Effects of Acidic Solution on the One-Step Electrodeposition of Prussian Blue Nanocrystals on Screen-Printed Carbon Electrodes Modified with Magnetite Nanoparticles
Abstract
:1. Introduction
2. Experimental
2.1. Reagents
2.2. Instruments
2.3. Synthesis of Fe3O4 Nanoparticles
2.4. Preparation of Nano-Fe3O4 Modified Electrodes
3. Results and Discussion
3.1. Electrochemical Study of SPCE/Nano-Fe3O4 in a Mixture Solution Containing Hexacyanoferrate(III) and Glyphosate
3.2. The Effects of Acids on the Electrochemical Formation of PBNC
3.3. Spectral Characterization of SPCE/Nano-Fe3O4/PBNC
3.4. The Electrochemical Application of SPCE/Nano-Fe3O4/PBNC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nadar, S.S.; Kelkar, R.K.; Pise, P.V.; Patil, N.P.; Patil, S.P.; Chaubal-Durve, N.S.; Bhange, V.P.; Tiwari, M.S.; Patil, P.D. The Untapped Potential of Magnetic Nanoparticles for Forensic Investigations: A Comprehensive Review. Talanta 2021, 230, 122297–122313. [Google Scholar] [CrossRef]
- Gebre, S.H. Recent Developments in the Fabrication of Magnetic Nanoparticles for the Synthesis of Trisubstituted Pyridines and Imidazoles: A Green Approach. Synth. Commun. 2021, 51, 1669–1699. [Google Scholar] [CrossRef]
- Gul, S.; Khan, S.B.; Rehman, I.U.; Khan, M.A.; Khan, M.I. A Comprehensive Review of Magnetic Nanomaterials Modern Day Theranostics. Front. Mater. 2019, 6, 179. [Google Scholar] [CrossRef]
- Neamtu, M.; Nadejde, C.; Hodoroaba, V.-D.; Schneider, R.J.; Verestiuc, L.; Panne, U. Functionalized Magnetic Nanoparticles: Synthesis, Characterization, Catalytic Application and Assessment of Toxicity. Sci. Rep. 2018, 8, 6278–6288. [Google Scholar] [CrossRef]
- Mohammed, L.; Gomaa, H.G.; Ragab, D.; Zhu, J. Magnetic Nanoparticles for Environmental and Biomedical Applications: A Review. Particuology 2017, 30, 1–14. [Google Scholar] [CrossRef]
- Ashraf, M.; Khan, I.; Usman, M.; Khan, A.; Shah, S.S.; Khan, A.Z.; Saeed, K.; Yaseen, M.; Ehsan, M.F.; Tahir, M.N.; et al. Hematite and Magnetite Nanostructures for Green and Sustainable Energy Harnessing and Environmental Pollution Control: A Review. Chem. Res. Toxicol. 2020, 33, 1292–1311. [Google Scholar] [CrossRef] [PubMed]
- Saiphaneendra, B.; Saxena, T.; Singh, S.A.; Madras, G.; Srivastava, C. Synergistic Effect of Co-existence of Hematite (α-Fe2O3) and Magnetite (Fe3O4) Nanoparticles on Graphene Sheet for Dye Adsorption. J. Environ. Chem. Eng. 2017, 5, 26–37. [Google Scholar] [CrossRef]
- Iconaru, S.L.; Guégan, R.; Popa, C.L.; Motelica-Heino, M.; Ciobanu, C.S.; Predoi, D. Magnetite (Fe3O4) Nanoparticles as Adsorbents for As and Cu Removal. Appl. Clay Sci. 2016, 134, 128–135. [Google Scholar] [CrossRef]
- Ganapathe, L.S.; Mohamed, M.A.; Yunus, R.M.; Berhanuddin, D.D. Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation. Magnetochemistry 2020, 6, 68. [Google Scholar] [CrossRef]
- Wu, K.; Su, D.; Liu, J.; Saha, R.; Wang, J.-P. Magnetic Nanoparticles in Nanomedicine: A Review of Recent Advances. Nanotechnology 2019, 30, 502003–502050. [Google Scholar] [CrossRef]
- Kong, B.; Selomulya, C.; Zheng, G.; Zhao, D. New Faces of Porous Prussian Blue: Interfacial Assembly of Integrated Hetero-Structures for Sensing Applications. Chem. Soc. Rev. 2015, 44, 7997–8018. [Google Scholar] [CrossRef]
- Avila, Y.; Acevedo-Peña, P.; Reguera, L.; Reguera, E. Recent Progress in Transition Metal Hexacyanometallates: From Structure to Properties and Functionality. Coord. Chem. Rev. 2022, 453, 214274–214326. [Google Scholar] [CrossRef]
- Busquets, M.A.; Estelrich, J. Prussian Blue Nanoparticles: Synthesis, Surface Modification, and Biomedical Applications. Drug Discov. Today 2020, 25, 1431–1443. [Google Scholar] [CrossRef] [PubMed]
- Samain, L.; Grandjean, F.; Long, G.J.; Martinetto, P.; Bordet, P.; Strivay, D. Relationship Between the Synthesis of Prussian Blue Pigments, Their Color, Physical Properties, and Their Behavior in Paint Layers. J. Phys. Chem. C 2013, 117, 9693–9712. [Google Scholar] [CrossRef]
- Ming, H.; Torad, N.L.K.; Chiang, Y.-D.; Wu, K.C.W.; Yamauchi, Y. Size- and Shape-controlled Synthesis of Prussian Blue Nanoparticles by a Polyvinylpyrrolidone-assisted Crystallization Process. Cryst. Eng. Commun. 2012, 14, 3387–3396. [Google Scholar] [CrossRef]
- Chumming, J.; Xiangqin, L. Electrochemical Synthesis of Fe3O4-PB Nanoparticles with Core-shell Structure and its Electrocatalytic Reduction Toward H2O2. J. Solid State Electrochem. 2009, 13, 1273–1278. [Google Scholar] [CrossRef]
- Zhao, G.; Feng, J.-J.; Zhang, Q.-L.; Li, S.-P.; Chen, H.-Y. Synthesis and Characterization of Prussian Blue Modified Magnetite Nanoparticles and its Application to the Electrocatalytic Reduction of H2O2. Chem. Mater. 2005, 17, 3154–3159. [Google Scholar] [CrossRef]
- Nossol, E.; Zarbin, A.J.G. A Simple and Innovative Route to Prepare a Novel Carbon Nanotube/Prussian Blue Electrode and its Utilization as a Highly Sensitive H2O2 Amperometric Sensor. Adv. Funct. Mater. 2009, 19, 3980–3986. [Google Scholar] [CrossRef]
- Yang, C.; Wang, C.-H.; Wu, J.-S.; Xia, X. Mechanism Investigation of Prussian Blue Electrochemically Deposited from a Solution Containing Single Component of Ferricyanide. Electrochim. Acta 2006, 51, 4019–4023. [Google Scholar] [CrossRef]
- Mertens, M.; Höss, S.; Neumann, G.; Afzal, J.; Reichenbecher, W. Glyphosate, a Chelating Agent—Relevant for Ecological Risk Assessment. Environ. Sci. Pollut. Res. 2018, 25, 5298–5317. [Google Scholar] [CrossRef] [PubMed]
- Torretta, V.; Katsoyiannis, I.A.; Viotti, P.; Rada, E.C. Critical Review of the Effects of Glyphosate Exposure to the Environment and Humans Through the Food Supply Chain. Sustainability 2018, 10, 950. [Google Scholar] [CrossRef]
- Bressán, I.G.; Llesuy, S.F.; Rodriguez, C.; Ferloni, A.; Dawidowski, A.R.; Figar, S.B.; Giménez, M.I. Optimization and Validation of a Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of Glyphosate in Human Urine After Pre-column Derivatization with 9-Fluorenylmethoxycarbonyl Chloride. J. Chromatogr. B 2021, 1171, 122616–122624. [Google Scholar] [CrossRef]
- Sawetwong, P.; Chairam, S.; Jarujamrus, P.; Amatatongchai, M. Enhanced Selectivity and Sensitivity for Colorimetric Determination of Glyphosate Using Mn–ZnS Quantum Dot Embedded Molecularly Imprinted Polymers Combined with a 3D-microfluidic Paper-based Analytical Device. Talanta 2021, 225, 122077–122086. [Google Scholar] [CrossRef]
- Guerrero-Esteban, T.; Gutiérrez-Sánchez, C.; Martínez-Periñán, E.; Revenga-Parra, M.; Pariente, F.; Lorenzo, E. Sensitive Glyphosate Electrochemiluminescence Immunosensor Based on Electrografted Carbon Nanodots. Sens. Actuators B 2021, 330, 129389–129397. [Google Scholar] [CrossRef]
- Zhang, C.; She, Y.; Li, T.; Zhao, F.; Jin, M.; Guo, Y.; Zheng, L.; Wang, S.; Jin, F.; Shao, H.; et al. A Highly Selective Electrochemical Sensor Based on Molecularly Imprinted Polypyrrole-modified Gold Electrode for the Determination of Glyphosate in Cucumber and Tap Water. Anal. Bioanal. Chem. 2017, 409, 7133–7144. [Google Scholar] [CrossRef]
- Regiart, M.; Kumar, A.; Gonçalves, J.M.; Junior, G.J.S.; Masini, J.C.; Angnes, L.; Bertotti, M. An Electrochemically Synthesized Nanoporous Copper Microsensor for Highly Sensitive and Selective Determination of Glyphosate. ChemElectroChem 2020, 7, 1558–1566. [Google Scholar] [CrossRef]
- Songa, E.A.; Arotiba, O.A.; Owino, J.H.O.; Jahed, N.; Baker, P.G.L.; Iwuoha, E.I. Electrochemical Detection of Glyphosate Herbicide Using Horseradish Peroxidase Immobilized on Sulfonated Polymer Matrix. Bioelectrochemistry 2009, 75, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Sok, V.; Fragoso, A. Amperometric Biosensor for Glyphosate Based on the Inhibition of Tyrosinase Conjugated to Carbon Nano-onions in a Chitosan Matrix on a Screen-printed Electrode. Microchim. Acta 2019, 186, 569–576. [Google Scholar] [CrossRef]
- Khenifi, A.; Derriche, Z.; Forano, C.; Prevot, V.; Mousty, C.; Scavetta, E.; Ballarin, B.; Guadagnini, L.; Tonelli, D. Glyphosate and Glufosinate Detection at Electrogenerated NiAl-LDH Thin Films. Anal. Chim. Acta 2009, 654, 97–102. [Google Scholar] [CrossRef]
- Oliveira, P.C.; Maximiano, E.M.; Oliveira, P.A.; Camargo, J.S.; Fiorucci, A.R.; Arruda, G.J. Direct Electrochemical Detection of Glyphosate at Carbon Paste Electrode and its Determination in Samples of Milk, Orange juice, and Agricultural Formulation. J. Environ. Sci. Health Part B 2018, 53, 817–823. [Google Scholar] [CrossRef]
- Scandurra, A.; Censabella, M.; Gulino, A.; Grimaldi, M.G.; Ruffino, F. Gold Nanoelectrode Arrays Dewetted Onto Graphene Paper for Selective and Direct Electrochemical Determination of Glyphosate in Drinking Water. Sens. Bio-Sens. Res. 2022, 36, 100496–100506. [Google Scholar] [CrossRef]
- Rocha, R.G.; Stefano, J.S.; Cardoso, R.M.; Zambiazi, P.J.; Bonacin, J.A.; Richter, E.M.; Munoz, R.A.A. Electrochemical Synthesis of Prussian Blue from Iron Impurities in 3D-printed Graphene Electrodes: Amperometric Sensing Platform for Hydrogen Peroxide. Talanta 2020, 219, 121289–121294. [Google Scholar] [CrossRef] [PubMed]
- Kalska-Szostko, B.; Wykowska, U.; Piekut, K.; Satuła, D. Stability of Fe3O4 Nanoparticles in Various Model Solutions. Colloids Surf. A 2014, 450, 15–24. [Google Scholar] [CrossRef]
- Hu, S.; Zhang, X.; Zang, F.; Zhang, Y.; Zhang, W.; Wu, Y.; Song, M.; Wang, Y.; Gu, N. Surface Modified Iron Oxide Nanoparticles as Fe Source Precursor to Induce the Formation of Prussian Blue Nanocubes. J. Nanosci. Nanotechnol. 2016, 16, 1967–1974. [Google Scholar] [CrossRef]
- Kong, B.; Tang, J.; Selomulya, C.; Li, W.; Wei, J.; Fang, Y.; Wang, Y.; Zheng, G.; Zhao, D. Oriented Mesoporous Nanopyramids as Versatile Plasmon-enhanced Interfaces. J. Am. Chem. Soc. 2014, 136, 6822–6825. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.-J.; Kuang, Q.; Xu, T.; Jiang, Z.-Y.; Zhang, S.-H.; Xie, Z.-X.; Huang, R.-B.; Zheng, L.-S. Growth of Prussian Blue Microcubes Under a Hydrothermal Condition: Possible Nonclassical Crystallization by a Mesoscale Self-assembly. J. Phys. Chem. C 2007, 111, 4499–4502. [Google Scholar] [CrossRef]
- Sato, H.M.; Ide, R.; Saito, T.; Togashi, K.; Kanaizuka, M.; Kurihara, H.; Nishihara, H.; Ozawa, M.-a. Haga, Electrochemical interfacing of Prussian blue nanocrystals with an ITO electrode modified with a thin film containing a Ru complex. J. Mater. Chem. C 2019, 7, 12491–12501. [Google Scholar] [CrossRef]
Electrolyte | Composition | Solution pH |
---|---|---|
Solution I | 1.0 mM K3Fe(CN)6 + 0.1 M KCl + 1.0 mM glyphosate | 3.12 |
Solution II | 1.0 mM K3Fe(CN)6 + 0.1 M KCl + 1.0 mM HCl | 3.07 |
Solution III | 1.0 mM K3Fe(CN)6 + 0.1 M KCl + 1.0 mM citric acid | 3.38 |
Solution IV | 1.0 mM K3Fe(CN)6 + 0.1 M KCl + 1.0 mM acetic acid | 4.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tse, M.-M.; Su, Y.-L.; Cheng, S.-H. Effects of Acidic Solution on the One-Step Electrodeposition of Prussian Blue Nanocrystals on Screen-Printed Carbon Electrodes Modified with Magnetite Nanoparticles. Chemosensors 2022, 10, 325. https://doi.org/10.3390/chemosensors10080325
Tse M-M, Su Y-L, Cheng S-H. Effects of Acidic Solution on the One-Step Electrodeposition of Prussian Blue Nanocrystals on Screen-Printed Carbon Electrodes Modified with Magnetite Nanoparticles. Chemosensors. 2022; 10(8):325. https://doi.org/10.3390/chemosensors10080325
Chicago/Turabian StyleTse, Man-Mo, Ya-Ling Su, and Shu-Hua Cheng. 2022. "Effects of Acidic Solution on the One-Step Electrodeposition of Prussian Blue Nanocrystals on Screen-Printed Carbon Electrodes Modified with Magnetite Nanoparticles" Chemosensors 10, no. 8: 325. https://doi.org/10.3390/chemosensors10080325
APA StyleTse, M. -M., Su, Y. -L., & Cheng, S. -H. (2022). Effects of Acidic Solution on the One-Step Electrodeposition of Prussian Blue Nanocrystals on Screen-Printed Carbon Electrodes Modified with Magnetite Nanoparticles. Chemosensors, 10(8), 325. https://doi.org/10.3390/chemosensors10080325