Visible Light-Responsive Sulfone-Based Covalent Organic Framework as Metal-Free Nanoenzyme for Visual Colorimetric Determination of Uranium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of TAS-COF
2.3. Steady-State Kinetic Studies of TAS-COF as Oxidase Mimic
2.4. Colorimetric Detection of UO22+
2.5. Analysis of UO22+ Content in Real Samples
2.6. Visual Inspection
3. Results
3.1. Synthesis and Characterization of TAS-COF
3.2. Visible Light Stimulated Oxidase-Like Activity of TAS-COF
3.3. Parameters Optimization for UO22+ Detection
3.4. Analytical Performance for UO22+ Detection
3.5. Colorimetric Detection of UO22+ Content in Real Water Samples
3.6. Visual Colorimetric Detection of UO22+
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, M.; Liu, T.; Zhang, X.; Zhang, R.; Tang, S.; Yuan, Y.; Xie, Z.; Liu, Y.; Wang, H.; Fedorovich, K.; et al. Photoinduced enhancement of uranium extraction from seawater by MOF/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel. Adv. Funct. Mater. 2021, 31, 2100106. [Google Scholar] [CrossRef]
- Veiga, H.; Amaral, C.; Fernandes, M. Human health risk screening of radioactive and nonradioactive contaminants due to uranium industry operation. J. Environ. Radioact. 1998, 39, 69–85. [Google Scholar] [CrossRef]
- Silva, R.; Kazimi, M.; Hejzlar, P. Nuclear fuel recycling: National and regional options for the US nuclear energy system. Energy Environ. Sci. 2010, 3, 996. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, W.; Anbar, A. Uranium Isotope fractionation ((238)U/(235)U) during U(VI) uptake by freshwater plankton. Environ. Sci. Technol. 2020, 54, 2744–2752. [Google Scholar] [CrossRef] [PubMed]
- Moshe, M.; Elbaz, J.; Willner, I. Sensing of UO22+ and design of logic gates by the application of supramolecular constructs of ion-dependent DNAzymes. Nano Lett. 2009, 9, 1196–1200. [Google Scholar] [CrossRef] [PubMed]
- Lorber, A.; Karpas, Z.; Halicz, L. Flow injection method for determination of uranium in urine and serum by inductively coupled plasma mass spectrometry. Anal. Chim. Acta 1996, 334, 295–301. [Google Scholar] [CrossRef]
- Ruan, C.; Luo, W.; Wang, W.; Gu, B. Surface-enhanced Raman spectroscopy for uranium detection and analysis in environmental samples. Anal. Chim. Acta 2007, 605, 80–86. [Google Scholar] [CrossRef]
- Abbasi, S. Atomic absorption spectrometric and spectrophotometric trace analysis of uranium in environmental samples with n-p-methoxyphenyl-2-furylacrylohydroxamic acid and 4-(2-pyridylazo) resorcinol. Int. J. Environ. Anal. Chem. 2006, 36, 163–172. [Google Scholar] [CrossRef]
- Lee, J.; Wang, Z.; Liu, J.; Lu, Y. Highly sensitive and selective colorimetric sensors for uranyl (UO22+): Development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. J. Am. Chem. Soc. 2008, 130, 14217–14226. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Zhang, H.; Ma, R.; Yang, Q.; Zhang, Z.; Liu, Y. Visual colorimetric detection of UO22+ using o-phosphorylethanolamine-functionalized gold nanoparticles. Sens. Actuators B Chem. 2015, 218, 67–72. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, H.; Ai, R.; Deng, Y.; He, Y. Electrostatic-driven coordination interaction enables high specificity of UO22+ peroxidase mimic for visual colorimetric detection of UO22+. ACS Sustain. Chem. Eng. 2020, 8, 11630–11637. [Google Scholar] [CrossRef]
- Li, S.; Zhao, X.; Gang, R.; Cao, B.; Wang, H. Doping nitrogen into Q-graphene by plasma treatment toward peroxidase mimics with enhanced catalysis. Anal. Chem. 2020, 92, 5152–5157. [Google Scholar] [CrossRef]
- Ding, Y.; Ren, G.; Wang, G.; Lu, M.; Liu, J.; Li, K.; Lin, Y. V2O5 nanobelts mimick tandem enzymes to achieve nonenzymatic online monitoring of glucose in living rat brain. Anal. Chem. 2020, 92, 4583–4591. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, F.; Ren, J.; Qu, X. A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials 2019, 208, 21–31. [Google Scholar] [CrossRef]
- Deng, H.; Lin, X.; Liu, Y.; Li, K.; Zhuang, Q.; Peng, H.; Liu, A.; Xia, X.; Chen, W. Chitosan-stabilized platinum nanoparticles as effective oxidase mimics for colorimetric detection of acid phosphatase. Nanoscale 2017, 9, 10292–10300. [Google Scholar] [CrossRef]
- He, W.; Liu, Y.; Yuan, J.; Yin, J.; Wu, X.; Hu, X.; Zhang, K.; Liu, J.; Chen, C.; Ji, Y.; et al. Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 2011, 32, 1139–1147. [Google Scholar] [CrossRef]
- Guo, Y.; Tao, Y.; Ma, X.; Jin, J.; Wen, S.; Ji, W.; Song, W.; Zhao, B.; Ozaki, Y. A dual colorimetric and SERS detection of Hg2+ based on the stimulus of intrinsic oxidase-like catalytic activity of Ag-CoFe2O4/reduced graphene oxide nanocomposites. Chem. Eng. J. 2018, 350, 120–130. [Google Scholar] [CrossRef]
- Sang, Y.; Li, W.; Liu, H.; Zhang, L.; Wang, H.; Liu, Z.; Ren, J.; Qu, X. Construction of nanozyme-hydrogel for enhanced capture and elimination of bacteria. Adv. Funct. Mater. 2019, 29, 1900518. [Google Scholar] [CrossRef]
- Sun, A.; Mu, L.; Hu, X. Graphene oxide quantum dots as novel nanozymes for alcohol intoxication. ACS Appl. Mater. Interfaces 2017, 9, 12241–12252. [Google Scholar] [CrossRef]
- Pachful, P.; Acharjya, A.; Roeser, J.; Sivasankaran, R.; Ye, M.; Brückner, A.; Schmidt, J.; Thomas, A. Donor-acceptor covalent organic frameworks for visible light induced free radical polymerization. Chem. Mater. 2019, 10, 8316–8322. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yang, G.; Xiao, S.; Tan, Q.; Zheng, Q.; Liang, R.; Qiu, J. Facile construction of covalent organic framework nanozyme for colorimetric detection of uranium. Small 2021, 17, 2102944. [Google Scholar] [CrossRef]
- Jin, P.; Niu, X.; Zhang, F.; Dong, K.; Dai, H.; Zhang, H.; Wang, W.; Chen, H.; Chen, X. Stable and reusable light-responsive reduced covalent organic framework (COF-300-AR) as an oxidase-mimicking catalyst for GSH detection in cell lysate. ACS Appl. Mater. Interfaces 2020, 12, 20414–20422. [Google Scholar] [CrossRef]
- Faure, M.; Sotta, B.; Gamby, J. Investigating the kinetics of paramagnetic-beads linked alkaline phosphatase enzyme through microchannel resistance measurement in dielectric microchip. Biosens. Bioelectron. 2014, 58, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Mitra, S.; Kandambeth, S.; Biswal, B.; Khayum, A.; Choudhury, C.; Mehta, M.; Kaur, G.; Banerjee, S.; Prabhune, A.; Verma, S.; et al. Self-exfoliated guanidinium-based ionic covalent organic nanosheets (iCONs). J. Am. Chem. Soc. 2016, 8, 2823–2828. [Google Scholar] [CrossRef]
- Zhi, Y.; Li, Z.; Feng, X.; Xia, H.; Zhang, Y.; Shi, Z.; Mu, Y.; Liu, X. Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations. J. Mater. Chem. A 2017, 5, 22933–22938. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, J.; Shao, W.; Li, J. Au@NH2-MIL-125(Ti) heterostructure as light-responsive oxidase-like mimic for colorimetric sensing of cysteine. Microporous Mesoporous Mater. 2021, 310, 110642. [Google Scholar] [CrossRef]
- Wang, S.; Wang, M.; Liu, Y.; Meng, X.; Ye, Y.; Song, X.; Liang, Z. Novel D-π-A conjugated microporous polymer as visible light-driven oxidase mimic for efficient colorimetric detection of glutathione. Sens. Actuators B Chem. 2021, 326, 128808. [Google Scholar] [CrossRef]
- Kari, J.; Andersen, M.; Borch, K.; Westh, P. An inverse Michaelis-Menten approach for interfacial enzyme kinetics. ACS Catal. 2017, 7, 4904–4914. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef]
- Deng, X.; Fang, Y.; Lin, S.; Cheng, Q.; Liu, Q.; Zhang, X. Porphyrin-based porous organic frameworks as a biomimetic catalyst for highly efficient colorimetric immunoassay. ACS Appl. Mater. Interfaces 2017, 9, 3514–3523. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, Z.; Omar, H.; Deng, L.; Khashab, N. Colorimetric peroxidase mimetic assay for uranyl detection in seawater. ACS Appl. Mater. Interfaces 2015, 7, 4589–4594. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Cao, N.; Zhang, J.; Hou, J.; Chen, Q.; Zhang, C.; Sun, Y.; Liu, S.; He, L.; Zhang, K.; et al. Field-portable ratiometric fluorescence imaging of dual-color label-free carbon dots for uranyl ions detection with cellphone-based optical platform. Chin. Chem. Lett. 2020, 31, 2925–2928. [Google Scholar] [CrossRef]
- Guo, W.; Xu, H.; Cao, X.; Ma, J.; Liu, Y. A novel electrochemical detemination platform of uranyl ion based on silver nanodendrites-reduced graphene oxide. Microchem. J. 2020, 158, 105134. [Google Scholar] [CrossRef]
- Chen, L.; Liu, J.; Cao, C.; Tang, S.; Lv, C.; Xiao, X.; Yang, S.; Liu, L.; Sun, L.; Zhu, B.; et al. Dual-signal amplification electrochemical sensing for the sensitive detection of uranyl ion based on gold nanoparticles and hybridization chain reaction-assisted synthesis of silver nanoclusters. Anal. Chim. Acta 2021, 1, 338986. [Google Scholar] [CrossRef]
- Yang, W.; Bai, Z.; Shi, W.; Yuan, L.; Tian, T.; Chai, Z.; Wang, H.; Sun, Z. MOF-76: From a luminescent probe to highly efficient U(VI) sorption material. Chem. Commun. (Camb) 2013, 49, 10415–10417. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, C.; Lu, Y.; Wei, G.; Ye, G.; Sun, T.; Chen, J. Microplasma electrochemistry controlled rapid preparation of fluorescent polydopamine nanoparticles and their application in uranium detection. Chem. Eng. J. 2018, 344, 480–486. [Google Scholar] [CrossRef]
- Danchana, K.; Souza, C.; Palacio, E.; Cerdà, V. Multisyringe flow injection analysis for the spectrophotometric determination of uranium (VI) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol. Microchem. J. 2019, 150, 104148. [Google Scholar] [CrossRef]
Samples | Added (μM) | Found (μM) | Recovery (%) | ICP-MS | p Value (t-Test) |
---|---|---|---|---|---|
T-1# | 0.5 | 0.48 ± 0.03 | 96.00 ± 1.02 | 0.49 ± 0.02 | 0.456 |
T-2# | 5 | 5.04 ± 0.06 | 100.80 ± 1.51 | 5.01 ± 0.05 | 0.378 |
T-3# | 10 | 9.95 ± 0.18 | 99.50 ± 0.42 | 9.99 ± 0.06 | 0.832 |
L-1# | 0.5 | 0.45 ± 0.03 | 90.00 ± 0.87 | 0.51 ± 0.04 | 0.668 |
L-2# | 5 | 4.97 ± 0.05 | 99.40 ± 3.12 | 4.95 ± 0.03 | 0.609 |
L-3# | 10 | 10.06 ± 0.26 | 100.60 ± 1.03 | 10.01 ± 0.12 | 0.629 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Wei, J.; Chen, X. Visible Light-Responsive Sulfone-Based Covalent Organic Framework as Metal-Free Nanoenzyme for Visual Colorimetric Determination of Uranium. Chemosensors 2022, 10, 248. https://doi.org/10.3390/chemosensors10070248
Xu Y, Wei J, Chen X. Visible Light-Responsive Sulfone-Based Covalent Organic Framework as Metal-Free Nanoenzyme for Visual Colorimetric Determination of Uranium. Chemosensors. 2022; 10(7):248. https://doi.org/10.3390/chemosensors10070248
Chicago/Turabian StyleXu, Yulong, Jiahui Wei, and Xuwei Chen. 2022. "Visible Light-Responsive Sulfone-Based Covalent Organic Framework as Metal-Free Nanoenzyme for Visual Colorimetric Determination of Uranium" Chemosensors 10, no. 7: 248. https://doi.org/10.3390/chemosensors10070248
APA StyleXu, Y., Wei, J., & Chen, X. (2022). Visible Light-Responsive Sulfone-Based Covalent Organic Framework as Metal-Free Nanoenzyme for Visual Colorimetric Determination of Uranium. Chemosensors, 10(7), 248. https://doi.org/10.3390/chemosensors10070248