A Ratiometric Selective Fluorescent Probe Derived from Pyrene for Cu2+ Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Synthesis of P and P1
2.3. Optical Experimental Method
2.4. Cell Culture
3. Results
3.1. Effects of pH
3.2. UV-Vis Response of P
3.3. Characterization of Fluorescent Response of P
3.4. Reaction Mechanism Research
3.5. Cell Application
3.6. Method Performance Comparison
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Que, E.L.; Domaille, D.W.; Chang, C.J. Metals in neurobiology: Probing their chemistry and biology with molecular imaging. Chem. Rev. 2018, 108, 1517–1549. [Google Scholar] [CrossRef] [PubMed]
- Valeur, B.; Leray, I. Design principles of fluorescent molecular sensors for cation recognition. Chem. Rev. 2000, 205, 3–40. [Google Scholar] [CrossRef]
- Barranguet, C.; Van den Ende, F.P.; Rutgers, M.; Breure, A.M.; Greijdanus, M.; Sinke, J.J.; Admiraal, W. Copper-induced modifications of the trophic relations in riverine algal-bacterial biofilms. Environ. Toxicol. Chem. 2003, 22, 1340–1349. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, V.; Nurchi, V.M.; Sahoo, S.K. Mercury toxicity and detection using chromo-fluorogenic chemosensors. Pharmaceuticals 2021, 14, 123. [Google Scholar] [CrossRef] [PubMed]
- More, K.N.; Lim, T.H.; Kang, J.; Yun, H.; Yee, S.T.; Chang, D.J. Asymmetric and reduced xanthene fluorophores: Synthesis, photochemical properties, and application to activatable fluorescent probes for detection of nitroreductase. Molecules 2019, 24, 3206. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Ding, F.; Hu, X.; Feng, J.; He, X. ESIPT-based fluorescent probe for bioimaging and identification of group IIIA ions in live cells and zebrafish. Bioorg. Chem. 2021, 109, 104746. [Google Scholar] [CrossRef]
- Huang, K.; Han, D.; Li, X.; Peng, M.; Zeng, X.; Jiang, L.; Qin, D. A new Cu2+-selective fluorescent probe with six-membered spirocyclic hydrazide and its application in cell imaging. Dyes Pigm. 2019, 171, 107701. [Google Scholar] [CrossRef]
- Liu, Y.; Su, Q.; Chen, M.; Dong, Y.; Shi, Y.; Feng, W.; Wu, Z.Y.; Li, F. Near-infrared upconversion chemodosimeter for in vivo detection of Cu2+ in Wilson disease. Adv. Mater. 2016, 28, 6625–6630. [Google Scholar] [CrossRef]
- Chen, F.; Xiao, F.; Zhang, W.; Lin, C.; Wu, Y. Highly stable and NIR luminescent Ru-LPMSN hybrid materials for sensitive detection of Cu2+ in vivo. ACS Appl. Mater. Int. 2018, 10, 26964–26971. [Google Scholar] [CrossRef]
- Wen, T.; Li, N.B.; Luo, H.Q. A turn-off fluorescent sensor for detecting Cu2+ based on fluorophore-labeled DNA and polyethyleneimine. Sens. Actuators B-Chem. 2014, 192, 673–679. [Google Scholar] [CrossRef]
- Zhang, S.R.; Wang, Q.; Tian, G.H.; Ge, H.G. A fluorescent turn-off/on method or detection of Cu2+ and oxalate using carbon dots as fluorescent probes in aqueous solution. Mater. Lett. 2014, 115, 233–236. [Google Scholar] [CrossRef]
- Huang, C.B.; Li, H.R.; Luo, Y.Y.; Xu, L. A naphthalimide-based bifunctional fluorescent probe for the differential detection of Hg2+ and Cu2+ in aqueous solution. Dalton Trans. 2014, 43, 8102–8108. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, Y.Y.; Chen, W.L.; Hao, G.S.; Sun, J.P.; Shi, Q.F.; Tian, F.; Ma, R.T. A salicylaldehyde benzoyl hydrazone based near-infrared probe for copper(II) and its bioimaging applications. RSC Adv. 2022, 12, 3073–3080. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, M.; Zhang, K.; Zhang, Y.; Yan, Y.; Lei, K.; Wu, L.; Yu, H.; Wang, S. A near-infrared fluorescent probe for Cu2+ in living cells based on coordination effect. Sens. Actuators B-Chem. 2017, 243, 36–42. [Google Scholar] [CrossRef]
- Shao, N.; Zhang, Y.; Cheung, S.M.; Yang, R.H.; Chan, W.H.; Mo, T.; Li, K.A.; Liu, F. Copper ion selective fluorescent sensor based on the inner filter effect using a spiropyran derivative. Anal. Chem. 2005, 77, 7294–7303. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, J.S.; Park, S.M.; Chang, S.K. Hg2+-selective off-on and Cu2+-selective on-off type fluoroionophore based upon cyclam. Org. Lett. 2006, 8, 371–374. [Google Scholar] [CrossRef]
- Luo, Y.; Li, Y.; Lv, B.Q.; Zhou, Z.D.; Xiao, D.; Choi, M.M.F. A new luminol derivative as a fluorescent probe for trace analysis of copper(II). Microchim. Acta 2009, 164, 411–417. [Google Scholar] [CrossRef]
- Yu, C.W.; Wang, T.; Xu, K.; Zhao, J.; Li, M.H.; Weng, S.X.; Zhang, J. Characterization of a highly Cu2+-selective fluorescent probe derived from rhodamine B. Dyes Pigm. 2013, 96, 38–44. [Google Scholar] [CrossRef]
- Tang, L.J.; Zhou, P.; Zhong, K.L.; Hou, S.H. Fluorescence relay enhancement sequential recognition of Cu2+ and CN− by a new quinazoline derivative. Sens. Actuators B-Chem. 2013, 182, 439–445. [Google Scholar] [CrossRef]
- Yu, M.M.; Yuan, R.L.; Shi, C.X.; Zhou, W.; Wei, L.H.; Li, Z.X. 1,8-Naphthyridine and 8-hydroxyquinoline modified rhodamine B derivatives: “Turn-on” fluorescent and colorimetric sensors for Al3+ and Cu2+. Dyes Pigm. 2013, 99, 887–894. [Google Scholar] [CrossRef]
- You, Q.H.; Zhuo, Y.H.; Feng, Y.D.; Xiao, Y.J.; Zhang, Y.Y.; Zhang, L. A highly selective fluorescent probe for the sensing of Cu2+ based on the hydrolysis of a quinoline-2-carboxylate and its application in cell imaging. J. Chem. Res. 2021, 45, 315–321. [Google Scholar] [CrossRef]
- Yu, C.W.; Chen, L.X.; Zhang, J.; Li, J.H.; Liu, P.; Wang, W.H.; Yan, B. “Off-on” based fluorescent chemosensor for Cu2+ in aqueous media and living cells. Talanta 2011, 85, 1627–1633. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.H.; Luo, Y.Y.; Wang, H.; Wei, H.P.; Guo, T.; Tan, H.L.; Yuan, L.; Zhang, X.B. A novel ratiometric and reversible fluorescence probe with a large Stokes shift for Cu2+ based on a new clamp-on unit. Anal. Chim. Acta 2019, 1065, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.W.; Zhang, J.; Wang, R.; Chen, L.X. Highly sensitive and selective colorimetric and off-on fluorescent probe for Cu2+ based on rhodamine derivative. Org. Biomol. Chem. 2010, 8, 5277–5279. [Google Scholar] [CrossRef]
- Long, S.S.; Qiao, Q.L.; Miao, L.; Xu, Z.C. A self-assembly/disassembly two-photo ratiometric fluorogenic probe for bacteria imaging. Chin. Chem. Lett. 2019, 30, 573–576. [Google Scholar] [CrossRef]
- Chao, J.; Wang, Z.; Zhang, Y.; Huo, F.; Duan, Y. A pyrene-based fluorescent probe for specific detection of cysteine and its application in living cell. J. Fluoresc. 2021, 31, 727–732. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, L.; Wang, H.; Zhang, Y.; Yang, X.; Pei, M.; Zhang, G. A new “off-on-off” sensor for sequential detection of Al3+ and Cu2+ with excellent sensitivity and selectivity based on different sensing mechanisms. J. Photochem. Photobiol. A 2020, 391, 112372. [Google Scholar] [CrossRef]
- Wu, J.S.; Liu, W.M.; Zhuang, X.Q.; Wang, F.; Wang, P.F.; Tao, S.L.; Zhang, X.H.; Wu, S.K.; Lee, S.T. Fluorescence turn on of coumarin derivatives by metal cations: A new signaling mechanism based on C=N isomerization. Org. Lett. 2007, 9, 33–36. [Google Scholar] [CrossRef]
- Sheng, J.R.; Feng, F.; Qiang, Y.; Liang, F.G.; Sen, L.; Wei, F.H. A coumarin-derived fluorescence chemosensors selective for copper(II). Anal. Lett. 2008, 41, 2203–2213. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality, 3rd ed.; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Rodríguez-Cáceres, M.I.; Agbaria, R.A.; Warner, I.M. Fluorescence of metal-ligand complexes of mono- and di-substituted naphthalene derivatives. J. Fluoresc. 2005, 15, 185–190. [Google Scholar] [CrossRef]
- Wu, Y.S.; Li, C.Y.; Li, Y.F.; Li, D.; Li, Z. Development of a simple pyrene-based ratiometric fluorescent chemosensor for copper ion in living cells. Sens. Actuators B-Chem. 2016, 222, 1226–1232. [Google Scholar] [CrossRef]
- Choi, N.G.; Vanjare, B.D.; Mahajan, P.G.; Nagarajan, R.; Ryoo, H.I.; Lee, K.H. Schiff base functionalized 1,2,4-Triazole and pyrene derivative for selective and sensitive detection of Cu2+ ion in the mixed organic-aqueous media. J. Fluoresc. 2021, 31, 1739–1749. [Google Scholar] [CrossRef] [PubMed]
- Chao, J.B.; Zhang, Y.; Wang, H.F.; Zhang, Y.B.; Huo, F.J.; Yin, C.X.; Qin, L.P.; Wang, Y. A coumarin-based fluorescent probe for selective detection of Cu2+ in water. J. Coord. Chem. 2013, 66, 3857–3867. [Google Scholar] [CrossRef]
- Xu, Z.C.; Xiao, Y.; Qian, X.H.; Cui, J.N.; Cui, D.W. Ratiometric and selective fluorescent sensor for CuII based on internal charge transfer (ICT). Org. Lett. 2005, 7, 889–892. [Google Scholar] [CrossRef] [PubMed]
- Hazarika, S.I.; Mahata, G.; Pahari, P.; Pramanik, N.; Atta, A.K. A simple triazole-linked bispyrenyl-based xylofuranose derivative for selective and sensitive fluorometric detection of Cu2+. Inorg. Chim. Acta 2020, 507, 119582. [Google Scholar] [CrossRef]
- Xu, Z.; Han, S.J.; Lee, C.; Yoon, J.; Spring, D.R. Development of off–on fluorescent probes for heavy and transition metal ions. Chem. Commun. 2010, 46, 1679–1681. [Google Scholar] [CrossRef]
Modes | Reagents | Selectivity | Linear Range (µM) | LOD (µM) | Testing Media | Applications | Remarks | Ref. |
---|---|---|---|---|---|---|---|---|
Quenching λex/em = 556/603 nm | Spiropyran derivative | Good | 0.75–3.6 | 0.15 | Ethanol or pH 6.98 (0.1 M Tris-HCl) | NA | Fluorescence changes | [15] |
Enhancement λex/em = 530/580 nm | Rhodaming derivative | Good | 0.05–0.9 | 0.03 | Water/methanol (1:4, v/v, pH 6.0, 20 mM HEPES) | NA | Dual chromo- and fluorogenic changes | [24] |
Enhancement λex/em = 342/375–460 nm | pyridine derivative | Good | 0.1–20 | 0.02 | Tris-HNO3 (9:1 v/v, pH 7.0) | Water samples and living cells | Dual chromo- and fluorogenic changes, ratiometric. | [32] |
Enhancement λex/em = 370/410–415 nm | Pyrene derivative | Good | 0.1–1.9 | 0.000234 | Water/DMF solution (1:1, v/v) | NA | fluorogenic changes | [33] |
Quenching λex/em = 355/565 nm | Coumarin derivative | Good | 0.5–4.5 | 0.0634 | HEPES aqueous buffer (pH 7.0) | NA | Dual chromo- and fluorogenic changes | [34] |
Enhancement λex/em = 451/475–525 nm | Naphthalimide derivative | Good | 0–0.1 | 0.01 | Water-ethanol (6:4, v/v, pH 7.2, 50 mM HEPES) | NA | Fluorescent change, ratiometric | [35] |
Enhancement λex/em = 350/495 nm | Pyrene derivative | Good | NA | 0.15 | CH3CN | NA | fluorogenic changes | [36] |
Enhancement λex/em = 360/430–489 nm | Naphthalimide derivative | Good | NA | NA | CH3CN | NA | Dual chromo- and fluorogenic changes, ratiometric | [37] |
Enhancement λex/em = 350/393–415 nm | Pyrene derivative | Good | 0.5–8 | 0.16 | Alcohol–water media (v/v, 8:2, pH 6.3, 20 mM HEPES) | Cell imaging | Dual chromo-and fluorogenic changes, ratiometric | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Yang, M.; Cui, S.; Ji, Y.; Zhang, J. A Ratiometric Selective Fluorescent Probe Derived from Pyrene for Cu2+ Detection. Chemosensors 2022, 10, 207. https://doi.org/10.3390/chemosensors10060207
Yu C, Yang M, Cui S, Ji Y, Zhang J. A Ratiometric Selective Fluorescent Probe Derived from Pyrene for Cu2+ Detection. Chemosensors. 2022; 10(6):207. https://doi.org/10.3390/chemosensors10060207
Chicago/Turabian StyleYu, Chunwei, Mei Yang, Shuhua Cui, Yuxiang Ji, and Jun Zhang. 2022. "A Ratiometric Selective Fluorescent Probe Derived from Pyrene for Cu2+ Detection" Chemosensors 10, no. 6: 207. https://doi.org/10.3390/chemosensors10060207
APA StyleYu, C., Yang, M., Cui, S., Ji, Y., & Zhang, J. (2022). A Ratiometric Selective Fluorescent Probe Derived from Pyrene for Cu2+ Detection. Chemosensors, 10(6), 207. https://doi.org/10.3390/chemosensors10060207