, SOF2 and SO2F2: A DFT study. Appl. Phys. A Mater. Sci. Process. 2018, 124, 12. [Google Scholar] [CrossRef]
- Wang, Y.; Li, T.; Peng, Y.J.; Gui, Y.G.; Sun, H. Full Length Article Pd and Pt decorated GeSe monolayers as promising materials for SOF2 and SO2F2 sensing. Appl. Surf. Sci. 2021, 560, 8. [Google Scholar] [CrossRef]
- Lu, Q.L.; Yang, W.H.; Xiong, F.B.; Lin, H.F.; Zhuang, Q.Q. Effect of biaxial strain on the gas-sensing of monolayer GeSe. Acta Phys. Sin. 2020, 69, 9. [Google Scholar] [CrossRef]
- Zhang, D.Z.; Wu, J.F.; Li, P.; Cao, Y.H. Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: An experimental and density functional theory investigation. J. Mater. Chem. A 2017, 5, 20666–20677. [Google Scholar] [CrossRef]
- Liu, L.; Yang, Q.; Wang, Z.P.; Ye, H.Y.; Chen, X.P.; Fan, X.J. High Selective Gas Detection for small molecules based on Germanium selenide monolayer. Appl. Surf. Sci. 2018, 433, 575–581. [Google Scholar] [CrossRef]
- Liu, Y.P.; Zhou, Q.; Wang, J.X.; Zeng, W. Cr doped MN (M = In, Ga) monolayer: A promising candidate to detect and scavenge SF6 decomposition components. Sens. Actuators A Phys. 2021, 330, 112854. [Google Scholar] [CrossRef]
Adsorption System | Eads (eV) | Qt (e) | d (Å) |
---|---|---|---|
SO2 | −1.04 | −0.200 | 3.015 |
SOF2 | −0.78 | −0.020 | 3.578 |
SO2F2 | −0.26 | −0.019 | 3.566 |
H2S | −0.32 | 0.051 | 3.510 |
HF | −0.38 | −0.032 | 2.343 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, G.; Hu, X.; Chen, W.; Zhou, Q. Novel Gas-Sensitive Material for Monitoring the Status of SF6 Gas-Insulated Switches: Gese Monolayer. Chemosensors 2022, 10, 246. https://doi.org/10.3390/chemosensors10070246
Qian G, Hu X, Chen W, Zhou Q. Novel Gas-Sensitive Material for Monitoring the Status of SF6 Gas-Insulated Switches: Gese Monolayer. Chemosensors. 2022; 10(7):246. https://doi.org/10.3390/chemosensors10070246
Chicago/Turabian StyleQian, Guochao, Xiqian Hu, Weigen Chen, and Qu Zhou. 2022. "Novel Gas-Sensitive Material for Monitoring the Status of SF6 Gas-Insulated Switches: Gese Monolayer" Chemosensors 10, no. 7: 246. https://doi.org/10.3390/chemosensors10070246
APA StyleQian, G., Hu, X., Chen, W., & Zhou, Q. (2022). Novel Gas-Sensitive Material for Monitoring the Status of SF6 Gas-Insulated Switches: Gese Monolayer. Chemosensors, 10(7), 246. https://doi.org/10.3390/chemosensors10070246