Advances in Electrochemical Techniques for the Detection and Analysis of Genetically Modified Organisms: An Analysis Based on Bibliometrics
Abstract
:1. Introduction
2. Developments in the Research Field
2.1. Literature Development Trends
2.2. Journals, Cited Journals, and Research Subjects
2.3. Geographic Distribution
3. Keyword Analysis and Evolution of the Field
- #0 (Electrochemical DNA biosensor) This cluster contains a series of DNA electrochemical biosensors for detecting GM crops, especially GM soybeans. Jamaluddin et al. [60] used anthraquinone-2-sulphonic acid as a marker. Deng et al. [61] used a label-free sensing technology to directly reflect the differences in DNA hybridization with changes in electrode performance. Ge et al. [62] recently reported a CRISPR/Cas12a-mediated dual-mode for electrochemical detection of GM soybean. In addition to soybeans, GM rice [63] and E. coli [64] tests are also included in this cluster.
- #1 (Genosensor) The genosensor is emphasized in the title of the papers in this cluster. Genosensor is a terminology used in sensor analysis to indicate either that the analyte has a specific gene sequence or that a specific gene sequence has been used to construct the sensor. Three papers in this cluster used peptide nucleic acid to modify the sensor [65,66,67]. The remaining three papers used gold nanoparticles as electrode modifiers to amplify signals [58,68,69].
- #2 (PCR product) This cluster emphasizes electrochemical sensors’ rapid screening and multiplex identification of GM crops. Liao et al. [70] proposed a biomolecular analysis system with a unique biochemical activity that allows the interpretation of promoter, coding, and species genes through the signals of sensors. Moura-Melo et al. [71] identified the products of helicase-dependent isothermal amplification (HDA) by using an electrochemical platform and could identify the Cauliflower Mosaic Virus 35S Promoter (CaMV35S). In addition to qualitative analysis, quantitative analysis of the content of GM crops is also very necessary because of current EU regulations on the mandatory labeling of GMOs with a minimum content of 0.9%. Manzanares-Palenzuela et al. [72] developed a simple and sensitive composite electrochemical sensor for the quantitative analysis of Roundup-Ready Soybean. Fluorescein isothiocyanate or digoxin was used as a signal probe in this sensor.
- #3 (Specific gene) This cluster is completely encapsulated in Cluster #0. This cluster emphasizes the detection of specific gene sequences in GM crops. For example, Xu et al. [73] used methylene blue as a marker to detect CaMV35S. The sensor prepared by Mix et al. [74] is particularly targeted at cryIa/B and the MON810 specific fragment.
- #4 (Electrochemical genosensor) This cluster is completely encapsulated in Cluster #0 as well. The cluster also shares many papers with Cluster #0. In addition to DNA hybridization as a sensing strategy, this cluster also has papers on detecting molecules specifically produced by GM crops. GM maize produces more vaidin than non-GM maize, so that this molecule can be used as an indicator [30].
- #5 (Polymer) The three electrochemical sensors in this cluster have polymers for electrode modification. Polyaniline nanofibers were used in the DNA sensor proposed by Yang et al. [53] Silva et al. [75] used poly(allylamine hydrochloride) in the sensor. El-moghazy et al. [76] selected poly(vinyl alcohol) nanocomposites to construct sensors.
- #6 (Laboratory analyses) This cluster contains only two papers. The authors of the first paper designed a biosensor platform based on photosynthetic biology. GM algae were used to enhance the sensing capabilities of the platform, which could be used to identify different herbicide subclasses. The authors of the second paper proposed a labeled electrochemical sensor to detect GM soybean [61]. This paper is also classified in Cluster #0.
- #7 (GM crops) All of the papers in this cluster have realized the detection of actual GM crops. GM soybean, rice, and Arabidopsis thaliana were used as actual samples in the sensor proposed by Huang et al. [77]. Similarly, GM soybean and maize were used as real samples in reports published by Zeng et al. [78] Wang et al. [79] proposed an on-point detection sensor for GM rice identification.
- #8 (Immunosensor) All three papers in the cluster used immunosensing strategies rather than DNA hybridization.
- #9 (Yeast cells) The only paper in the cluster presents an electrochemical scanning microscope study of enzyme activity in yeast cells [80].
Cluster ID | Size | Silhouette | Keywords | References |
---|---|---|---|---|
0 | 35 | 0.847 | BT63 detection; electrochemical DNA biosensor; transgenic event; Au-reduced graphene oxide nanocomposite; reduced graphene oxide | [29,60,61,62,63,64,81,82] |
1 | 31 | 0.893 | Electrochemical genosensor; nucleic acid-mediated PCR; asymmetric PCR technique; electrostatic interaction; metal cation; genosensor | [58,65,66,67,68,69] |
2 | 30 | 0.874 | Electrochemical sensor; logic-based biomolecular analysis; biotech crop; multiplex screening; PCR product | [70,71,72,83,84,85,86] |
3 | 28 | 0.855 | Electrochemical detection; using methylene blue; specific gene; ethylenediamine-modified glassy carbon electrode; PCR product | [31,73,74,87,88,89] |
4 | 24 | 0.870 | Genetic element present; disposable genosensor; new tool; voltammetric technique; DNA hybridization biosensor | [30,62,68,71,90,91,92,93] |
5 | 22 | 0.905 | Polymer; different configuration; screen-printed graphite electrode; gold nanoparticle; using polyaniline nanofiber | [53,75,76,94] |
6 | 22 | 0.977 | Laboratory analyses; pesticide residue; biosensor; new platform; DNA-based biosensor | [61,95] |
7 | 20 | 0.903 | GM rice; CPA acceleration; on-point detection; FMO product; GM crops | [77,78,79,96] |
8 | 13 | 0.991 | Immunosensor; Cry1ab protein; of-care testing; MXene catalyzed Faraday cage | [97,98,99] |
9 | 10 | 1.000 | Yeast cells; gene expression; array | [80] |
4. Co-Citation Analysis
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van den Eede, G.; Aarts, H.; Buhk, H.-J.; Corthier, G.; Flint, H.J.; Hammes, W.; Jacobsen, B.; Midtvedt, T.; Van der Vossen, J.; von Wright, A. The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants. Food Chem. Toxicol. 2004, 42, 1127–1156. [Google Scholar] [CrossRef]
- Turnbull, C.; Lillemo, M.; Hvoslef-Eide, T.A. Global regulation of genetically modified crops amid the gene edited crop boom—A review. Front. Plant Sci. 2021, 12, 258. [Google Scholar] [CrossRef]
- Mbabazi, R.; Koch, M.; Maredia, K.; Guenthner, J. Crop biotechnology and product stewardship. GM Crops. Food 2021, 12, 106–114. [Google Scholar] [CrossRef]
- Komen, J.; Wafula, D.K. Authorizing GM Crop Varieties: Policy Implications for Seed Systems in Sub-Saharan Africa. Agronomy 2021, 11, 1855. [Google Scholar] [CrossRef]
- Kichamu-Wachira, E.; Xu, Z.; Reardon-Smith, K.; Biggs, D.; Wachira, G.; Omidvar, N. Effects of climate-smart agricultural practices on crop yields, soil carbon, and nitrogen pools in Africa: A meta-analysis. J. Soils Sediments 2021, 21, 1587–1597. [Google Scholar] [CrossRef]
- Zhang, C.; Wohlhueter, R.; Zhang, H. Genetically modified foods: A critical review of their promise and problems. Food Sci. Hum. Wellness 2016, 5, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Ladics, G.S.; Bartholomaeus, A.; Bregitzer, P.; Doerrer, N.G.; Gray, A.; Holzhauser, T.; Jordan, M.; Keese, P.; Kok, E.; Macdonald, P. Genetic basis and detection of unintended effects in genetically modified crop plants. Transgenic Res. 2015, 24, 587–603. [Google Scholar] [CrossRef] [Green Version]
- Karimi-Maleh, H.; Karaman, C.; Karaman, O.; Karimi, F.; Vasseghian, Y.; Fu, L.; Baghayeri, M.; Rouhi, J.; Senthil Kumar, P.; Show, P.-L.; et al. Nanochemistry approach for the fabrication of Fe and N co-decorated biomass-derived activated carbon frameworks: A promising oxygen reduction reaction electrocatalyst in neutral media. J. Nanostruct. Chem. 2022. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Beitollahi, H.; Kumar, P.S.; Tajik, S.; Jahani, P.M.; Karimi, F.; Karaman, C.; Vasseghian, Y.; Baghayeri, M.; Rouhi, J. Recent advances in carbon nanomaterials-based electrochemical sensors for food azo dyes detection. Food Chem. Toxicol. 2022, 164, 112961. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Ayati, A.; Davoodi, R.; Tanhaei, B.; Karimi, F.; Malekmohammadi, S.; Orooji, Y.; Fu, L.; Sillanpää, M. Recent advances in using of chitosan-based adsorbents for removal of pharmaceutical contaminants: A review. J. Clean. Prod. 2021, 291, 125880. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, J.; Liang, M.; Zheng, H.; Zhu, C.; Wang, Y. Detection of Imatinib Based on Electrochemical Sensor Constructed Using Biosynthesized Graphene-Silver Nanocomposite. Front. Chem. 2021, 9, 208. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Zhang, X.; Ding, S.; Chen, F.; Lv, Y.; Zhang, H.; Zhao, S. Recent Developments in the Electrochemical Determination of Sulfonamides. Curr. Pharm. Anal. 2022, 18, 4–13. [Google Scholar] [CrossRef]
- Shi, H.; Fu, L.; Chen, F.; Zhao, S.; Lai, G. Preparation of highly sensitive electrochemical sensor for detection of nitrite in drinking water samples. Environ. Res. 2022, 209, 112747. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, Y.; Zhang, P.; Wang, Y.; Zheng, Y.; Fu, L.; Zhang, H.; Lin, C.-T.; Yu, A. Infrageneric phylogenetics investigation of Chimonanthus based on electroactive compound profiles. Bioelectrochemistry 2020, 133, 107455. [Google Scholar] [CrossRef]
- Ye, W.; Zheng, Y.; Zhang, P.; Fan, B.; Li, Y.; Fu, L. Identification of Species in Lycoris spp. from stigmatic exudate using electrochemical fingerprints. Int. J. Electrochem. Sci. 2021, 16, 211041. [Google Scholar] [CrossRef]
- Manzanares-Palenzuela, C.L.; Martín-Fernández, B.; López, M.S.-P.; López-Ruiz, B. Electrochemical genosensors as innovative tools for detection of genetically modified organisms. TrAC Trends Anal. Chem. 2015, 66, 19–31. [Google Scholar] [CrossRef]
- Ferapontova, E.E. DNA electrochemistry and electrochemical sensors for nucleic acids. Annu. Rev. Anal. Chem. 2018, 11, 197–218. [Google Scholar] [CrossRef] [PubMed]
- Martín-Fernández, B.; Manzanares-Palenzuela, C.L.; Sánchez-Paniagua López, M.; de-Los-Santos-Álvarez, N.; López-Ruiz, B. Electrochemical genosensors in food safety assessment. Crit. Rev. Food Sci. Nutr. 2017, 57, 2758–2774. [Google Scholar] [CrossRef] [PubMed]
- Gooding, J.J. Electrochemical DNA hybridization biosensors. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2002, 14, 1149–1156. [Google Scholar] [CrossRef]
- Börner, K.; Chen, C.; Boyack, K.W. Visualizing knowledge domains. Annu. Rev. Inf. Sci. Technol. 2003, 37, 179–255. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Ibekwe-SanJuan, F.; Hou, J. The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1386–1409. [Google Scholar] [CrossRef] [Green Version]
- Xueshu, D. Wenxian COOC Is a Software for Bibliometrics and Knowledge Mapping[CP/OL]. 2022. Available online: https://gitee.com/academic_2088904822/academic-drip (accessed on 5 February 2022).
- Minunni, M.; Tombelli, S.; Mariotti, E.; Mascini, M. Biosensors as new analytical tool for detection of Genetically Modified Organisms (GMOs). Fresenius J. Anal. Chem. 2001, 369, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Mousavian, S.Z.; Safarian, M.; Sany, S.B.T.; Pasdar, Z.; Rezayi, M. Advancement in electrochemical DNA biosensors for GMO detection: A review study. J. Nutr. Fasting Health 2018, 6, 168–173. [Google Scholar]
- Ahmed, M.U.; Saito, M.; Hossain, M.M.; Rao, S.R.; Furui, S.; Hino, A.; Takamura, Y.; Takagi, M.; Tamiya, E. Electrochemical genosensor for the rapid detection of GMO using loop-mediated isothermal amplification. Analyst 2009, 134, 966–972. [Google Scholar] [CrossRef] [PubMed]
- Carpini, G.; Lucarelli, F.; Marrazza, G.; Mascini, M. Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids. Biosens. Bioelectron. 2004, 20, 167–175. [Google Scholar] [CrossRef]
- de Oliveira Marques, P.R.B.; Nunes, G.S.; dos Santos, T.C.R.; Andreescu, S.; Marty, J.-L. Comparative investigation between acetylcholinesterase obtained from commercial sources and genetically modified Drosophila melanogaster: Application in amperometric biosensors for methamidophos pesticide detection. Biosens. Bioelectron. 2004, 20, 825–832. [Google Scholar] [CrossRef]
- Petrlova, J.; Krizkova, S.; Supalkova, V.; Masarik, M.; Adam, V.; Havel, L.; Kramer, K.; Kizek, R. The determination of avidin in genetically modified maize by voltammetric techniques. Plant Soil Environ. 2007, 53, 345. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Zhao, R.; Wang, K.; Xiang, H.; Shang, Z.; Sun, W. Electrochemical behaviors of methylene blue on DNA modified electrode and its application to the detection of PCR product from NOS sequence. Sensors 2008, 8, 5649–5660. [Google Scholar] [CrossRef]
- Shkil, H.; Schulte, A.; Guschin, D.A.; Schuhmann, W. Electron transfer between genetically modified Hansenula polymorpha yeast cells and electrode surfaces via Os-complex modified redox polymers. ChemPhysChem 2011, 12, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, D.; Fu, L.; Zheng, Y.; Gu, Y.; Chen, F.; Zhao, S. Can Electrochemical Sensors Be Used for Identification and Phylogenetic Studies in Lamiaceae? Sensors 2021, 21, 8216. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, D.; Li, X.; Wang, Z.; Zhou, Q.; Fu, L.; Yin, Y.; Creech, D. Biometric Identification of Taxodium spp. and Their Hybrid Progenies by Electrochemical Fingerprints. Biosensors 2021, 11, 403. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Maleh, H.; Orooji, Y.; Karimi, F.; Alizadeh, M.; Baghayeri, M.; Rouhi, J.; Tajik, S.; Beitollahi, H.; Agarwal, S.; Gupta, V.K. A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens. Bioelectron. 2021, 184, 113252. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Maleh, H.; Khataee, A.; Karimi, F.; Baghayeri, M.; Fu, L.; Rouhi, J.; Karaman, C.; Karaman, O.; Boukherroub, R. A green and sensitive guanine-based DNA biosensor for idarubicin anticancer monitoring in biological samples: A simple and fast strategy for control of health quality in chemotherapy procedure confirmed by docking investigation. Chemosphere 2021, 291, 132928. [Google Scholar] [CrossRef]
- Lu, J.; Cheng, M.; Zhao, C.; Li, B.; Peng, H.; Zhang, Y.; Shao, Q.; Hassan, M. Application of lignin in preparation of slow-release fertilizer: Current status and future perspectives. Ind. Crops. Prod. 2022, 176, 114267. [Google Scholar] [CrossRef]
- Davison, J. GM plants: Science, politics and EC regulations. Plant Sci. 2010, 178, 94–98. [Google Scholar] [CrossRef]
- Jiang, L. Commercialization of the gene-edited crop and morality: Challenges from the liberal patent law and the strict GMO law in the EU. New Genet. Soc. 2020, 39, 191–218. [Google Scholar] [CrossRef]
- Rostoks, N.; Grantiņa-Ieviņa, L.; Ieviņa, B.; Evelone, V.; Valciņa, O.; Aleksejeva, I. Genetically modified seeds and plant propagating material in Europe: Potential routes of entrance and current status. Heliyon 2019, 5, e01242. [Google Scholar] [CrossRef] [Green Version]
- Hundleby, P.A.; Harwood, W.A. Impacts of the EU GMO regulatory framework for plant genome editing. Food Energy Secur. 2019, 8, e00161. [Google Scholar] [CrossRef] [Green Version]
- Arican, E. Recent molecular tools for detecting transgenic events in genetically modified (GM) crop products. Sci. Res. Essays 2011, 6, 5091–5099. [Google Scholar]
- Leimanis, S.; Hernandez, M.; Fernandez, S.; Boyer, F.; Burns, M.; Bruderer, S.; Glouden, T.; Harris, N.; Kaeppeli, O.; Philipp, P. A microarray-based detection system for genetically modified (GM) food ingredients. Plant Mol. Biol. 2006, 61, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Lee, S. Screening DNA chip and event-specific multiplex PCR detection methods for biotech crops. J. Sci. Food Agric. 2014, 94, 2856–2862. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Wang, R.; Wu, H.; Ping, J.; Wu, J. Recent advances in emerging DNA-based methods for genetically modified organisms (GMOs) rapid detection. TrAC Trends Anal. Chem. 2018, 109, 19–31. [Google Scholar] [CrossRef]
- Grohmann, L.; Keilwagen, J.; Duensing, N.; Dagand, E.; Hartung, F.; Wilhelm, R.; Bendiek, J.; Sprink, T. Detection and identification of genome editing in plants: Challenges and opportunities. Front. Plant Sci. 2019, 10, 236. [Google Scholar] [CrossRef] [Green Version]
- Karimi-Maleh, H.; Karimi, F.; Fu, L.; Sanati, A.L.; Alizadeh, M.; Karaman, C.; Orooji, Y. Cyanazine herbicide monitoring as a hazardous substance by a DNA nanostructure biosensor. J. Hazard. Mater. 2022, 423, 127058. [Google Scholar] [CrossRef] [PubMed]
- Safaei, P.; Aghaee, E.M.; Khaniki, G.J.; Afshari, S.A.K.; Rezaie, S. A simple and accurate PCR method for detection of genetically modified rice. J. Environ. Health Sci. Eng. 2019, 17, 847–851. [Google Scholar] [CrossRef] [Green Version]
- Demeke, T.; Dobnik, D. Critical assessment of digital PCR for the detection and quantification of genetically modified organisms. Anal. Bioanal. Chem. 2018, 410, 4039–4050. [Google Scholar] [CrossRef] [Green Version]
- Cottenet, G.; Blancpain, C.; Sonnard, V.; Chuah, P.F. Two FAST multiplex real-time PCR reactions to assess the presence of genetically modified organisms in food. Food Chem. 2019, 274, 760–765. [Google Scholar] [CrossRef]
- Shang, Y.; Xu, Y.; Huang, K.; Luo, Y.; Xu, W. Multiplex pyrosequencing quantitative detection combined with universal primer-multiplex-PCR for genetically modified organisms. Food Chem. 2020, 320, 126634. [Google Scholar] [CrossRef]
- Sun, W.; You, J.; Hu, X.; Jiao, K. Microdetermination of double-stranded DNA by linear sweep voltammetry with phenosafranine. Anal. Sci. 2006, 22, 691–696. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Zhou, N.; Zhang, Y.; Zhang, W.; Jiao, K.; Li, G. Synergistically improved sensitivity for the detection of specific DNA sequences using polyaniline nanofibers and multi-walled carbon nanotubes composites. Biosens. Bioelectron. 2009, 24, 2165–2170. [Google Scholar] [CrossRef]
- Fu, L.; Karimi, F.; Yu, A. Editorial: Graphene-Enhanced Electrochemical Sensing Platforms. Front. Chem. 2021, 9, 815981. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Wang, Q.; Zhang, M.; Zheng, Y.; Wu, M.; Lan, Z.; Pu, J.; Zhang, H.; Chen, F.; Su, W.; et al. Electrochemical Sex Determination of Dioecious Plants Using Polydopamine-Functionalized Graphene Sheets. Front. Chem. 2020, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Wang, A.; Su, W.; Zheng, Y.; Liu, Z. A rapid electrochemical sensor fabricated using silver ions and graphene oxide. Ionics 2018, 24, 2821–2827. [Google Scholar] [CrossRef]
- Fu, L.; Wu, M.; Zheng, Y.; Zhang, P.; Ye, C.; Zhang, H.; Wang, K.; Su, W.; Chen, F.; Yu, J.; et al. Lycoris species identification and infrageneric relationship investigation via graphene enhanced electrochemical fingerprinting of pollen. Sens. Actuators B Chem. 2019, 298, 126836. [Google Scholar] [CrossRef]
- Kaur, B.; Malecka, K.; Cristaldi, D.A.; Chay, C.S.; Mames, I.; Radecka, H.; Radecki, J.; Stulz, E. Approaching single DNA molecule detection with an ultrasensitive electrochemical genosensor based on gold nanoparticles and cobalt-porphyrin DNA conjugates. Chem. Commun. 2018, 54, 11108–11111. [Google Scholar] [CrossRef] [Green Version]
- Bartold, K.; Pietrzyk-Le, A.; Golebiewska, K.; Lisowski, W.; Cauteruccio, S.; Licandro, E.; D’Souza, F.; Kutner, W. Oligonucleotide determination via peptide nucleic acid macromolecular imprinting in an electropolymerized cg-rich artificial oligomer analogue. ACS Appl. Mater. Interfaces 2018, 10, 27562–27569. [Google Scholar] [CrossRef] [Green Version]
- Jamaluddin, R.Z.A.R.; Heng, L.Y.; Tan, L.L.; Chong, K.F. A Biosensor for Genetic Modified Soybean DNA Determination via Adsorption of Anthraquinone-2-sulphonic Acid in Reduced Graphene Oxide. Electroanalysis 2018, 30, 250–258. [Google Scholar] [CrossRef]
- Deng, Y.; Wu, J.; Tu, K.; Xu, H.; Ma, L.; Chen, J.; Wang, J. Preparation of DNA-Based Biosensor for Electrochemically Identification of Transgenic Soybean. Int. J. Electrochem. Sci. 2020, 15, 4556–4566. [Google Scholar] [CrossRef]
- Ge, H.; Wang, X.; Xu, J.; Lin, H.; Zhou, H.; Hao, T.; Wu, Y.; Guo, Z. A CRISPR/Cas12a-Mediated Dual-Mode Electrochemical Biosensor for Polymerase Chain Reaction-Free Detection of Genetically Modified Soybean. Anal. Chem. 2021, 93, 14885–14891. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Tang, Y.; Wang, S.; Liu, J.; Chen, Y.; Dong, Y.; Su, H.; Tan, T. An electrochemical DNA biosensor based on au-reduced graphene oxide nanocomposite for transgenic event Bt63 detection. Anal. Sci. 2017, 33, 1155–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanger, K.; Zor, K.; Jendresen, C.B.; Heiskanen, A.; Amato, L.; Nielsen, A.T.; Boisen, A. Lab-on-a-disc platform for screening of genetically modified E. coli cells via cell-free electrochemical detection of p-Coumaric acid. Sens. Actuators B Chem. 2017, 253, 999–1005. [Google Scholar] [CrossRef] [Green Version]
- Kerman, K.; Vestergaard, M.; Nagatani, N.; Takamura, Y.; Tamiya, E. Electrochemical genosensor based on peptide nucleic acid-mediated PCR and asymmetric PCR techniques: Electrostatic interactions with a metal cation. Anal. Chem. 2006, 78, 2182–2189. [Google Scholar] [CrossRef]
- Fortunati, S.; Rozzi, A.; Curti, F.; Giannetto, M.; Corradini, R.; Careri, M. Novel amperometric genosensor based on peptide nucleic acid (PNA) probes immobilized on carbon nanotubes-screen printed electrodes for the determination of trace levels of non-amplified DNA in genetically modified (GM) soy. Biosens. Bioelectron. 2019, 129, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Fortunati, S.; Giannetto, M.; Rozzi, A.; Corradini, R.; Careri, M. PNA-functionalized magnetic microbeads as substrates for enzyme-labelled voltammetric genoassay for DNA sensing applied to identification of GMO in food. Anal. Chim. Acta 2021, 1153, 338297. [Google Scholar] [CrossRef] [PubMed]
- Aghili, Z.; Nasirizadeh, N.; Divsalar, A.; Shoeibi, S.; Yaghmaei, P. A nanobiosensor composed of exfoliated graphene oxide and gold nano-urchins, for detection of GMO products. Biosens. Bioelectron. 2017, 95, 72–80. [Google Scholar] [CrossRef]
- Ang, W.L.; Seah, X.Y.; Koh, P.C.; Caroline, C.; Bonanni, A. Electrochemical polymerase chain reaction using electroactive graphene oxide nanoparticles as detection labels. ACS Appl. Nano Mater. 2020, 3, 5489–5498. [Google Scholar] [CrossRef]
- Liao, W.-C.; Chuang, M.-C.; Ho, J.A. Electrochemical sensor for multiplex screening of genetically modified DNA: Identification of biotech crops by logic-based biomolecular analysis. Biosens. Bioelectron. 2013, 50, 414–420. [Google Scholar] [CrossRef]
- Moura-Melo, S.; Miranda-Castro, R.; de-Los-Santos-Álvarez, N.; Miranda-Ordieres, A.J.; dos Santos Junior, J.R.; da Silva Fonseca, R.A.; Lobo-Castañón, M.J. Targeting helicase-dependent amplification products with an electrochemical genosensor for reliable and sensitive screening of genetically modified organisms. Anal. Chem. 2015, 87, 8547–8554. [Google Scholar] [CrossRef]
- Manzanares-Palenzuela, C.L.; de-Los-Santos-Álvarez, N.; Lobo-Castañón, M.J.; López-Ruiz, B. Multiplex electrochemical DNA platform for femtomolar-level quantification of genetically modified soybean. Biosens. Bioelectron. 2015, 68, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Jiao, K.; Fan, J.; Sun, W. Electrochemical Detection of Specific Gene Related to CaMV35S Using Methylene Blue and Ethylenediamine-modified Glassy Carbon Electrode. Acta Chim. Slov. 2006, 53, 486–491. [Google Scholar]
- Mix, M.; Rüger, J.; Krüger, S.; Broer, I.; Flechsig, G.-U. Electrochemical detection of 0.6% genetically modified maize MON810 in real flour samples. Electrochem. Commun. 2012, 22, 137–140. [Google Scholar] [CrossRef]
- Silva, T.R.; Vieira, I.C. A biosensor based on gold nanoparticles stabilized in poly (allylamine hydrochloride) and decorated with laccase for determination of dopamine. Analyst 2016, 141, 216–224. [Google Scholar] [CrossRef]
- El-Moghazy, A.; Soliman, E.; Ibrahim, H.; Marty, J.-L.; Istamboulie, G.; Noguer, T. Biosensor based on electrospun blended chitosan-poly (vinyl alcohol) nanofibrous enzymatically sensitized membranes for pirimiphos-methyl detection in olive oil. Talanta 2016, 155, 258–264. [Google Scholar] [CrossRef]
- Huang, L.; Zheng, L.; Chen, Y.; Xue, F.; Cheng, L.; Adeloju, S.B.; Chen, W. A novel GMO biosensor for rapid ultrasensitive and simultaneous detection of multiple DNA components in GMO products. Biosens. Bioelectron. 2015, 66, 431–437. [Google Scholar] [CrossRef]
- Zeng, H.; Yang, Q.; Liu, H.; Wu, G.; Jiang, W.; Liu, X.; Wang, J.; Tang, X. A sensitive immunosensor based on graphene-PAMAM composites for rapid detection of the CP4-EPSPS protein in genetically modified crops. Food Chem. 2021, 361, 129901. [Google Scholar] [CrossRef]
- Wang, R.; Wu, J.; Zhang, F.; Wang, L.; Ji, F. On-point detection of GM rice in 20 minutes with pullulan as CPA acceleration additive. Anal. Methods 2014, 6, 9198–9201. [Google Scholar] [CrossRef]
- Shiku, H.; Goto, S.; Jung, S.; Nagamine, K.; Koide, M.; Itayama, T.; Yasukawa, T.; Matsue, T. Electrochemical characterization of enzymatic activity of yeast cells entrapped in a poly (dimethylsiloxane) microwell on the basis of limited diffusion system. Analyst 2009, 134, 182–187. [Google Scholar] [CrossRef]
- Zhang, M.; Li, G.; Zhou, Q.; Pan, D.; Zhu, M.; Xiao, R.; Zhang, Y.; Wu, G.; Wan, Y.; Shen, Y. Boosted electrochemical immunosensing of genetically modified crop markers using nanobody and mesoporous carbon. ACS Sens. 2018, 3, 684–691. [Google Scholar] [CrossRef]
- Uluok, S.; Guven, B.; Eksi, H.; Ustundag, Z.; Tamer, U.; Boyaci, I.H. Designing multilayered nanoplatforms for SERS-based detection of genetically modified organisms. J. Nanopart. Res. 2015, 17, 1–12. [Google Scholar] [CrossRef]
- Manzanares-Palenzuela, C.L.; Martín-Clemente, J.; Lobo-Castañón, M.J.; López-Ruiz, B. Electrochemical detection of magnetically-entrapped DNA sequences from complex samples by multiplexed enzymatic labelling: Application to a transgenic food/feed quantitative survey. Talanta 2017, 164, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Plácido, A.; Ferreira-da-Silva, F.; Leite, J.R.S.; de-Los-Santos-Álvarez, N.; Delerue-Matos, C. A convenient renewable surface plasmon resonance chip for relative quantification of genetically modified soybean in food and feed. PLoS ONE 2020, 15, e0229659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Y.R.; Park, E.J.; Kim, J.H.; Min, N.K.; Kim, S.W. Development of bio-nanowire networks using phage-enabled assembly for biological sensor application. Talanta 2010, 81, 1425–1430. [Google Scholar] [CrossRef]
- Lucarelli, F.; Marrazza, G.; Mascini, M. Enzyme-based impedimetric detection of PCR products using oligonucleotide-modified screen-printed gold electrodes. Biosens. Bioelectron. 2005, 20, 2001–2009. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Yang, N.; Zhang, T.; Wang, Z.; Lu, X.; Kang, J. Fabrication and application of a new DNA biosensor based on on-substrate PCR and electrochemistry. Sens. Actuators B Chem. 2011, 160, 598–603. [Google Scholar] [CrossRef]
- Biala, K.; Sedova, A.; Flechsig, G.-U. Sequence and temperature influence on kinetics of DNA strand displacement at gold electrode surfaces. ACS Appl. Mater. Interfaces 2015, 7, 19948–19959. [Google Scholar] [CrossRef]
- Duwensee, H.; Mix, M.; Broer, I.; Flechsig, G.-U. Electrochemical detection of modified maize gene sequences by multiplexed labeling with osmium tetroxide bipyridine. Electrochem. Commun. 2009, 11, 1487–1491. [Google Scholar] [CrossRef]
- Manzanares-Palenzuela, C.L.; Mafra, I.; Costa, J.; Barroso, M.F.; de-los-Santos-Álvarez, N.; Delerue-Matos, C.; Oliveira, M.B.P.; Lobo-Castañón, M.J.; López-Ruiz, B. Electrochemical magnetoassay coupled to PCR as a quantitative approach to detect the soybean transgenic event GTS40-3-2 in foods. Sens. Actuators B Chem. 2016, 222, 1050–1057. [Google Scholar] [CrossRef]
- Hintermayer, S.; Yu, S.; Krömer, J.O.; Weuster-Botz, D. Anodic respiration of Pseudomonas putida KT2440 in a stirred-tank bioreactor. Biochem. Eng. J. 2016, 115, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Tichoniuk, M.; Ligaj, M.; Filipiak, M. Application of DNA hybridization biosensor as a screening method for the detection of genetically modified food components. Sensors 2008, 8, 2118–2135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meric, B.; Kerman, K.; Marrazza, G.; Palchetti, I.; Mascini, M.; Ozsoz, M. Disposable genosensor, a new tool for the detection of NOS-terminator, a genetic element present in GMOs. Food Control 2004, 15, 621–626. [Google Scholar] [CrossRef]
- Avramescu, A.; Andreescu, S.; Noguer, T.; Bala, C.; Andreescu, D.; Marty, J.-L. Biosensors designed for environmental and food quality control based on screen-printed graphite electrodes with different configurations. Anal. Bioanal. Chem. 2002, 374, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Buonasera, K.; Pezzotti, G.; Scognamiglio, V.; Tibuzzi, A.; Giardi, M.T. New platform of biosensors for prescreening of pesticide residues to support laboratory analyses. J. Agric. Food Chem. 2010, 58, 5982–5990. [Google Scholar] [CrossRef] [PubMed]
- Pola-López, L.; Camas-Anzueto, J.; Martínez-Antonio, A.; Luján-Hidalgo, M.; Anzueto-Sánchez, G.; Ruíz-Valdiviezo, V.; Grajales-Coutiño, R.; González, J.C. Novel arsenic biosensor “POLA” obtained by a genetically modified E. coli bioreporter cell. Sens. Actuators B Chem. 2018, 254, 1061–1068. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, D.; Lin, H.; Wei, W.; Hao, T.; Hu, Y.; Wang, S.; Guo, Z. MXene catalyzed Faraday cage-type electrochemiluminescence immunosensor for the detection of genetically modified crops. Sens. Actuators B Chem. 2021, 346, 130549. [Google Scholar] [CrossRef]
- Freitas, M.; Correr, W.; Cancino-Bernardi, J.; Barroso, M.F.; Delerue-Matos, C.; Zucolotto, V. Impedimetric immunosensors for the detection of Cry1Ab protein from genetically modified maize seeds. Sens. Actuators B Chem. 2016, 237, 702–709. [Google Scholar] [CrossRef]
- Gao, H.; Wen, L.; Tian, J.; Wu, Y.; Liu, F.; Lin, Y.; Hua, W.; Wu, G. A portable electrochemical immunosensor for highly sensitive point-of-care testing of genetically modified crops. Biosens. Bioelectron. 2019, 142, 111504. [Google Scholar] [CrossRef]
- Yang, L.; Kim, T.; Cho, H.; Luo, J.; Lee, J.; Chueng, S.D.; Hou, Y.; Yin, P.T.; Han, J.; Kim, J.H. Hybrid Graphene-Gold Nanoparticle-Based Nucleic Acid Conjugates for Cancer-Specific Multimodal Imaging and Combined Therapeutics. Adv. Funct. Mater. 2021, 31, 2006918. [Google Scholar] [CrossRef]
- Danielson, E.; Sontakke, V.A.; Porkovich, A.J.; Wang, Z.; Kumar, P.; Ziadi, Z.; Yokobayashi, Y.; Sowwan, M. Graphene based field-effect transistor biosensors functionalized using gas-phase synthesized gold nanoparticles. Sens. Actuators B Chem. 2020, 320, 128432. [Google Scholar] [CrossRef]
- Khalil, I.; Yehye, W.A.; Julkapli, N.M.; Rahmati, S.; Sina, A.A.I.; Basirun, W.J.; Johan, M.R. Graphene oxide and gold nanoparticle based dual platform with short DNA probe for the PCR free DNA biosensing using surface-enhanced Raman scattering. Biosens. Bioelectron. 2019, 131, 214–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummond, T.G.; Hill, M.G.; Barton, J.K. Electrochemical DNA sensors. Nat. Biotechnol. 2003, 21, 1192–1199. [Google Scholar] [CrossRef] [Green Version]
- Wang, J. Electrochemical nucleic acid biosensors. Emerg. Technol. NUCLEIC ACID Anal. 2002, 469, 63–71. [Google Scholar] [CrossRef]
- Pang, D.-W.; Abruña, H.D. Interactions of Benzyl Viologen with Surface-Bound Single- and Double-Stranded DNA. Anal. Chem. 2000, 72, 4700–4706. [Google Scholar] [CrossRef] [PubMed]
- Pang, D.-W.; Abruña, H.D. Micromethod for the Investigation of the Interactions between DNA and Redox-Active Molecules. Anal. Chem. 1998, 70, 3162–3169. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Z.; Li, Y.F.; Feng, P. A spectrophotometric study on the interaction of neutral red with double-stranded DNA in large excess. Talanta 2001, 55, 321–328. [Google Scholar] [CrossRef]
- Giesen, U.; Kleider, W.; Berding, C.; Geiger, A.; Ørum, H.; Nielsen, P.E. A formula for thermal stability (Tm) prediction of PNA/DNA duplexes. Nucleic Acids Res. 1998, 26, 5004–5006. [Google Scholar] [CrossRef]
- Marrazza, G.; Chiti, G.; Mascini, M.; Anichini, M. Detection of Human Apolipoprotein E Genotypes by DNA Electrochemical Biosensor Coupled with PCR. Clin. Chem. 2000, 46, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, F.E. Detection of genetically modified organisms in foods. TRENDS Biotechnol. 2002, 20, 215–223. [Google Scholar] [CrossRef]
- Hahn, S.; Mergenthaler, S.; Zimmermann, B.; Holzgreve, W. Nucleic acid based biosensors: The desires of the user. NABB 2003 New Trends Nucleic Acid Based Biosens. 2005, 67, 151–154. [Google Scholar] [CrossRef]
- Lucarelli, F.; Marrazza, G.; Turner, A.P.F.; Mascini, M. Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors. Biosens. Bioelectron. 2004, 19, 515–530. [Google Scholar] [CrossRef]
- Bettazzi, F.; Lucarelli, F.; Palchetti, I.; Berti, F.; Marrazza, G.; Mascini, M. Disposable electrochemical DNA-array for PCR amplified detection of hazelnut allergens in foodstuffs. Anal. Chim. Acta 2008, 614, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Paleček, E.; Bartošík, M. Electrochemistry of Nucleic Acids. Chem. Rev. 2012, 112, 3427–3481. [Google Scholar] [CrossRef]
- Civit, L.; Fragoso, A.; O’Sullivan, C.K. Thermal stability of diazonium derived and thiol-derived layers on gold for application in genosensors. Electrochem. Commun. 2010, 12, 1045–1048. [Google Scholar] [CrossRef]
- Mix, M.; Reske, T.; Duwensee, H.; Flechsig, G.-U. Electrochemical Detection of Asymmetric PCR Products by Labeling with Osmium Tetroxide. Electroanalysis 2009, 21, 826–830. [Google Scholar] [CrossRef]
- Campuzano, S.; Kuralay, F.; Lobo-Castañón, M.J.; Bartošík, M.; Vyavahare, K.; Paleček, E.; Haake, D.A.; Wang, J. Ternary monolayers as DNA recognition interfaces for direct and sensitive electrochemical detection in untreated clinical samples. Biosens. Bioelectron. 2011, 26, 3577–3583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fátima Barroso, M.; Freitas, M.; Oliveira, M.B.P.P.; de-los-Santos-Álvarez, N.; Lobo-Castañón, M.J.; Delerue-Matos, C. 3D-nanostructured Au electrodes for the event-specific detection of MON810 transgenic maize. Talanta 2015, 134, 158–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arugula, M.A.; Zhang, Y.; Simonian, A.L. Biosensors as 21st Century Technology for Detecting Genetically Modified Organisms in Food and Feed. Anal. Chem. 2014, 86, 119–129. [Google Scholar] [CrossRef]
- Freitas, M.; Sá Couto, M.; Barroso, M.F.; Pereira, C.; de-los-Santos-Alvarez, N.; Miranda-Ordieres, A.J.; Lobo-Castañón, M.J.; Delerue-Matos, C. Highly monodisperse Fe3O4@Au superparamagnetic nanoparticles as reproducible platform for genosensing genetically modified organisms. Acs Sens. 2016, 1, 1044–1053. [Google Scholar] [CrossRef]
- Albright, V.C.; Hellmich, R.L.; Coats, J.R. A Review of Cry Protein Detection with Enzyme-Linked Immunosorbent Assays. J. Agric. Food Chem. 2016, 64, 2175–2189. [Google Scholar] [CrossRef] [Green Version]
- Ashley, J.; Shahbazi, M.-A.; Kant, K.; Chidambara, V.A.; Wolff, A.; Bang, D.D.; Sun, Y. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives. Biosens. Bioelectron. 2017, 91, 606–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamle, S.; Ali, S. Genetically modified crops: Detection strategies and biosafety issues. Gene 2013, 522, 123–132. [Google Scholar] [CrossRef]
- Wu, J.; Campuzano, S.; Halford, C.; Haake, D.A.; Wang, J. Ternary Surface Monolayers for Ultrasensitive (Zeptomole) Amperometric Detection of Nucleic Acid Hybridization without Signal Amplification. Anal. Chem. 2010, 82, 8830–8837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abi, A.; Ferapontova, E.E. Unmediated by DNA Electron Transfer in Redox-Labeled DNA Duplexes End-Tethered to Gold Electrodes. J. Am. Chem. Soc. 2012, 134, 14499–14507. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, M.; Ma, M.; Hai, H.; Li, J.; Shan, Y. A novel electrochemical DNA biosensor for transgenic soybean detection based on triple signal amplification. Anal. Chim. Acta 2019, 1078, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Plácido, A.; Pereira, C.; Guedes, A.; Barroso, M.F.; Miranda-Castro, R.; de-los-Santos-Álvarez, N.; Delerue-Matos, C. Electrochemical genoassays on gold-coated magnetic nanoparticles to quantify genetically modified organisms (GMOs) in food and feed as GMO percentage. Biosens. Bioelectron. 2018, 110, 147–154. [Google Scholar] [CrossRef] [Green Version]
No. | Citation | Cited Journal |
---|---|---|
1 | 70 | Biosensors & Bioelectronics |
2 | 66 | Analytical Chemistry |
3 | 57 | Analytica Chimica Acta |
4 | 52 | Talanta |
5 | 37 | Electroanalysis |
6 | 36 | Sensor and Actuators B: Chemical |
7 | 36 | Analytical and Bioanalytical Chemistry |
8 | 34 | Journal of the American Chemical Society |
9 | 27 | Journal of Agricultural and Food Chemistry |
10 | 25 | Analyst |
11 | 25 | Analytical Biochemistry |
12 | 21 | Electrochimica Acta |
13 | 20 | Food Control |
14 | 16 | Food Chemistry |
15 | 16 | Microchimica Acta |
Year | Journal Name |
---|---|
2021 | ACS Applied Nano Materials; Environment International; Journal of The Electrochemical Society; Pest Management Science; Science of the Total Environment |
2020 | Critical Reviews in Food Science and Nutrition; Gene; Journal of Colloid and Interface Science; Nanoscale |
2019 | Applied Materials Today; Biochemistry; Chemistry & Biodiversity |
No. | Freq | Centrality | Keywords |
---|---|---|---|
1 | 16 | 0.28 | Biosensor |
2 | 14 | 0.16 | Sensor |
3 | 13 | 0.22 | Electrode |
4 | 11 | 0.15 | Hybridization |
5 | 11 | 0.12 | DNA |
6 | 10 | 0.08 | GMO |
7 | 10 | 0.04 | PCR |
8 | 9 | 0.10 | Nanoparticle |
9 | 9 | 0.12 | Modified organism |
10 | 9 | 0.08 | Immobilization |
11 | 8 | 0.07 | Amplification |
12 | 7 | 0.15 | Electrochemical detection |
13 | 7 | 0.09 | Nucleic acid |
14 | 7 | 0.08 | Assay |
15 | 6 | 0.04 | Gold nanoparticle |
Keywords | Strength | Begin | End | 2001–2021 |
---|---|---|---|---|
Nucleic acid | 1.69 | 2006 | 2015 | ▂▂▂▂▂▃ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▃▂ ▂ ▂ ▂ ▂ ▂ |
Film | 1.56 | 2009 | 2014 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂▃ ▃ ▃ ▃ ▃ ▃▂ ▂ ▂ ▂ ▂ ▂ ▂ |
Electrochemical detection | 2.17 | 2014 | 2018 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂▃ ▃ ▃ ▃ ▃▂ ▂ ▂ |
Assay | 2.00 | 2015 | 2017 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂▃ ▃ ▃▂ ▂ ▂ ▂ |
PCR | 1.94 | 2015 | 2016 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂▃ ▃▂ ▂ ▂ ▂ ▂ |
Genosensor | 1.58 | 2016 | 2017 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂▃ ▃▂ ▂ ▂ ▂ |
Sequence | 1.59 | 2017 | 2018 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂▃ ▃▂ ▂ ▂ |
Amplification | 2.25 | 2018 | 2021 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂▃ ▃ ▃ ▃ |
Reduced graphene oxide | 1.81 | 2018 | 2021 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂▃ ▃ ▃ ▃ |
Label-free | 1.81 | 2018 | 2021 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂▃ ▃ ▃ ▃ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Karimi-Maleh, H.; Fu, L. Advances in Electrochemical Techniques for the Detection and Analysis of Genetically Modified Organisms: An Analysis Based on Bibliometrics. Chemosensors 2022, 10, 194. https://doi.org/10.3390/chemosensors10050194
Zheng Y, Karimi-Maleh H, Fu L. Advances in Electrochemical Techniques for the Detection and Analysis of Genetically Modified Organisms: An Analysis Based on Bibliometrics. Chemosensors. 2022; 10(5):194. https://doi.org/10.3390/chemosensors10050194
Chicago/Turabian StyleZheng, Yuhong, Hassan Karimi-Maleh, and Li Fu. 2022. "Advances in Electrochemical Techniques for the Detection and Analysis of Genetically Modified Organisms: An Analysis Based on Bibliometrics" Chemosensors 10, no. 5: 194. https://doi.org/10.3390/chemosensors10050194
APA StyleZheng, Y., Karimi-Maleh, H., & Fu, L. (2022). Advances in Electrochemical Techniques for the Detection and Analysis of Genetically Modified Organisms: An Analysis Based on Bibliometrics. Chemosensors, 10(5), 194. https://doi.org/10.3390/chemosensors10050194