Molecularly Imprinted Polymer Functionalized Bi2S3/Ti3C2TX MXene Nanocomposites for Photoelectrochemical/Electrochemical Dual-Mode Sensing of Chlorogenic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Synthesis of MXene Nanosheets
2.3. Synthesis of Bi2S3/MXene Composites
2.4. Preparation of Molecularly Imprinted Polymer-CGA (MIP-CGA) and Non-Imprinted Polymer (NIP)
2.5. Fabrication of the PEC and EC Electrodes
2.6. Electrochemical and Photoelectrochemical Measurement
3. Results
3.1. Characterization of Bi2S3/Ti3C2TX MXene Materials
3.2. PEC Properties of Bi2S3/Ti3C2TX MXene Composites
3.3. Feasibility of PEC/EC Dual-Modal Sensing Platform
3.4. Optimization of Experimental Conditions
3.5. Performance of the PEC/EC Dual-Mode Sensing of CGA
3.6. Selectivity and Stability of the PEC Sensor
3.7. Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shu, J.; Tang, D. Recent advances in photoelectrochemical sensing: From engineered photoactive materials to sensing devices and detection modes. Anal. Chem. 2020, 92, 363–377. [Google Scholar] [CrossRef]
- Qiu, Z.; Tang, D. Nanostructures-based photoelectrochemical sensing platforms for biomedical applications. J. Mater. Chem. B 2020, 8, 2541–2561. [Google Scholar] [CrossRef]
- Zhou, Q.; Tang, D. Recent advances in photoelectrochemical biosensors for analysis of mycotoxins in food. TRAC Trends Anal. Chem. 2020, 124, 115814. [Google Scholar] [CrossRef]
- Shu, J.; Tang, D. Current advances in quantum dots-based photoelectrochemical immunoassays. Chem. Asian J. 2017, 12, 2780–2789. [Google Scholar] [CrossRef]
- Zhao, W.W.; Xu, J.J.; Chen, H.Y. Photoelectrochemical enzymatic biosensors. Biosens. Bioelectron. 2017, 92, 294–304. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, Z.; Zhou, J.; Ma, Z. Simultaneous multi-signal quantification for highly precise serodiagnosis utilizing a rationally constructed platform. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.J.; Pan, J.B.; Wu, Z.Q.; Gao, X.Y.; Zhao, W.; Xia, X.H.; Xu, J.J.; Chen, H.Y. Electrogenerated chemiluminescence imaging of electrocatalysis at a single Au-Pt janus nanoparticle. Angew. Chem. 2018, 57, 4074–4078. [Google Scholar] [CrossRef]
- Xue, J.; Zhao, Q.; Yang, L.; Ma, H.; Wu, D.; Liu, L.; Ren, X.; Ju, H.; Wei, Q. Dual-mode sensing platform guided by intramolecular electrochemiluminescence of a ruthenium complex and cationic N, N-bis(2-(trimethylammonium iodide)propylene) perylene-3,4,9,10-tetracarboxydiimide for estradiol assay. Anal. Chem. 2021, 93, 6088–6093. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, L.; Mei, X.; Liu, J.; Yao, Z.; Li, Y. Dual-mode sensing platform for electrochemiluminescence and colorimetry detection based on a closed bipolar electrode. Anal. Chem. 2021, 93, 12367–12373. [Google Scholar] [CrossRef]
- Han, Q.; Zhao, X.; Na, N.; Ouyang, J. Integrating near-infrared visual fluorescence with a photoelectrochemical sensing system for dual readout detection of biomolecules. Anal. Chem. 2021, 93, 3486–3492. [Google Scholar] [CrossRef]
- Wei, J.; Chang, W.; Qileng, A.; Liu, W.; Zhang, Y.; Rong, S.; Lei, H.; Liu, Y. Dual-modal split-type immunosensor for sensitive detection of microcystin-LR: Enzyme-induced photoelectrochemistry and colorimetry. Anal. Chem. 2018, 90, 9606–9613. [Google Scholar] [CrossRef]
- Yu, Z.; Gong, H.; Li, Y.; Xu, J.; Zhang, J.; Zeng, Y.; Liu, X.; Tang, D. Chemiluminescence-derived self-powered photoelectrochemical immunoassay for detecting low-abundance disease-related protein. Anal. Chem. 2021, 93, 13389–13397. [Google Scholar] [CrossRef]
- Qiu, Z.; Shu, J.; Liu, J.; Tang, D. Dual-channel photoelectrochemical ratiometric aptasensor with up-converting nanocrystals using spatial-resolved technique on homemade 3D printed device. Anal. Chem. 2019, 91, 1260–1268. [Google Scholar] [CrossRef]
- Zeng, R.; Gong, H.; Li, Y.; Li, Y.; Lin, W.; Tang, D.; Knopp, D. CRISPR-Cas12a-derived photoelectrochemical biosensor for point-of-care diagnosis of nucleic acid. Anal. Chem. 2022, 94, 7442–7448. [Google Scholar] [CrossRef]
- Hu, C.-L.; Pan, H.-J.; Ma, R.-N.; Cheng, S.; Jia, L.-P.; Zhang, W.; Shang, L.; Xue, Q.-W.; Wei, Q.; Wang, H.-S. Gold nanoparticle-attached perovskite Cs3Bi2Br9 QDs/BiOBr heterostructures for photoelectrochemical biosensing. ACS Appl. Nano Mater. 2022, 5, 2812–2819. [Google Scholar] [CrossRef]
- Tan, X.; Yu, H.; Liang, B.; Han, M.; Ge, S.; Zhang, L.; Li, L.; Li, L.; Yu, J. A target-driven self-feedback paper-based photoelectrochemical sensing platform for ultrasensitive detection of ochratoxin A with an In2S3/WO3 heterojunction structure. Anal. Chem. 2022, 94, 1705–1712. [Google Scholar] [CrossRef]
- Qiu, Z.; Shu, J.; Tang, D. NaYF4:Yb, Er upconversion nanotransducer with in situ fabrication of Ag2S for near-infrared light responsive photoelectrochemical biosensor. Anal. Chem. 2018, 90, 12214–12220. [Google Scholar] [CrossRef]
- Petrucci, R.; Bortolami, M.; Di Matteo, P.; Curulli, A. Gold nanomaterials-based electrochemical sensors and biosensors for phenolic antioxidants detection: Recent advances. Nanomaterials 2022, 12, 959. [Google Scholar] [CrossRef]
- Song, Y.; Luo, Y.; Zhu, C.; Li, H.; Du, D.; Lin, Y. Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosens. Bioelectron. 2016, 76, 195–212. [Google Scholar] [CrossRef]
- Hu, R.; Zhang, X.; Chi, K.-N.; Yang, T.; Yang, Y.-H. Bifunctional MOFs-based ratiometric electrochemical sensor for multiplex heavy metal ions. ACS Appl. Mater. Interfaces 2020, 12, 30770–30778. [Google Scholar] [CrossRef]
- Zeng, R.; Wang, W.; Chen, M.; Wan, Q.; Wang, C.; Knopp, D.; Tang, D. CRISPR-Cas12a-driven MXene-PEDOT:PSS piezoresistive wireless biosensor. Nano Energy 2021, 82, 105711. [Google Scholar] [CrossRef]
- Cai, G.; Yu, Z.; Tong, P.; Tang, D. Ti3C2 MXene quantum dots-encapsulated liposome for photothermal immunoassay using a portable near-infrared imaging camera on smartphone. Nanoscale 2019, 11, 15659–15667. [Google Scholar] [CrossRef]
- Liu, L.; Yao, Y.; Ma, K.; Shangguan, C.; Jiao, S.; Zhu, S.; Xu, X. Ultrasensitive photoelectrochemical detection of cancer-related miRNA-141 by carrier recombination inhibition in hierarchical Ti3C2@ReS2. Sens. Actuators B Chem. 2021, 331, 129470. [Google Scholar] [CrossRef]
- Helal, A.; Harraz, F.A.; Ismail, A.A.; Sami, T.M.; Ibrahim, A. Hydrothermal synthesis of novel heterostructured Fe2O3/Bi2S3 nanorods with enhanced photocatalytic activity under visible light. Appl. Catal. B 2017, 213, 18–27. [Google Scholar] [CrossRef]
- Qiu, Z.; Shu, J.; Tang, D. Near-infrared-to-ultraviolet light-mediated photoelectrochemical aptasensing platform for cancer biomarker based on core-shell NaYF4: Yb,Tm@TiO2 upconversion microrods. Anal. Chem. 2018, 90, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- BelBruno, J.J. Molecularly imprinted polymers. Chem. Rev. 2019, 119, 94–119. [Google Scholar] [CrossRef]
- Chen, L.X.; Wang, X.Y.; Lu, W.H.; Wu, X.Q.; Li, J.H. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef]
- Bhogal, S.; Kaur, K.; Malik, A.K.; Sonne, C.; Lee, S.S.; Kim, K.H. Core-shell structured molecularly imprinted materials for sensing applications. TrAC Trends Anal. Chem. 2020, 133, 116043. [Google Scholar] [CrossRef]
- Yang, X.; Gao, Y.; Ji, Z.; Zhu, L.B.; Yang, C.; Zhao, Y.; Shu, Y.; Jin, D.; Xu, Q.; Zhao., W.W. Dual functional molecular imprinted polymers-modified organometal lead halide perovskite: Synthesis and application for photoelectrochemical sensing of salicylic acid. Anal. Chem. 2019, 91, 9356–9360. [Google Scholar] [CrossRef] [Green Version]
- Tong, P.; Zhang, L.; He, Y.; Chi, Y.W.; Chen, G.N. A simple capillary electrophoresis with electrochemical detection method for determination of the hydrolysis rate constant of chlorogenic acid. Talanta 2009, 77, 1790–1794. [Google Scholar] [CrossRef]
- Yang, S.P.; Han, Y.Z.; Wang, K.R.; Wang, Y.; Li, L.P.; Li, N.; Xu, X.D. Simultaneous determination of four phenolic acids in traditional Chinese medicine by capillary electrophoresis-chemiluminescence. RSC Adv. 2021, 11, 33996–34003. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Wang, X.; Yu, L.; Chen, Y.; Shi, J. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 2017, 17, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Han, X.; Lin, J.; Zhang, Y.; Qiu, M.; Chen, Y.; Li, M.; Tang, D. Ultrasensitive fluorometric biosensor based on Ti3C2 MXenes with Hg2+-triggered exonuclease III-assisted recycling amplification. Analyst 2021, 146, 2664–2669. [Google Scholar] [CrossRef]
- Li, J.F.; Li, Z.Y.; Liu, X.M.; Li, C.Y.; Zheng, Y.F.; Yeung, K.W.K.; Cui, Z.D.; Liang, Y.Q.; Zhu, S.L.; Hu, W.B.; et al. Interfacial engineering of Bi2S3/Ti3C2TX MXene based on work function for rapid photo-excited bacteria-killing. Nat. Commun. 2021, 12, 1–10. [Google Scholar] [CrossRef]
- Zou, Z.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G.; Cao, D.; Yan, J. Ultrathin-walled Bi2S3 nanoroll/MXene composite toward high capacity and fast lithium storage. Small 2022, 18, 2106673. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Zhao, Y.; Pan, J.F.; Van der Bruggen, B.; Shen, J.N. A novel chitosan base molecularly imprinted membrane for selective separation of chlorogenic acid. Sep. Purif. Technol. 2016, 164, 70–80. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, E.; Wu, Z.; Li, H.; Zhu, Z.; Zhu, X.; Dong, Y. Synthesis of chitosan molecularly imprinted polymers for solidphase extraction of methandrostenolone. Carbohyd. Polym. 2014, 101, 517–523. [Google Scholar] [CrossRef]
- Agresti, A.; Pazniak, A.; Pescetelli, S.; Di Vito, A.; Rossi, D.; Pecchia, A.; Auf der Maur, M.; Liedl, A.; Larciprete, R.; Kuznetsov, D.V.; et al. Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nat. Mater. 2019, 18, 1228–1234. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Qian, J.; Xie, G.; Han, Q.; Dang, W.Q.; Wang, Y.S.; Lv, L.L.; Zhao, S.; Luo, L.; Zhang, W.; et al. 2D-layered Ti3C2 MXenes for promoted synthesis of NH3 on P25 photocatalysts. Appl. Catal. B 2020, 273, 119054. [Google Scholar] [CrossRef]
- Ni, J.F.; Zhao, Y.; Liu, T.T.; Zheng, H.H.; Gao, L.J.; Yan, C.L.; Li, L. Strongly Coupled Bi2S3@CNT Hybrids for Robust Lithium Storage. Adv. Energy Mater. 2014, 4, 1400798. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.; Li, L.; Zhang, X. In situ ion exchange synthesis of the Bi4Ti3O12/Bi2S3 heterostructure with enhanced photocatalytic activity. Catal. Commun. 2015, 60, 23–26. [Google Scholar] [CrossRef]
- Wu, G.; Li, T.; Wang, Z.; Li, M.; Wang, B.; Dong, A. Molecular ligand-mediated assembly of multicomponent nanosheet superlattices for compact capacitive energy storage. Angew. Chem. Int. Ed. 2020, 59, 20628. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.W.; Murali, G.; Lee, H.; Park, S.; Lee, S.; Oh, S.M.; Lee, J.; Ko, T.Y.; Koo, C.M.; Jeong, Y.J.; et al. Engineering Aggregation-Resistant MXene Nanosheets As Highly Conductive and Stable Inks for All-Printed Electronics. Adv. Funct. Mater. 2021, 31, 2010897. [Google Scholar] [CrossRef]
- Fu, Y.; Ding, F.; Chen, J.; Liu, M.; Zhang, X.; Dua, C.; Si, S. Label-free and near-zero-background-noise photoelectrochemical assay of methyltransferase activity based on a Bi2S3/Ti3C2 Schottky junction. Chem. Commun. 2020, 56, 5799–5802. [Google Scholar] [CrossRef] [PubMed]
- Abdi, F.F.; Han, L.; Smets, A.H.M.; Zeman, M.; Dam, B.; van de Krol, R. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 2013, 4, 2195. [Google Scholar] [CrossRef] [Green Version]
- Ahmmed, S.; Aktar, A.; Hossain, J.; Ismail, A.B.M. Enhancing the open circuit voltage of the SnS based heterojunction solar cell using NiO HTL. Sol. Energy 2020, 207, 693–702. [Google Scholar] [CrossRef]
- Xiao, D.; Li, X.; Wang, D.; Li, Q.; Shen, K.; Wang, D. CdTe thin film solar cell with NiO as a back contact buffer layer. Sol. Energy Mater. Sol. Cells 2017, 169, 61–67. [Google Scholar] [CrossRef]
- Ghane, N.; Sadrnezhaad, S.K.; Hosseini, H.S.M. Combustion synthesis of g-C3N4/Fe2O3 nanocomposite for superior photoelectrochemical catalytic performance. Appl. Surf. Sci. 2020, 534, 147563. [Google Scholar] [CrossRef]
- Liu, J.; Lu, J.F.; Kan, J.; Jin, C.H. Synthesis of chitosan-gallic acid conjugate: Structure characterization and in vitro anti-diabetic potential. Int. J. Biol. Macromol. 2013, 62, 321–329. [Google Scholar] [CrossRef]
- Risso, E.M.; Péres, R.G.; Amaya-Farfan, J. Determination of phenolic acids in coffee by micellar electrokinetic chromatography. Food Chem. 2007, 105, 1578–1582. [Google Scholar] [CrossRef]
- Cui, Z.; Xiang, Y.; Si, J.; Yang, M.; Zhang, Q.; Zhang, T. Ionic interactions between sulfuric acid and chitosan membranes. Carbohyd. Polym. 2008, 73, 111–116. [Google Scholar] [CrossRef]
- Kamari, A.; Ngah, W.S.W.; Chong, M.Y.; Cheah, M.L. Sorption of acid dyes onto GLA and H2SO4 cross-linked chitosan beads. Desalination 2009, 249, 1180–1189. [Google Scholar] [CrossRef]
- Wang, C.; Ye, X.; Wang, Z.; Wu, T.; Wang, Y.; Li, C. Molecularly imprinted photoelectrochemical sensor for human epididymis protein 4 based on polymerized ionic liquid hydrogel and gold nanoparticle/ZnCdHgSe QDs composite film. Anal. Chem. 2017, 89, 12391–12398. [Google Scholar] [CrossRef]
- Zhao, X.; Bai, J.; Bo, X.; Guo, L. A novel electrochemical sensor based on 2D CuTCPP nanosheets and platelet ordered mesoporous carbon composites for hydroxylamine and chlorogenic acid. Anal. Chim. Acta 2019, 1075, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Huang, W.; Chen, K.; Zhang, T.; Wang, Y.; Wang, J. A novel electrochemical sensor based on core-shell-structured metal-organic frameworks: The outstanding analytical performance towards chlorogenic acid. Talanta 2019, 196, 85–91. [Google Scholar] [CrossRef]
- Tomac, I.; Šeruga, M.; Beinrohr, E. Characterization of chlorogenic acids in coffee by flow-through chronopotentiometry. Food Anal. Method 2017, 10, 3924–3933. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.H.; Hu, X.Y.; Yu, H. Highly stable and ultrasensitive chlorogenic acid sensor based on metal-organic frameworks/titanium dioxide nanocomposites. Analyst 2016, 141, 4647–4653. [Google Scholar] [CrossRef]
- Yardım, Y.; Keskin, E.; Şentürk, Z. Voltammetric determination of mixtures of caffeine and chlorogenic acid in beverage samples using a boron-doped diamond electrode. Talanta 2013, 116, 1010–1017. [Google Scholar] [CrossRef]
- Han, Z.; He, L.; Pan, S.; Liu, H.; Hu, X.L. Hydrothermal synthesis of carbon dots and their application for detection of chlorogenic acid. Luminescence 2020, 35, 989–997. [Google Scholar] [CrossRef]
- Gao, Y.; Zeng, Y.; Liu, X.; Tang, D. Liposome-mediated in situ formation of type-I heterojunction for amplified photoelectrochemical immunoassay. Anal. Chem. 2022, 94, 4859–4865. [Google Scholar] [CrossRef]
- Yu, Z.; Gong, H.; Xu, J.; Li, Y.; Zeng, Y.; Liu, X.; Tang, D. Exploiting photoelectric activities and piezoelectric properties of NaNbO3 semiconductors for point-of-care immunoassay. Anal. Chem. 2022, 94, 3418–3426. [Google Scholar] [CrossRef] [PubMed]
Method | Linear Range (μmol L−1) | LOD (μmol L−1) | Ref. |
---|---|---|---|
MEKC | 71–2500 | 2.77 | [50] |
FTCP | 5–100 | 0.57 | [56] |
EC | 0.01–13.0 | 0.007 | [57] |
Voltammetry | 5.64–147 | 1.26 | [58] |
CDs | 1.53–80 | 0.46 | [59] |
PEC-EC | 0.0282–2824(PEC) 0.1412–22.59(EC) | 0.0024 0.0431 | This work |
Matrice | Sample No. | Spiked Con. (µmol L−1) | PEC Detected Con. (µmol L−1) | PEC Recovery% | PEC RSD% | EC Detected Con. (µmol L−1) | EC Recovery% | EC RSD% |
---|---|---|---|---|---|---|---|---|
Tea | 1 | 0.28 | 0.2692 | 96.14 | 0.89 | 0.3012 | 107.57 | 6.54 |
2 | 1.41 | 1.4943 | 105.98 | 4.48 | 1.5327 | 108.70 | 2.13 | |
3 | 2.82 | 2.6611 | 94.37 | 3.26 | 2.7141 | 96.25 | 3.38 | |
Juice | 4 | 0.28 | 0.2910 | 103.92 | 1.56 | 0.3039 | 108.54 | 0.15 |
5 | 1.41 | 1.3752 | 97.53 | 2.05 | 1.3423 | 95.20 | 3.20 | |
6 | 2.82 | 2.7120 | 96.17 | 2.30 | 2.5755 | 91.33 | 5.41 | |
Coffee | 7 | 0.28 | 0.2774 | 99.06 | 6.84 | 0.2696 | 96.29 | 0.89 |
8 | 1.41 | 1.4665 | 104.01 | 4.85 | 1.3550 | 96.10 | 0.64 | |
9 | 2.82 | 2.8623 | 101.50 | 2.36 | 2.9565 | 104.84 | 4.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Z.; Fan, D.; Xue, X.; Guo, S.; Lin, Y.; Chen, Y.; Tang, D. Molecularly Imprinted Polymer Functionalized Bi2S3/Ti3C2TX MXene Nanocomposites for Photoelectrochemical/Electrochemical Dual-Mode Sensing of Chlorogenic Acid. Chemosensors 2022, 10, 252. https://doi.org/10.3390/chemosensors10070252
Qiu Z, Fan D, Xue X, Guo S, Lin Y, Chen Y, Tang D. Molecularly Imprinted Polymer Functionalized Bi2S3/Ti3C2TX MXene Nanocomposites for Photoelectrochemical/Electrochemical Dual-Mode Sensing of Chlorogenic Acid. Chemosensors. 2022; 10(7):252. https://doi.org/10.3390/chemosensors10070252
Chicago/Turabian StyleQiu, Zhenli, Dechun Fan, Xianghang Xue, Shujun Guo, Youxiu Lin, Yiting Chen, and Dianping Tang. 2022. "Molecularly Imprinted Polymer Functionalized Bi2S3/Ti3C2TX MXene Nanocomposites for Photoelectrochemical/Electrochemical Dual-Mode Sensing of Chlorogenic Acid" Chemosensors 10, no. 7: 252. https://doi.org/10.3390/chemosensors10070252
APA StyleQiu, Z., Fan, D., Xue, X., Guo, S., Lin, Y., Chen, Y., & Tang, D. (2022). Molecularly Imprinted Polymer Functionalized Bi2S3/Ti3C2TX MXene Nanocomposites for Photoelectrochemical/Electrochemical Dual-Mode Sensing of Chlorogenic Acid. Chemosensors, 10(7), 252. https://doi.org/10.3390/chemosensors10070252