3-Thienylboronic Acid as a Receptor for Diol-Containing Compounds: A Study by Isothermal Titration Calorimetry
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guryanov, I.; Fiorucci, S.; Tennikova, T. Receptor-ligand interactions: Advanced biomedical applications. Mater. Sci. Eng. C 2016, 68, 890–903. [Google Scholar] [CrossRef] [PubMed]
- Gilson, M.K.; Given, J.A.; Head, M.S. A new class of models for computing receptor-ligand binding affinities. Chem. Biol. 1997, 4, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Mirsky, V.M. Quantitative characterization of affinity properties of immobilized receptors. In Artificial Receptors for Chemical Sensors; Mirsky, V.M., Yatsmimirsky, K.A., Eds.; Wiley-VCH Verlag GmbH & Co., KGaA: Weinheim, Germany, 2011; pp. 1–15. [Google Scholar]
- Mirsky, V.M. Quantitative affinity data on selected artificial receptors. In Artificial Receptors for Chemical Sensors; Mirsky, V.M., Yatsmimirsky, K.A., Eds.; Wiley-VCH Verlag GmbH & Co., KGaA: Weinheim, Germany, 2011; pp. 439–459. [Google Scholar]
- Schneider, H.; Yatsmimirsky, K.A. Selectivity of chemical receptors. In Artificial Receptors for Chemical Sensors; Mirsky, V.M., Yatsmimirsky, K.A., Eds.; Wiley-VCH Verlag GmbH & Co., KGaA: Weinheim, Germany, 2011; pp. 17–65. [Google Scholar]
- Mirsky, V.M. Combinatorial development of chemosensitive conducting polymers. In Combinatorial Methods for Chemical and Biological Sensors; Potyrailo, R.A., Mirsky, V.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 315–330. [Google Scholar]
- Liu, L.; Guo, Q.X. The driving forces in the inclusion complexation of cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 2002, 42, 1–14. [Google Scholar] [CrossRef]
- Majerski, K.M.; Kragol, G. Design, synthesis and cation-binding properties of novel adamantine and 2-oxaadamantane-containing crown ethers. Tetrahedron 2001, 57, 449–457. [Google Scholar] [CrossRef]
- Korochkina, M.; Fontanella, M.; Casnati, A.; Arduini, A.; Sansone, F.; Ungaro, R.; Latypov, S.; Kataev, V.; Alfonsov, V. Synthesis and spectroscopic studies of isosteviol calix[4]arene and calix[6]arene conjugates. Tetrahedron 2005, 61, 5457–5463. [Google Scholar] [CrossRef]
- Hirsch, T.; Kettenberger, H.; Wolfbeis, O.S.; Mirsky, V.M. A simple strategy for preparation of sensor arrays: Nanostructured monolayers as recognition elements. Chem. Commun. 2003, 432–433. [Google Scholar] [CrossRef]
- Bossi, A.; Bonini, F.; Turner, A.; Piletsky, S. Molecularly imprinted polymers for the recognition of proteins the state of art. Biosens. Bioelectron. 2007, 22, 1131–1137. [Google Scholar] [CrossRef]
- James, T.D. Boronic acid-based receptors and sensors for saccharides. In Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine; Dennis, G.H., Ed.; Wiley-VCH Verlag GmbH & Co., KGaA: Weinheim, Germany, 2005; pp. 441–479. [Google Scholar]
- Hall, D.G. Structure, properties, and preparation of boronic acids derivatives. In Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine; Dennis, G.H., Ed.; Wiley-VCH Verlag GmbH & Co., KGaA: Weinheim, Germany, 2005; pp. 1–99. [Google Scholar]
- Yang, X.; Cheng, Z.; Jin, S.; Wang, B. Boronic acid-based receptors and chemosensors. In Artificial Receptors for Chemical Sensors; Mirsky, V.M., Yatsmimirsky, K.A., Eds.; Wiley-VCH Verlag GmbH & Co., KGaA: Weinheim, Germany, 2011; pp. 169–189. [Google Scholar]
- Sienkiewicz, P.A.; Roberts, D.C. pH dependence of boronic acid-diol affinity in aqueous solution. J. Inorg. Nucl. Chem. 1980, 42, 1559–1575. [Google Scholar] [CrossRef]
- Babcock, L.; Pizer, R. Dynamics of boron acid complexation reactions. Formation of 1:1 boron acid-ligand complexes. Inorg. Chem. 1980, 19, 56–61. [Google Scholar] [CrossRef]
- Mader, H.S.; Wolfbeis, O.S. Boronic acid based probes for microdeternination of saccharides and glycosylated biomolecules: A review. Microchim. Acta 2008, 162, 1–34. [Google Scholar] [CrossRef]
- Pappin, B.; Kiefel, M.J.; Houston, T.A. Boron-Carbohydrate interactions. In Carbohydrates—Comprehensive Studies on Glycobiology and Glycotechnology; Chang, C.-F., Ed.; InTech: Tokyo, Japan, 2012; pp. 37–54. [Google Scholar]
- Nagasaki, T.; Shinmori, H.; Shinkai, S. Attempts to change the color of dye molecules by saccharides. Tetrahedron Lett. 1994, 35, 2201–2204. [Google Scholar] [CrossRef]
- Fang, H.; Kaur, G.; Wang, B. Progress in boronic acid-based fluorescent glucose sensors. J. Fluoresc. 2004, 14, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Şenel, M.; Dervisevic, M.; Çevik, E. A novel amperometric glucose biosensor based on recognition of glucose oxidase on thiophene-3-boronic acid polymer layer. Curr. Appl. Phys. 2013, 13, 1199–1204. [Google Scholar] [CrossRef]
- Shoji, E.; Freund, M.S. Potentiometric saccharide detection based on the pKa changes of poly(aniline boronic acid). J. Am. Chem. Soc. 2002, 124, 12486–12493. [Google Scholar] [CrossRef]
- Dervisevic, M.; Senel, M.; Cevik, E. Novel impedimetric dopamine biosensor based on boronic acid functional polythiophene modified electrodes. Mater. Sci. Eng. C 2017, 72, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Torun, Ö.; Dudak, F.C.; Bas, D. Tamer, U.; Boyaci, I.H. Thermodynamic analysis of the interaction between 3-aminophenylboronic acid and monosaccharides for development of biosensor. Sens. Actuators B Chem. 2009, 140, 597–602. [Google Scholar] [CrossRef]
- Yoon, J.; Czarnik, A.W. Fluorescent chemosensors of carbohydrates. A means of chemically communicating the binding of polyols in water based on chelation-enhanced quenching. J. Am. Chem. Soc. 1992, 114, 5874–5875. [Google Scholar] [CrossRef]
- Zang, W.; Fan, H.; Gao, X.; Karnati, V.V.R.; Ni, W.; Hooks, W.B.; Carson, J.; Weston, B. Wang, B. The first diboronic acid sensor specific for heptacellular carcinoma cells expressing sialyl Lewis X. Chem. Biol. 2004, 11, 439–448. [Google Scholar]
- James, T.D.; Sandanayake, K.R.A.S.; Iguchi, R.; Shinkai, S. Novel saccharide-photoinduced electron transfer sensors based on the interaction of boronic acid and amine. J. Am. Chem. Soc. 1995, 117, 8982–8987. [Google Scholar] [CrossRef]
- Heo, Y.J.; Shibata, H.; Okitsu, T.; Kawanishi, T.; Takeuchi, S. Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proc. Natl. Acad. Sci. USA 2011, 108, 13399–133403. [Google Scholar] [CrossRef] [Green Version]
- Vancoillie, G.; Hoogenboom, R. Synthesis and polymerization of boronic acid containing monomers. Polym. Chem. 2016, 7, 5484–5495. [Google Scholar] [CrossRef]
- Cambre, J.N.; Sumerlin, B.S. Biomedical applications of boronic acid polymers. Polymer 2011, 52, 4631–4643. [Google Scholar] [CrossRef] [Green Version]
- Brooks, W.; Sumerlin, B.S. Synthesis and applications of boronic acid-containing polymers: From materials to medicine. Chem. Rev. 2016, 116, 1375–1397. [Google Scholar] [CrossRef] [PubMed]
- Pringsheim, E.; Terpetsehnig, E.; Piletsky, S.A.; Wolfbeis, O.S. A polyaniline with near-infrared optical response to saccharides. Adv. Mater. 1999, 11, 865–868. [Google Scholar] [CrossRef]
- Wang, G.; He, X.; Wang, L.; Gu, A.; Huang, Z.; Fang, B.; Geng, B.; Zhang, X. Non-enyzmatic electrochemical sensing of glucose. Microchim. Acta 2013, 18, 161–186. [Google Scholar] [CrossRef]
- Çiftci, H.; Tamer, U.; Teker, M.Ş.; Pekmey, N.Ö. An enzyme free potentiometric detection of glucose based on conducting polymer poly (3-aminophenylboronic acid-co-3-cotylthiophene). Electr. Acta 2013, 90, 358–365. [Google Scholar] [CrossRef]
- Aytaç, S.; Kuralay, F.; Boyaci, H.; Unaleroglu, C. A novel polypyrrole-phenylboronic acid based electrochemical saccharide sensor. Sens. Actuators B Chem. 2011, 160, 405–411. [Google Scholar] [CrossRef]
- Shishkanova, T.; Fitl, R.; Kral, V.; Barek, J. Nanoparticles functionalized with phenylboronic acid for the potentiometric detection of saccharides. J. Electroanal. Chem. 2013, 761, 106–111. [Google Scholar] [CrossRef]
- Deore, B.A.; Hachey, S.; Freund, M.S. Electroactivity of electrochemically synthesized poly(aniline boronic acid) as a function of pH: Role of self-doping. Chem. Mater. 2004, 16, 1427–1432. [Google Scholar] [CrossRef]
- Efremenko, Y.; Mirsky, V.M. Poly-3-thienylboronic acid: A chemosensitive derivative of polythiophene. J. Solid State Electrochem. 2020, 24, 3105–3111. [Google Scholar] [CrossRef]
- Falconer, R.J.; Penkova, A.; Jelesarov, I.; Collins, B.M. Survey of the year 2008: Applications of isothermal titration calorimetry. J. Mo. Recognit. 2010, 33, 395–413. [Google Scholar] [CrossRef] [PubMed]
- Freyer, M.W.; Lewis, E.A. Isothermal titration calorimetry: Experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. Methods Cell Biol. 2008, 84, 79–113. [Google Scholar]
- Ni, N.; Laughlin, S.; Wang, Z.; Yheng, Z.F.; Wang, B. Probing the general time scale question of boronic acid binding with sugars in aqueous solution at physiological pH. Bioorganic Med. Chem. 2012, 20, 2957–2961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnbull, W.B.; Daranas, A.H. On the value of c: Can low affinity systems be studied by isothermal titration calorimetry? J. Am. Chem. Soc. 2003, 125, 14859–14866. [Google Scholar] [CrossRef] [PubMed]
- Kantonen, S.A.; Henriksen, N.M.; Gilson, M.K. Evaluation and minimization of uncertainty in ITC binding measurements: Heat error, concentration error, saturation, and stoichiometry. Biochim. Biophys. Acta 2017, 1861, 485–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lodge, T.P.; Muthukumar, M. Physical chemistry of polymers: Entropy, interactions, and dynamics. J. Phys. Chem. 1996, 100, 13275–13292. [Google Scholar] [CrossRef]
- Bosch, L.I.; Fyles, T.M.; James, T.D. Binary and ternary phenylboronic acid complexes with saccharides and Lewis bases. Tetrahedron 2004, 60, 11175–11190. [Google Scholar] [CrossRef]
- Springstenn, G.; Wang, B. A detailed examination of boronic acid-diol complexation. Tetrahedron 2002, 58, 5291–5300. [Google Scholar] [CrossRef]
- Yan, J.; Springstenn, G.; Deeter, S.; Wang, B. The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols—It is not as simple as it appears. Tetrahedron 2004, 60, 11205–11209. [Google Scholar] [CrossRef]
- Feng, S.; Bagia, C.; Mpourmpakis, G. Determination of proton affinities and acidity constants of sugars. J. Phys. Chem. A 2013, 117, 5211–5219. [Google Scholar] [CrossRef]
- Efremenko, Y.; Mirsky, V.M. Virtual sensor array consisting of a single sensor element with variable affinity: An application for analysis of fish freshness. Sens. Actuators B Chem. 2017, 241, 652–657. [Google Scholar] [CrossRef]
- Lange, U.; Mirsky, V.M. Integrated electrochemical transistor as a fast recoverable gas sensor. Anal. Chim. Acta 2011, 687, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Lange, U.; Mirsky, V.M. Polythiophene films on gold electrodes: A comparison of bulk contact resistances in aqueous and organic media. J. Solid State Electrochem. 2011, 15, 2377–2382. [Google Scholar] [CrossRef]
- Efremenko, Y.; Mirsky, V.M. Electrically controlled variation of receptor affinity. Anal. Bioanal. Chem. 2016, 408, 7283–7287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, U.; Mirsky, V.M. Chemoresistors based on conducting polymers: A review on measurement techniques. Anal. Chim. Acta 2011, 687, 105–113. [Google Scholar] [CrossRef]
- Wu, X.; Li, Z.; Chen, X.; Fossey, J.S.; James, T.D.; Jiang, Y. Selective sensing of saccharides using simple boronic acids and their aggregates. Chem. Soc. Rev. 2013, 42, 8032–8048. [Google Scholar] [CrossRef] [Green Version]
pH | PBA | TBA | ||
---|---|---|---|---|
Ka (L/mol) | −ΔG (kJ/mol) | Ka (L/mol) | −ΔG (kJ/mol) | |
7.4 | 209 ± 4 | 13.3 ± 0.42 | 212 ± 10 | 13.4 ± 0.13 |
8.0 | 522 ± 17 | 15.6 ± 0.08 | 533 ± 15 | 15.7 ± 0.08 |
9.2 | 3090 ± 222 | 20.0 ± 0.17 | 2700 ± 400 | 19.1 ± 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Efremenko, Y.; Mirsky, V.M. 3-Thienylboronic Acid as a Receptor for Diol-Containing Compounds: A Study by Isothermal Titration Calorimetry. Chemosensors 2022, 10, 251. https://doi.org/10.3390/chemosensors10070251
Efremenko Y, Mirsky VM. 3-Thienylboronic Acid as a Receptor for Diol-Containing Compounds: A Study by Isothermal Titration Calorimetry. Chemosensors. 2022; 10(7):251. https://doi.org/10.3390/chemosensors10070251
Chicago/Turabian StyleEfremenko, Yulia, and Vladimir M. Mirsky. 2022. "3-Thienylboronic Acid as a Receptor for Diol-Containing Compounds: A Study by Isothermal Titration Calorimetry" Chemosensors 10, no. 7: 251. https://doi.org/10.3390/chemosensors10070251
APA StyleEfremenko, Y., & Mirsky, V. M. (2022). 3-Thienylboronic Acid as a Receptor for Diol-Containing Compounds: A Study by Isothermal Titration Calorimetry. Chemosensors, 10(7), 251. https://doi.org/10.3390/chemosensors10070251