Adsorption Mechanism of SO2 on Transition Metal (Pd, Pt, Au, Fe, Co and Mo)-Modified InP3 Monolayer
Abstract
:1. Introduction
2. Computation Methods
3. Results and Discussion
3.1. Structures of SO2 and InP3 Monolayer
3.2. Analysis of TM Atom (Pd, Pt, Au, Fe, Co and Mo)-Doped InP3 Monolayer
3.3. Analysis of Adsorption Behaviors of SO2 on TM-InP3 Monolayers
3.4. Frontier Orbital Theory and Gas Sensing Mechanism Analysis
3.5. Recovery Time Analysis
4. Conclusions
- Pd, Pt, Fe, Co and Mo atoms are more inclined to replace the P atom at the P1 site in the InP3 monolayer, while Au atoms are more inclined to replace the P2 atom. Orbital hybridization makes the dopant form stable TM-P bonds and TM-In bonds with the intrinsic InP3 monolayer.
- The adsorption of SO2 on TM-InP3 monolayers was characterized as chemical adsorption, and SO2 showed electron acceptance behavior.
- Combined with the analysis of Ead and Qt of six adsorption systems, the adsorption effect of TM-InP3 monolayers for SO2 was in the following order: Mo-InP3 > Fe-InP3 > Co-InP3 > Pt-InP3 > Pd-InP3 > Au-InP3. Except for the Au atom, the other five TM atoms as InP3 dopants significantly enhanced the adsorption effect of the InP3 monolayer for SO2, and considerable orbital hybridization and stable chemical bonds were formed between dopants and SO2.
- The adsorption of SO2 resulted in a change in the conductivity of TM-InP3 monolayers to different degrees. Combined with the adsorption effect of the six systems for SO2, this shows that Pd-InP3, Pt-InP3, Fe-InP3 and Mo-InP3 monolayers have great potential to be used as resistive SO2 sensors, among which Fe-InP3 and Mo-InP3 are the most promising SO2 sensor candidates.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, W.T.; Yan, W.T. Impact of internet electronic commerce on SO2 pollution: Evidence from China. Environ. Sci. Pollut. Res. 2020, 27, 25801–25812. [Google Scholar] [CrossRef] [PubMed]
- Salih, E.; Ayesh, A.I. Sensitive SO2 gas sensor utilizing Pt-doped graphene nanoribbon: First principles investigation. Mater. Chem. Phys. 2021, 267, 124695. [Google Scholar] [CrossRef]
- Meng, W.; Zeng, B.; Huang, H. Forecasting of Sulfur Dioxide Emissions in China Based on Optimized DGM(1,1). In Proceedings of the IEEE International Conference on Grey Systems and Intelligent Services (GSIS), Stockholm, Sweden, 8–11 August 2017; pp. 159–164. [Google Scholar]
- Shao, L.; Chen, G.D.; Ye, H.G.; Niu, H.B.; Wu, Y.L.; Zhu, Y.Z.; Ding, B.J. Sulfur dioxide molecule sensors based on zigzag graphene nanoribbons with and without Cr dopant. Phys. Lett. A 2014, 378, 667–671. [Google Scholar] [CrossRef]
- Linn, W.S.; Avol, E.L.; Peng, R.C.; Shamoo, D.A.; Hackney, J.D. Replicated dose-response study of sulfur dioxide effects in normal, atopic, and asthmatic volunteers. Am. Rev. Respir. Dis. 1987, 136, 1127–1134. [Google Scholar] [CrossRef]
- Noei, M. Different electronic sensitivity of BN and AlN nanoclusters to SO2 gas: DFT studies. Vacuum 2017, 135, 44–49. [Google Scholar] [CrossRef]
- Sun, Y.L.; Jiang, Q.; Wang, Z.F.; Fu, P.Q.; Li, J.; Yang, T.; Yin, Y. Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. J. Geophys. Res. Atmos. 2014, 119, 4380–4398. [Google Scholar] [CrossRef]
- Xie, Y.; Dai, H.C.; Zhang, Y.X.; Wu, Y.Z.; Hanaoka, T.; Masui, T. Comparison of health and economic impacts of PM2.5 and ozone pollution in China. Environ. Int. 2019, 130, 104881. [Google Scholar] [CrossRef]
- Ye, X.; Jiang, X.; Chen, L.; Jiang, W.J.; Wang, H.L.; Cen, W.L.; Ma, S.G. Effect of manganese dioxide crystal structure on adsorption of SO2 by DFT and experimental study. Appl. Surf. Sci. 2020, 521, 146477. [Google Scholar] [CrossRef]
- Zhang, X.X.; Dai, Z.Q.; Chen, Q.C.; Tang, J. A DFT study of SO2 and H2S gas adsorption on Au-doped single-walled carbon nanotubes. Phys. Scr. 2014, 89, 065803. [Google Scholar] [CrossRef]
- Zhou, J.H.; Gou, X.T.; Shi, Z.T.; Lian, Y.; Zhao, J.G.; Li, P. Thinking and Suggestion on Promoting the Trade of SO2 Pollution Right. In Proceedings of the International Conference on Innovation Managements, Wuhan, China, 8–9 December 2009; pp. 40–42. [Google Scholar]
- Alsiraji, H.A. Assessment of Graphene Band Gap Based on Varying the Interaction Energy Coefficients. In Proceedings of the IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman, Jordan, 9–11 April 2019; pp. 878–882. [Google Scholar]
- Yu, Z.G.; Zhang, Y.W. Band gap engineering of graphene with inter-layer embedded BN: From first principles calculations. Diam. Relat. Mater. 2015, 54, 103–108. [Google Scholar] [CrossRef]
- Li, Z.H.; Jia, L.F.; Chen, J.X.; Cui, X.S.; Zeng, W.; Zhou, Q. Ag-modified hexagonal GaN monolayer as an innovative gas detector toward SF6 decomposed species: Insights from the first-principles computations. Appl. Surf. Sci. 2022, 589, 153000. [Google Scholar] [CrossRef]
- Qian, G.C.; Dai, W.J.; Zhou, F.R.; Ma, H.M.; Wang, S.; Hu, J.; Zhou, Q. Adsorption Characteristics of Carbon Monoxide on Ag- and Au-Doped HfS2 Monolayers Based on Density Functional Theory. Chemosensors 2022, 10, 82. [Google Scholar] [CrossRef]
- Chen, G.X.; Wang, R.X.; Li, H.X.; Chen, X.N.; An, G.; Zhang, J.M. First-principles study of pristine and metal decorated blue phosphorene for sensing toxic H2S, SO2 and NO2 molecules. Appl. Phys. A-Mater. Sci. Process. 2021, 127, 133. [Google Scholar] [CrossRef]
- Mi, H.W.; Zhou, Q.; Zeng, W. A density functional theory study of the adsorption of Cl2, NH3, and NO2 on Ag3-doped WSe2 monolayers. Appl. Surf. Sci. 2021, 563, 150329. [Google Scholar] [CrossRef]
- Abbas, A.N.; Liu, B.L.; Chen, L.; Ma, Y.Q.; Cong, S.; Aroonyadet, N.; Kopf, M.; Nilges, T.; Zhou, C.W. Black Phosphorus Gas Sensors. ACS Nano 2015, 9, 5618–5624. [Google Scholar] [CrossRef]
- Li, L.K.; Yu, Y.J.; Ye, G.J.; Ge, Q.Q.; Ou, X.D.; Wu, H.; Feng, D.L.; Chen, X.H.; Zhang, Y.B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, R.B.; Rivelino, R.; Gueorguiev, G.K.; Kakanakova-Georgieva, A. Exploring 2D structures of indium oxide of different stoichiometry. Crystengcomm 2021, 23, 6661–6667. [Google Scholar] [CrossRef]
- Kakanakova-Georgieva, A.; Giannazzo, F.; Nicotra, G.; Cora, I.; Gueorguiev, G.K.; Persson, P.O.A.; Pecz, B. Material proposal for 2D indium oxide. Appl. Surf. Sci. 2021, 548, 149275. [Google Scholar] [CrossRef]
- Ouyang, T.; Jiang, E.L.; Tang, C.; Li, J.; He, C.Y.; Zhong, J.X. Thermal and thermoelectric properties of monolayer indium triphosphide (InP3): A first-principles study. J. Mater. Chem. A 2018, 6, 21532–21541. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, H.M.; Lv, J.; Jia, J.F.; Wu, H.S. The 3d transition-metals doping tunes the electronic and magnetic properties of 2D monolayer InP3. J. Magn. Magn. Mater. 2021, 533, 168028. [Google Scholar] [CrossRef]
- Yang, H.R.; Wang, Z.P.; Ye, H.Y.; Zhang, K.; Chen, X.P.; Zhang, G.Q. Promoting sensitivity and selectivity of HCHO sensor based on strained InP3 monolayer: A DFT study. Appl. Surf. Sci. 2018, 459, 554–561. [Google Scholar] [CrossRef]
- Jalil, A.; Zhuo, Z.W.; Sun, Z.T.; Wu, F.; Wang, C.; Wu, X.J. A phosphorene-like InP3 monolayer: Structure, stability, and catalytic properties toward the hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 1307–1314. [Google Scholar] [CrossRef]
- Wu, W.X.; Zhang, Y.M.; Guo, Y.H.; Bai, J.X.; Zhang, C.H.; Chen, Z.F.; Liu, Y.X.; Xiao, B.B. Exploring anchoring performance of InP3 monolayer for lithium-sulfur batteries: A first-principles study. Appl. Surf. Sci. 2020, 526, 146717. [Google Scholar] [CrossRef]
- Miao, N.H.; Xu, B.; Bristowe, N.C.; Zhou, J.; Sun, Z.M. Tunable Magnetism and Extraordinary Sunlight Absorbance in Indium Triphosphide Monolayer. J. Am. Chem. Soc. 2017, 139, 11125–11131. [Google Scholar] [CrossRef] [Green Version]
- Yi, W.C.; Chen, X.; Wang, Z.X.; Ding, Y.C.; Yang, B.C.; Liu, X.B. A novel two-dimensional delta-InP3 monolayer with high stability, tunable bandgap, high carrier mobility, and gas sensing of NO2. J. Mater. Chem. C 2019, 7, 7352–7359. [Google Scholar] [CrossRef]
- Liao, Y.M.; Zhou, Q.; Hou, W.J.; Li, J.; Zeng, W. Theoretical study of dissolved gas molecules in transformer oil adsorbed on intrinsic and Cr-doped InP3 monolayer. Appl. Surf. Sci. 2021, 561, 149816. [Google Scholar] [CrossRef]
- Cui, H.; Jia, P.F. Doping effect of small Rh-n (n = 1–4) clusters on the geometric and electronic behaviors of MoS2 monolayer: A first-principles study. Appl. Surf. Sci. 2020, 526, 146659. [Google Scholar] [CrossRef]
- Li, B.L.; Zhou, Q.; Peng, R.C.; Liao, Y.M.; Zeng, W. Adsorption of SF6 decomposition gases (H2S, SO2, SOF2 and SO2F2) on Sc-doped MoS2 surface: A DFT study. Appl. Surf. Sci. 2021, 549, 149271. [Google Scholar] [CrossRef]
- Peng, R.C.; Zhou, Q.; Zeng, W. First-Principles Study of Au-Doped InN Monolayer as Adsorbent and Gas Sensing Material for SF6 Decomposed Species. Nanomaterials 2021, 11, 1708. [Google Scholar] [CrossRef]
- Peng, R.C.; Zhou, Q.; Zeng, W. First-Principles Insight into Pd-Doped C3N Monolayer as a Promising Scavenger for NO, NO2 and SO2. Nanomaterials 2021, 11, 1267. [Google Scholar] [CrossRef]
- Lu, Z.; Zhai, Y.; Liang, Q.Z.; Wu, W. Research paper Promoting sensitivity and selectivity of NO2 gas sensor based on metal (Pt, Re, Ta)-doped monolayer WSe2: A DFT study. Chem. Phys. Lett. 2020, 755, 137737. [Google Scholar] [CrossRef]
- Chen, D.C.; Zhang, X.X.; Tang, J.; Cui, H.; Li, Y. Noble metal (Pt or Au)-doped monolayer MoS2 as a promising adsorbent and gas-sensing material to SO2, SOF2 and SO2F2: A DFT study. Appl. Phys. A-Mater. Sci. Process. 2018, 124, 194. [Google Scholar] [CrossRef]
- Zhang, H.P.; Luo, X.G.; Song, H.T.; Lin, X.Y.; Lu, X.; Tang, Y.H. DFT study of adsorption and dissociation behavior of H2S on Fe-doped graphene. Appl. Surf. Sci. 2014, 317, 511–516. [Google Scholar] [CrossRef]
- Xie, T.Y.; Wang, P.; Tian, C.F.; Zhao, G.Z.; Jia, J.F.; Zhao, C.X.; Wu, H.S. The Adsorption Behavior of Gas Molecules on Co/N Co-Doped Graphene. Molecules 2021, 26, 7700. [Google Scholar] [CrossRef]
- Tabtimsai, C.; Wanno, B.; Utairueng, A.; Promchamorn, P.; Kumsuwan, U. First Principles Investigation of NH3 and NO2 Adsorption on Transition Metal-Doped Single-Walled Carbon Nanotubes. J. Electron. Mater. 2019, 48, 7226–7238. [Google Scholar] [CrossRef]
- Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Tkatchenko, A.; DiStasio, R.A.; Head-Gordon, M.; Scheffler, M. Dispersion-corrected Moller-Plesset second-order perturbation theory. J. Chem. Phys. 2009, 131, 094106. [Google Scholar] [CrossRef]
- Delley, B. Hardness conserving semilocal pseudopotentials. Phys. Rev. B 2002, 66, 155125. [Google Scholar] [CrossRef]
- Liao, Y.M.; Zhou, Q.; Peng, R.C.; Zeng, W. Adsorption properties of InP3 monolayer toward SF6 decomposed gases: A DFT study. Phys. E 2021, 130, 114689. [Google Scholar] [CrossRef]
- Jiang, T.Y.; Zhang, T.; He, Q.Q.; Bi, M.Q.; Chen, X.; Zhou, X. Adsorption performance and gas-sensing properties of V-GaSe to SF6 decomposition components in gas-insulated switchgear. Appl. Surf. Sci. 2022, 577, 151854. [Google Scholar] [CrossRef]
- Mom, R.V.; Cheng, J.; Koper, M.T.M.; Sprik, M. Modeling the Oxygen Evolution Reaction on Metal Oxides: The Infuence of Unrestricted DFT Calculations. J. Phys. Chem. C 2014, 118, 4095–4102. [Google Scholar] [CrossRef]
- Liu, Y.P.; Zhou, Q.; Hou, W.J.; Li, J.; Zeng, W. Adsorption properties of Cr modified GaN monolayer for H2, CO, C2H2 and C2H4. Chem. Phys. 2021, 550, 111304. [Google Scholar] [CrossRef]
- Gao, X.; Zhou, Q.; Wang, J.X.; Xu, L.N.; Zeng, W. Adsorption of SO2 molecule on Ni-doped and Pd-doped graphene based on first-principle study. Appl. Surf. Sci. 2020, 517, 146180. [Google Scholar] [CrossRef]
- Liu, Y.P.; Zhou, Q.; Wang, J.X.; Zeng, W. Cr doped MN (M = In, Ga) monolayer: A promising candidate to detect and scavenge SF6 decomposition components. Sens. Actuators A Phys. 2021, 330, 112854. [Google Scholar] [CrossRef]
- Zeng, F.P.; Feng, X.X.; Chen, X.Y.; Yao, Q.; Miao, Y.L.; Dai, L.J.; Li, Y.; Tang, J. First-principles analysis of Ti3C2Tx MXene as a promising candidate for SF6 decomposition characteristic components sensor. Appl. Surf. Sci. 2022, 578, 152020. [Google Scholar] [CrossRef]
- Zhang, X.X.; Gui, Y.G.; Dai, Z.Q. A simulation of Pd-doped SWCNTs used to detect SF6 decomposition components under partial discharge. Appl. Surf. Sci. 2014, 315, 196–202. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, X.X.; Zhang, G.Z.; Tang, J. Pd-doped MoS2 monolayer: A promising candidate for DGA in transformer oil based on DFT method. Appl. Surf. Sci. 2019, 470, 1035–1042. [Google Scholar] [CrossRef]
- Wang, J.X.; Zhou, Q.; Zeng, W. Competitive adsorption of SF6 decompositions on Ni-doped ZnO (100) surface: Computational and experimental study. Appl. Surf. Sci. 2019, 479, 185–197. [Google Scholar] [CrossRef]
- Gong, P.L.; Zhang, F.; Huang, L.F.; Zhang, H.; Li, L.; Xiao, R.C.; Deng, B.; Pan, H.; Shi, X.Q. Multifunctional two-dimensional semiconductors SnP3: Universal mechanism of layer-dependent electronic phase transition. J. Phys. Condens. Matter 2018, 30, 475702. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, B.; Puri, S.; Agarwal, A.; Bhowmick, S. SnP3: A Previously Unexplored Two-Dimensional Material. J. Phys. Chem. C 2018, 122, 18185–18191. [Google Scholar] [CrossRef]
- Sun, S.S.; Meng, F.C.; Wang, H.Y.; Wang, H.; Ni, Y.X. Novel two-dimensional semiconductor SnP3: High stability, tunable bandgaps and high carrier mobility explored using first-principles calculations. J. Mater. Chem. A 2018, 6, 11890–11897. [Google Scholar] [CrossRef]
- Haase, J. Structural studies of SO2 adsorption on metal surfaces. J. Phys. Condens. Matter. 1997, 9, 1647–1670. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, T.; Si, Q.L.; Liu, T. Adsorption and sensing performances of transition metal (Pd, Pt, Ag and Au) doped MoTe2 monolayer upon NO2: A DFT study. Phys. Lett. A 2021, 391, 127117. [Google Scholar] [CrossRef]
- Lee, J.M.; Lim, S.H. Thermally activated magnetization switching in a nanostructured synthetic ferrimagnet. J. Appl. Phys. 2013, 113, 063914. [Google Scholar]
- Boerner, E.D.; Bertram, H.N. Non-Arrhenius behavior in single domain particles. IEEE Trans. Magn. 1998, 34, 1678–1680. [Google Scholar] [CrossRef]
Pb-InP3 | Pt-InP3 | Au-InP3 | Fe-InP3 | Co-InP3 | Mo-InP3 | |
---|---|---|---|---|---|---|
Doping Sites | P1 | P1 | P2 | P1 | P1 | P1 |
Eb (eV) | −4.410 | −6.393 | −3.767 | −4.806 | −5.180 | −5.670 |
Structure | The Length of Bond (Å) | Bond Angle (°) | Adsorption Distance (Å) | Atom | Mulliken Charge (e) | Qt (e) | Ead (eV) | ||
---|---|---|---|---|---|---|---|---|---|
Pd-InP3/SO2 | S-O1 | 1.563 | O1-S-O2 | 113.199 | 2.430 | S | 0.427 | −0.420 | −1.635 |
O1 | −0.398 | ||||||||
S-O2 | 1.564 | O2 | −0.449 | ||||||
Pt-InP3/SO2 | S-O1 | 1.556 | O1-S-O2 | 111.696 | 2.403 | S | 0.416 | −0.438 | −1.822 |
O1 | −0.414 | ||||||||
S-O2 | 1.576 | O2 | −0.440 | ||||||
Au-InP3/SO2 | S-O1 | 1.486 | O1-S-O2 | 114.541 | 4.209 | S | 0.372 | −0.341 | −1.033 |
O1 | −0.284 | ||||||||
S-O2 | 1.558 | O2 | −0.429 | ||||||
Fe-InP3/SO2 | S-O1 | 1.624 | O1-S-O2 | 113.729 | 2.059 | S | 0.404 | −0.483 | −2.276 |
O1 | −0.437 | ||||||||
S-O2 | 1.573 | O2 | −0.450 | ||||||
Co-InP3/SO2 | S-O1 | 1.620 | O1-S-O2 | 114.341 | 2.170 | S | 0.451 | −0.448 | −2.019 |
O1 | −0.447 | ||||||||
S-O2 | 1.566 | O2 | −0.452 | ||||||
Mo-InP3/SO2 | S-O1 | 1.638 | O1-S-O2 | 110.233 | 2.123 | S | 0.361 | −0.539 | −2.800 |
O1 | −0.444 | ||||||||
S-O2 | 1.583 | O2 | −0.456 |
Ead (eV) | Qt (e) | |
---|---|---|
InP3/SO2 | −1.050 | −0.545 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, T.; Zeng, W.; Zhou, Q. Adsorption Mechanism of SO2 on Transition Metal (Pd, Pt, Au, Fe, Co and Mo)-Modified InP3 Monolayer. Chemosensors 2022, 10, 279. https://doi.org/10.3390/chemosensors10070279
Hou T, Zeng W, Zhou Q. Adsorption Mechanism of SO2 on Transition Metal (Pd, Pt, Au, Fe, Co and Mo)-Modified InP3 Monolayer. Chemosensors. 2022; 10(7):279. https://doi.org/10.3390/chemosensors10070279
Chicago/Turabian StyleHou, Tianyu, Wen Zeng, and Qu Zhou. 2022. "Adsorption Mechanism of SO2 on Transition Metal (Pd, Pt, Au, Fe, Co and Mo)-Modified InP3 Monolayer" Chemosensors 10, no. 7: 279. https://doi.org/10.3390/chemosensors10070279
APA StyleHou, T., Zeng, W., & Zhou, Q. (2022). Adsorption Mechanism of SO2 on Transition Metal (Pd, Pt, Au, Fe, Co and Mo)-Modified InP3 Monolayer. Chemosensors, 10(7), 279. https://doi.org/10.3390/chemosensors10070279