Wearable Sensor for Continuous Sweat Biomarker Monitoring
Abstract
:1. Introduction
2. Physiological Perspective of Sweat Research
2.1. Analysis of Sweating Behavior
2.2. The Physiological Role of Sweat
2.3. Specimen Collection
2.4. Sweat Metabolomics
3. Composition Analysis of Sweat Wearable Sensor
3.1. Glucose
3.2. Lactic Acid
3.3. Electrolyte
3.4. pH
3.5. Cortisol
3.6. Vitamins
3.7. Ethanol
3.8. Drugs
4. Types of Sweat Wearable Sensors
4.1. Wearable Glasses Sensor
4.2. Wearable Patch Sensor
4.3. Wearable Fabric Sensor
4.4. Wearable Tattoo Sensor
4.5. Wearable Paper-Based Sensor
5. Ideal Sweat Wearable Sensor Devices and Challenges
6. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ya, G.; Yu, H.; Jun, G.; Lei, S.; An, Z.; Shu, F.; Yu, X.; Xing, N. An interrelated CataFlower enzyme system for sensitively monitoring sweat glucose. Talanta 2021, 235, 122799. [Google Scholar]
- Massimo, O.; Stefano, G.; Tommaso, L.; Silvia, G.; Pietro, S.; Fiodor, S.; Emilia, B. Potentiometric sensor for noninvasive lactate determination in human sweat. Anal. Chim. Acta 2017, 989, 80–87. [Google Scholar]
- Youhanna, S.; Devuyst, O. Devuyst, Editors’ Digest–Basic Science a Wearable Sweat Analyzer for Continuous Electrolyte Monitoring. Perit. Dial. Int. 2016, 36, 470–471. [Google Scholar] [CrossRef] [PubMed]
- Nakata, S.; Arie, T.; Akita, S.; Takei, K. Wearable, Flexible, and Multifunctional Healthcare Device with an ISFET Chemical Sensor for Simultaneous Sweat pH and Skin Temperature Monitoring. ACS Sens. 2017, 2, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Ghaffari, R.; Baker, L.B.; Rogers, J.A. Skin-interfaced systems for sweat collection and analytics. Sci. Adv. 2018, 4, 3921–3931. [Google Scholar] [CrossRef] [Green Version]
- Rajamanikandan, R.; Ilanchelian, M. Simple and visual approach for highly selective biosensing of vitamin B1 based on glutathione coated silver nanoparticles as a colorimetric probe. Sens. Actuators B Chem. 2017, 244, 380–386. [Google Scholar] [CrossRef]
- Egmond, K.V.; Wright, C.; Livingston, M.; Kuntsche, E. Wearable Transdermal Alcohol Monitors: A Systematic Review of Detection Validity, and Relationship between Transdermal and Breath Alcohol Concentration and Influencing Factors. Alcohol. Clin. Exp. Res. 2020, 44, 1918–1932. [Google Scholar] [CrossRef]
- Teymourian, H.; Parrilla, M.; Sempionatto, J.R.; Montiel, N.F.; Wang, J. Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs. ACS Sens. 2020, 5, 2679–2700. [Google Scholar] [CrossRef]
- Cho, E.; Mohammadifar, M.; Choi, S. A Single-Use, Self-Powered, Paper-Based Sensor Patch for Detection of Exercise-Induced Hypoglycemia. Micromachines 2017, 8, 265. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Venkatesh, H.A. The utility of blood components in the care of sick neonates: An evidence-based review. Glob. J. Transfus. Med. 2020, 5, 27–33. [Google Scholar]
- Mena-Bravo, A.; Luque de Castro, M.D. Sweat: A sample with limited present applications and promising future in metabolomics. J. Pharm. Biomed. Anal. 2014, 90, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Barroso, M.; Gallardo, E.; Vieira, D.N.; Queiroz, J.A.; López-Rivadulla, M. Bioanalytical procedures and recent developments in the determination of opiates/opioids in human biological samples. Anal. Bioanal. Chem. 2011, 400, 1665–1690. [Google Scholar] [CrossRef] [PubMed]
- Souza, S.L.; Graça, G.; Oliva, A. Characterization of sweat induced with pilocarpine, physical exercise, and collected passively by metabolomic analysis. Ski. Res. Technol. 2017, 24, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Jan, V.; Matthew, P.D.; Phuoc, T.T.; Evan, W.; Alexander, W.W.; Edmond, M.K.; Sofie, V.; Jo, V.D.; Valerie, F.; et al. Tissue- and Blood-derived Genomic Biomarkers for Metastatic Hormone-sensitive Prostate Cancer: A Systematic Review. Eur. Urol. Oncol. 2021, 4, 914–923. [Google Scholar]
- Natalie, D.; Douglas, L.; Richard, H.; Erik, W.; Julia, E. Comprehensive genomic profiling (CGP) via peripheral blood liquid biopsies identifies therapeutically relevant genomic alterations in tubo-ovarian and peritoneal cancer. Gynecol. Oncol. 2021, 162, S14. [Google Scholar]
- Stéphane, L.; Philippe, C.; Eva, C.; Sixtina, G.D.D.M.; Olivier, T.; Morgan, R.; Philippe, S.; Géraldine, C.; Karim, S.; François, L.; et al. Diagnostic, Staging, and Grading of Urothelial Carcinomas from Urine: Performance of BCA-1, a Mini-Array Comparative Genomic Hybridisation–Based Test. Eur. Urol. 2011, 59, 250–257. [Google Scholar]
- Ai, Z.; Hui, S.; Xiu, W.; Xi, W. Urine metabolomics Clinica. Chim. Acta 2012, 414, 65–69. [Google Scholar]
- Jian, X.; David, B.; Michael, W.; David, W. Translational biomarker discovery in clinical metabolomics: An introductory tutorial. Metabolomics 2013, 9, 280–299. [Google Scholar]
- Domenico, M.; Giuseppe, G.; Federica, V.; Francesco, P. Proteomics for the identification of biomarkers in testicular cancer–review. Front. Endocrinol. 2019, 10, 462–469. [Google Scholar]
- Alharbi, R.A. Proteomics approach and techniques in identification of reliable biomarkers for diseases. Saudi J. Biol. Sci. 2020, 27, 968–974. [Google Scholar] [CrossRef]
- Melissa, D.H.; Sarah, L.S.; Young-Eun, C.; Chen, L.; Caroline, S.; Laken, R.; Jessica, G. Using sweat to measure cytokines in older adults compared to younger adults: A pilot study. J. Immunol. Methods 2017, 454, 1–5. [Google Scholar]
- Jian, Y.; Peng, Z.; Teng, C.; Qiu, L.; Li, G.; Bing, L.; Jun, D.; Zhao, W.; Jian, L. Construction of flexible and wearable 3D TiO2 NTs@Ti mesh for physiological detection based on sweat. JCIS Open. 2021, 2, 10007. [Google Scholar]
- Hashim, U.N.; Salahuddin, L.; Rina, R.; Rabaah, U.; Hariz, M. The Design and Implementation of Mobile Heart Monitoring Applications using Wearable Heart Rate Sensor. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 168–173. [Google Scholar] [CrossRef]
- Mohsen, S.; Zekry, A.; Youssef, K.; Abouelatta, M. On Architecture of Self-Sustainable Wearable Sensor Node for IoT Healthcare Applications. Wirel. Pers. Commun. 2021, 119, 657–671. [Google Scholar] [CrossRef]
- Nouriani, A.; McGovern, R.A.; Raiamani, R. Step length estimation with wearable sensors using a switched-gain nonlinear observer. Biomed. Signal Processing Control 2021, 69, 102822. [Google Scholar] [CrossRef]
- Martin, A.; Voix, J. In-Ear Audio Wearable: Measurement of Heart and Breathing Rates for Health and Safety Monitoring. IEEE Trans. Biomed. Eng. 2017, 65, 1256–1263. [Google Scholar] [CrossRef] [PubMed]
- Bijender; Kumar, A. Flexible and wearable capacitive pressure sensor for blood pressure monitoring. Sens. Bio-Sens. Res. 2021, 33, 100434. [Google Scholar] [CrossRef]
- Kuzubasoglu, B.A.; Sayar, E.; Cochrane, C.; Koncar, V.; Bahadir, S.K. Wearable temperature sensor for human body temperature detection. J. Mater. Sci. Mater. Electron. 2021, 32, 4784–4797. [Google Scholar] [CrossRef]
- Ali, J. Wearable Sweat Sensors-Towards Big Data for Human Health. Electrochem. Soc. Meet. Abstr. 2021, MA2021–01, 1114. [Google Scholar]
- Jun, T.; Xiao, S.; Yu, W.; Liang, H.; Tian, Z. Flexible plasmonic random laser for wearable humidity sensing. Sci. China Inf. Sci. 2021, 64, 222401. [Google Scholar]
- Yu, H.; Sun, J. Sweat detection theory and fluid driven methods: A review. Nanotechnol. Precis. Eng. 2020, 3, 126–140. [Google Scholar] [CrossRef]
- Baker, L.B. Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature 2019, 6, 211–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klous, L.; Ruiter, C.D.; Alkemade, P.; Daanen, H.; Gerrett, N. Sweat rate and sweat composition following active or passive heat re-acclimation: A pilot study. Temperature 2021, 8, 90–104. [Google Scholar] [CrossRef] [PubMed]
- Nicola, G.; Katy, G.; Bernard, R.; Thomas, V.; Narihiko, K.; George, H. Sweat from gland to skin surface: Production, transport, and skin absorption. J. Appl. Physiol. 2018, 125, 459–469. [Google Scholar]
- Yun, Z.; Qing, Z.; Da, D.; Tiance, A.; Shu, G.; Qian, S.; Wen, C. A Highly Stretchable and Strain-Insensitive Fiber-Based Wearable Electrochemical Biosensor to Monitor Glucose in the Sweat. Anal. Chem. 2019, 91, 6569–6576. [Google Scholar]
- Mohammad, T.Y.; Bin, L.; Yen, N.T. Emerging Strategies in Enhancing Singlet Oxygen Generation of Nano-Photosensitizers toward Advanced Phototherapy. Nano-Micro Letters 2022, 14, 293–341. [Google Scholar]
- Abellan-Llobregat, A.; Jeerapan, I.; Bandodkar, A.; Vidal, L.; Canals, A.; Wang, J.; Morallon, E. A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration. Biosens. Bioelectron. 2017, 91, 885–891. [Google Scholar] [CrossRef] [Green Version]
- Salzitsa, A.; Blair, C.; Pawel, B.; Vincenzo, C.; Henry, M.; Bruno, R.; Guang, Y. A wearable multisensing patch for continuous sweat monitoring. Biosens. Bioelectron. 2017, 93, 139–145. [Google Scholar]
- Yuta, S.; Daisuke, N.; Yasuyuki, S.; Toshinobu, R.; Hidehiko, I.; Kotaro, M.; Masato, S.; Takatomo, W.; Takeo, N.; Morio, M.; et al. A novel device for detecting anaerobic threshold using sweat lactate during exercise. Sci. Rep. 2021, 11, 4929. [Google Scholar]
- David, K.; Ramesh, G.; Kai, L.; Sriam, M.; Sriram, M.; Shalini, P. Portable biosensor for monitoring cortisol in low-volume perspired human sweat. Sci. Rep. 2017, 7, 13312. [Google Scholar]
- Rebeca, M.T.; Jiao, T.; Yi, Y.; Ji, M.; Min, W.; Yu, S.; You, Y.; Chang, X.; Cui, Y.; Waguih, W.I.; et al. Investigation of Cortisol Dynamics in Human Sweat Using a Graphene-Based Wireless mHealth System. Matter 2020, 2, 921–937. [Google Scholar]
- Madhavi, P.; Badrinath, J.; Kai, L.; Sayali, U.; Devangsingh, S.; Sayali, U.; Sriram, M.; Shalini, P. CATCH (Cortisol Apta WATCH): ‘Bio-mimic alarm’ to track Anxiety, Stress, Immunity in human eccrine sweat. Electrochim. Acta 2021, 390, 138834. [Google Scholar]
- Juliane, R.S.; Ahmed, A.K.; Aftab, A.; Andre, N.D.L.E.S.; Abbas, B.; Lu, Y.; Yugender, G.; Mona, A.M.; Eileen, B.; Jennifer, M.; et al. Epidermal Enzymatic Biosensors for Sweat Vitamin C: Toward Personalized Nutrition. ACS Sens. 2020, 5, 1804–1813. [Google Scholar]
- Jiang, Z.; Hnin, Y.Y.N.; Lei, H.; Yuan, L.; Mallika, B.; Christine, H.A.; Wen, J.; Zhi, F.; Ali, J. A Wearable Nutrition Tracke. Adv. Mater. 2020, 33, 2006444. [Google Scholar]
- Ming, L.; Yang, W.; Dong, L.; Rui, Y.; Jing, X.; Hao, H. A stable sandwich-type amperometric biosensor based on poly(3,4-ethylenedioxythiophene)–single walled carbon nanotubes/ascorbate oxidase/nafion films for detection of L-ascorbic acid. Sens. Actuators B Chem. 2011, 159, 277–285. [Google Scholar]
- Tom, M.M.; John, A.C.; Harris, R.L. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar]
- Li-Chia, T.; Wei, G.; Ming, C.; Bariya, M.; Quynh, P.N.; Ziba, S.; Hnin, Y.Y.N.; Hyejin, P.; Jun, S.; Youn, J.; et al. Methylxanthine Drug Monitoring with xWearable Sweat Sensors. Adv. Mater. 2018, 30, 337. [Google Scholar]
- Anjan, P.S.; Sriram, M.V.K.; Shalini, P. A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat. Sci. Rep. 2016, 6, 1562–1578. [Google Scholar]
- Sung, K.; Jahyun, K.; Jangyeol, Y.; Aurelie, H.F.; Boram, L.; Seongbin, J.; Shu, L.; Jungli, C.; Yong, S.O.; Geumbee, L.; et al. Soft, skin-interfaced microfluidic systems with integrated enzymatic assays for measuring the concentration of ammonia and ethanol in sweat. Lab A Chip 2020, 20, 84–92. [Google Scholar]
- Xue, W.; Miao, Z.; Jia, L.; Liu, L.; Jian, Y.; Zhao, L.; Bin, D. Wearable Biosensor for Sensitive Detection of Uric Acid in Artificial Sweat Enabled by a Fiber Structured Sensing Interface. Nano Energy 2021, 85, 106031. [Google Scholar]
- Jayoung, K.; Somayeh, I.; William, R.D.A.; Julian, W.; Gabriela, V.R.; Thiago, P.; Patrick, P.M.; Joseph, W. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 2015, 74, 1061–1068. [Google Scholar]
- Libu, M.; Saoirse, D.; Ravinder, D. Flexible potentiometric pH sensors for wearable systems. RSC Adv. 2020, 15, 8594–8617. [Google Scholar]
- Yu, Q.; Li, Q.; Pei, Z.; Peng, Z.; Fan, B.; Jia, Z.; Li, G.; Bing, L.; Lei, Z. Phosphoprotein Detection in Sweat Realized by Intercalation Structure 2D@3D g-C3N4@Fe3O4 Wearable Sensitive Motif. Biosensors 2022, 12, 361. [Google Scholar]
- Daniel, P.R.; Michael, E.R.; Daniel, K.G.; Lin, H.; Nancy, K.L.; Rajesh, R.N.; Joshua, A.H.; Ian, P.; Jason, C.H. Adhesive RFID Sensor Patch for Monitoring of Sweat Electrolytes. IEEE Trans. Biomed. Eng. 2015, 62, 1457–1465. [Google Scholar]
- Margaret, M.; Adam, P.; Ruairi, B.; Paddy, W.; Florien, S.; Gordon, W.; Dermot, D. Wearable Platform for Real-time Monitoring of Sodium in Sweat. Chemphyschem A Eur. J. Chem. Phys. Phys. Chem. 2018, 19, 1531–1536. [Google Scholar]
- Verónica, M.G.; Rafael, F.D.O.; Ye, W.; Andrey, B.; Pablo, F.B.; María, B.G.G.; Thomas, M.H.; Davide, B.; Stefano, C.; Paolo, S. Harnessing Selectivity and Sensitivity in Ion Sensing via Supramolecular Recognition: A 3D Hybrid Gold Nanoparticle Network Chemiresistor. Adv. Funct. Mater. 2020, 31, 2170067. [Google Scholar]
- Marc, P.; María, C.; Sara, P.S.; Mina, R.; Niclas, R.; Frank, N.; Gastón, A.C. Wearable All-Solid-State Potentiometric Microneedle Patch for Intradermal Potassium Detection. Anal. Chem. 2019, 91, 1578–1586. [Google Scholar]
- Choi, D.H.; Yi, L.; Cutting, G.R.; Searsonl, P.C. A wearable potentiometric sensor with integrated salt bridge for sweat chloride measurement. Sens. Actuators B. Chem. 2017, 250, 673–678. [Google Scholar] [CrossRef]
- Dong-Hoon, C.; Jin, S.K.; Garry, R.C.; Peter, C.S. Wearable Potentiometric Chloride Sweat Sensor: The Critical Role of the Salt Bridge. Anal. Chem. 2016, 88, 12241–12247. [Google Scholar]
- Guinovart, T.; Bandodkar, A.; Windmiller, J.; Andrade, F.; Wang, J. A potentiometric tattoo sensor for monitoring ammonium in sweat. Anal. 2013, 138, 7031–7038. [Google Scholar] [CrossRef]
- Nicola, C.; Marco, G.; Marco, V.; Valeria, L.; Edmondo, B.; Maria, C.; Andrea, Z. Ion selective textile organic electrochemical transistor for wearable sweat monitoring. Org. Electron. 2019, 78, 105579. [Google Scholar]
- Hnin, Y.Y.N.; Wei, G.; Ziba, S.; Sam, E.; Samyuktha, C.; Kevin, C.; Hossain, M.F.; Li-Chia, T.; Hiroki, O.; Ronald, W.D.; et al. A Wearable Electrochemical Platform for Noninvasive Simultaneous Monitoring of Ca2+ and pH. ACS Nano 2016, 10, 7216–7224. [Google Scholar]
- Kim, J.; Araujo, W.R.; Izabela, A.S.; Amay, J.B.; Jia, W.Z.; Brunetii, B.; Thigo, R.L.C.P.; Joseph, W. Wearable temporary tattoo sensor for real-time trace metal monitoring in human sweat. Electrochem. Commun. 2015, 51, 41–45. [Google Scholar] [CrossRef]
- Wei, G.; Hnin, Y.Y.N.; Ziba, S.; Hossain, M.F.; Kevin, C.; Sam, E.; Yu, G.; Li-Chia, T.; Hiroki, O.; Eric, W.; et al. Wearable Microsensor Array for Multiplexed Heavy Metal Monitoring of Body Fluids. ACS Sens. 2016, 1, 866–874. [Google Scholar]
- Yi, C.; Si, L.; Sha, Z.; Yan, L.; Zhe, Q.; Ying, C.; Bing, L.; Xin, W.; Xue, F. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci. Adv. 2017, 3, e1701629. [Google Scholar]
- Zheng, L.; Liu, Y.; Zhang, C. A sample-to-answer, wearable cloth-based electrochemical sensor (WCECS) for point-of-care detection of glucose in sweat. Sens. Actuators B Chem. 2021, 343, 130131. [Google Scholar] [CrossRef]
- Wen, H.; Geng, Y.; Woo, K.; Kai, X. Emerging wearable flexible sensors for sweat analysis. Bio Des. Manuf. 2022, 5, 21. [Google Scholar]
- Hemmes, B.; Wert, L.A.D.; Brink, P.R.G.; Oomens, C.W.J.; Bader, D.L.; Poeze, M. Cytokine IL1α and lactate as markers for tissue damage in spineboard immobilisation. A prospective, randomised open-label crossover trial-ScienceDirect. J. Mech. Behav. Biomed. Mater. 2017, 75, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Mónica, C.S.; Feliciano, P.C.; Natacha, T.; Xavier, R.; Bernabé, J.G.; Sanchez, J.C.; Castro, M.D.L.D. Human sweat metabolomics for lung cancer screening. Anal. Bioanal. Chem. 2015, 407, 5381–5392. [Google Scholar]
- Kintz, P.; Samy, N. Chapter 13 Unconventional samples and alternative matrices. Handb. Anal. Sep. 2000, 2, 459–488. [Google Scholar]
- Porucznik, C.A.; Cox, K.J.; Wilkins, D.G.; Anderson, D.J.; Bailey, N.M.; Szczotka, K.M.; Szczotka, K.M. A Preliminary study of biomonitoring for bisphenol-A in human sweat. J. Anal. Toxicol. 2015, 39, 562–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutkiewicz, E.P.; Lin, J.D.; Tseng, T.W.; Wang, Y.S.; Urban, P.L. Hydrogel micropatches for sampling and profiling skin metabolites. Anal. Chem. 2014, 86, 2337–2344. [Google Scholar] [CrossRef] [PubMed]
- Harshman, S.W.; Pitsch, R.L.; Schaeublin, N.M.; Smith, Z.K.; Strayer, K.E.; Martin, J.A. Metabolomic stability of exercise-induced sweat. J. Chromatogr. B 2019, 1126, 121763. [Google Scholar] [CrossRef]
- Castro, M.; Priego-Capote, F.; Castro, B.; Castro, F.; Capote. The analytical process to search for metabolomics biomarkers. J. Pharm. Biomed. Anal. 2018, 147, 341–349. [Google Scholar] [CrossRef]
- Boeck, K.D.; Vermeulen, F.; Dupont, L. The diagnosis of cystic fibrosis. La Presse Médicale 2017, 46, e97–e108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meo, A.D.; Sohaei, D.; Batruch, I.; Alexandrou, P.; Diamandis, E.P. Proteomic Profiling of the Human Tissue and Biological Fluid Proteome. J. Proteome Res. 2020, 20, 444–452. [Google Scholar] [CrossRef]
- Delgado-Povedano, M.M.; Calderón-Santiago, M.; Priego-Capote, F.; Castro, L.D. Development of a method for enhancing metabolomics coverage of human sweat by gas chromatography–mass spectrometry in high resolution mode. Anal. Chim. Acta 2016, 905, 115–125. [Google Scholar] [CrossRef]
- Ahmed, S.; Zaynab, S.; Abdulsalam, M.H.; Firas, K.; Mohamed, A.F. Sweat metabolome and proteome: Recent trends in analytical advances and potential biological functions. J. Proteom. 2021, 246, 104310. [Google Scholar]
- Patel, P.K. Cystic Fibrosis in Human-A Review. Curr. Trends Biotechnol. Pharm. 2020, 14, 448–457. [Google Scholar] [CrossRef]
- Cui, X.; Su, G.; Zhang, L.; Yi, S.; Yang, P. Integrated omics analysis of sweat reveals an aberrant amino acid metabolism pathway in Vogt-Koyanagi-Harada disease. Clin. Exp. Immunol. 2020, 200, 250–259. [Google Scholar] [CrossRef]
- Ono, E.; Murota, H.; Mori, Y.; Yoshioka, Y.; Nomura, Y.; Munetsugu, T. Sweat glucose and GLUT2 expression in atopic dermatitis: Implication for clinical manifestation and treatment. PLoS ONE 2018, 13, e0195960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macedo, A.N.; Mathiaparanam, S.; Brick, L.; Keenan, K.; Gonska, T.; Pedder, L.; Hill, S.; Britz-McKibbin, P. The Sweat Metabolome of Screen-Positive Cystic Fibrosis Infants: Revealing Mechanisms beyond Impaired Chloride Transport. ACS Cent. Sci. 2017, 3, 904–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez, M.; Hernández, G.; Gartner, S. Protocol for the diagnosis and follow up of patients with cystic fifibrosis, Anales Pediatr. An. Pediatr. 2009, 71, 250–264. [Google Scholar]
- Lin, C.; Rui, C.; Su, P.; Jing, X.; Qing, C.; Guan, S.; Chun, Z.; Aize, K.; Pei, Y. Plasma metabolomics study of Vogt-Koyanagi-Harada disease identifies potential diagnostic biomarkers. Exp. Eye Res. 2020, 196, 108070. [Google Scholar]
- Darlenski, R.; Kazandjieva, J.; Hristakieva, E.; Fluhr, J.W. Pic dermatitis as a systemic disease. Clin. Dermatol. 2014, 32, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Ono, E.; Murota, H.; Mori, Y.; Yoshioka, Y.; Katayama, I. Metabolomic analysis of sweat revealed glucose as a biomarker of atopic dermatitis. J. Dermatol. Sci. 2017, 86, e30. [Google Scholar] [CrossRef]
- Sabino, F.; Hermes, O.; Auf, U. Body Fluid Degradomics and Characterization of Basic N-Terminome. Methods Enzymol. 2017, 585, 177–199. [Google Scholar]
- Dervisevic, M.; Alba, M.; Beatriz, P.S.; Voelcker, N.H. Skin in the diagnostics game: Wearable biosensor nano- and microsystems for medical diagnostics. Nano Today 2020, 30, 100828. [Google Scholar] [CrossRef]
- Jing, X.; Yang, L.; Lei, S.; Dan, Z.; Xue, Z. Microfluidic Chip-Based Wearable Colorimetric Sensor for Simple and Facile Detection of Sweat Glucose. Anal. Chem. 2019, 91, 14803–14807. [Google Scholar]
- Gang, X.; Jing, H.; Xiao, C.; Yan, Q.; Feng, W.; Qing, X.; Ling, Y. A wearable, cotton thread/paper-based microfluidic device coupled with smartphone for sweat glucose sensing. Cellulose 2019, 26, 4553–4562. [Google Scholar]
- Nadtinan, P.; Pranee, R.; Krisana, S.; Niphaphum, S.; Pranut, P.; Chusak, T.; Juan, P.H.; Nadnudda, R. Non-invasive textile based colorimetric sensor for the simultaneous detection of sweat pH and lactate. Talanta 2019, 192, 424–430. [Google Scholar]
- Ashlesha, B.; Sriram, M.; Amreek, S.; Shalini, P. Simultaneous lancet-free monitoring of alcohol and glucose from low-volumes of perspired human sweat. Sci. Rep. 2018, 8, 6507. [Google Scholar]
- Semih, C. Sodium Polyacrylate Microparticle Containing Multifunctional Skin Patch for Sweat Analysis. Microchem. J. 2020, 159, 105473. [Google Scholar]
- Michele, C.; Claudio, C.; Emanuela, G.; Valerio, R.; Giuseooe, R. Optical monitoring of sweat pH by a textile fabric wearable sensor based on covalently bonded litmus-3-glycidoxypropyltrimethoxysilane coating. Sens. Actuators B Chem. 2016, 222, 213–220. [Google Scholar]
- Poletti, F.; Zanfrognini, B.; Favaretto, L.; Quintano, V.; Jin, S.; Treossi, E.; Melucci, M.; Palermo, V.; Zanardi, C. Continuous capillary-flow sensing of glucose and lactate in sweat with an electrochemical sensor based on functionalized graphene oxide. Sens. Actuators B Chem. 2021, 344, 130253. [Google Scholar] [CrossRef]
- Qing, Z.; Dan, J.; Chang, X.; Yuan, G.; Xiao, L.; Qing, W.; Li, H.; Xue, R.; Cheng, W.; Yi, W. Wearable electrochemical biosensor based on molecularly imprinted Ag nanowires for noninvasive monitoring lactate in human sweat. Sens. Actuators B Chem. 2020, 320, 128325. [Google Scholar]
- Tur-García, E.L.; Davis, F.; Collyer, S.D.; Holmes, J.L.; Barr, H.; Higson, S.P.J. Novel flexible enzyme laminate-based sensor for analysis of lactate in sweat. Sens. Actuators B Chem. 2017, 242, 502–510. [Google Scholar] [CrossRef]
- Lin, K.C.; Muthukumar, C.; Prasad, S. Flex-GO (Flexible graphene oxide) sensor for electrochemical monitoring lactate in low-volume passive perspired human sweat. Talanta 2020, 214, 120810. [Google Scholar] [CrossRef]
- Yu, W.; Tsao, P.K.; Rinawati, M.; Kuan-Jung, C.; Kuei-Yuan, C.; Chih-Yu, C.; Yeh, M.H. Designing ZIF-67 derived NiCo layered double hydroxides with 3D hierarchical structure for Enzyme-free electrochemical lactate monitoring in human sweat. Chem. Eng. J. 2022, 427, 131687. [Google Scholar]
- Shitanda, I.; Mitsumoto, M.; Loew, N.; Yoshihara, Y.; Watanabe, H.; Mikawa, T.; Tsujimura, S.; Itagaki, M.; Motosuke, M. Continuous sweat lactate monitoring system with integrated screen-printed MgO-templated carbon-lactate oxidase biosensor and microfluidic sweat collector. Electrochim. Acta 2020, 368, 137620. [Google Scholar] [CrossRef]
- Li, Z.; Jian, L.; Zhen, F.; Li, Q. A Wearable Biosensor Based on Bienzyme Gel-Membrane for Sweat Lactate Monitoring by Mounting on Eyeglasses. J. Nanosci. Nanotechnol. 2020, 20, 1495–1503. [Google Scholar]
- Ren, W.; Qing, Z.; Tiance, A.; Shu, G.; Wen, C. Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate monitoring in sweat. Talanta 2021, 222, 121484. [Google Scholar]
- Azar, A.; Andre, B.; Ralf, L.; Rachel, G.; Jeffrey, A.; Adam, P.; Margaret, M.; Ruairi, B.; Dermot, D. A wearable patch for continuous monitoring of sweat electrolytes during exertion. Lab A Chip 2018, 18, 2632–2641. [Google Scholar]
- Pirovano, P.; Dorrian, M.; Shinde, A.; Donohoe, A.; Brady, A.J.; Moyna, N.M.; Wallace, G.; Diamond, D.; McCaul, M. A wearable sensor for the detection of sodium and potassium in human sweat during exercise. Talanta 2020, 219, 121145. [Google Scholar] [CrossRef]
- Vincenzo, M.; Luca, F.; Simone, N.; Gaetano, M.; Fabiana, A. Medium-distance affordable, flexible and wireless epidermal sensor for pH monitoring in sweat. Talanta 2020, 222, 121506. [Google Scholar]
- Yoon, J.H.; Kim, S.M.; Park, H.J.; Kim, Y.K.; Oh, D.X. Highly self-healable and flexible cable-type pH sensors for real-time monitoring of human fluids. Biosens. Bioelectron. 2020, 150, 111946. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.; Libu, M.; William, T.N.; Leandro, L.; Vincenzo, V.; Ravinder, D. Stretchable wireless system for sweat pH monitoring. Biosens. Bioelectron. 2018, 107, 192–202. [Google Scholar]
- Francesca, M.; Bernardo, P.; Chiara, D.A.; Maria, G.B.; Sonia, C.; Francesco, L.; Giuseppe, A.; Claudia, T.; Antonio, V.; Alan, O.R.; et al. PANI-Based Wearable Electrochemical Sensor for pH Sweat Monitoring. Chemosensors 2021, 9, 169. [Google Scholar]
- Mazzaracchio, V.; Serani, A.; Fiore, L.; Moscone, D.; Arduini, F. All-solid-state ion-selective carbon black-modified printed electrode for sodium detection in sweat. Electrochimica Acta. 2021, 394, 139050. [Google Scholar] [CrossRef]
- Gauglitz, G. ABC Spotlight on paper-based strips analytics. Anal. Bioanal. Chem. 2018, 41, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Amay, J.B.; Denise, M.; Omar, M.; Tomás, G.; Joshua, R.W.; Gabriela, V.R.; Francisco, J.A.; Michael, J.S.; Joseph, W. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosens. Bioelectron. 2014, 54, 603–609. [Google Scholar]
- Sekar, M.; Allen, J.A.; Sriramprabha, R.; Pandiaraj, M.; Shekhar, B.; Ponpandian, N.; Viswanathan, C. ZnO Nanorod Integrated Flexible Carbon Fibers for Sweat Cortisol Detection. ACS Publ. 2020, 2, 499–509. [Google Scholar]
- Joong, S.N.; Sharat, C.B.; Md, A.Z.; Md, S.; Hyosang, Y.; Chani, P.; Sangyuk, Y.; Shi, Z.; Jae, Y.P. A wearable microfluidics-integrated impedimetric immunosensor based on Ti3C2Tx MXene incorporated laser-burned graphene for noninvasive sweat cortisol detection. Sens. Actuators B Chem. 2020, 329, 129206. [Google Scholar]
- Chen, C.; Xin, L.; Gang, X.; Yan, L.; Sze, S.L.; Guang, L.; Long, Z.; Cai, L.; Qing, L. Battery-free, wireless, and flexible electrochemical patch for in situ analysis of sweat cortisol via near field communication. Biosens. Bioelectron. 2021, 172, 112782. [Google Scholar] [CrossRef] [PubMed]
- Quan, L.; Wei, S.; Liang, T.; Meng, S.; Meng, J.; Jing, L.; Hai, G.; Chunmei, Y. Preparation of nanostructured PDMS film as flexible immunosensor for cortisol analysis in human sweat. Anal. Chim. Acta 2021, 1184, 339010. [Google Scholar]
- Lu, X.; Zhao, C. Exercise and Type 1 Diabetes. Adv. Exp. Med. Biol. 2020, 1228, 107–121. [Google Scholar]
- Sushmitha, V.; Sushmee, B. Two-Dimensional Metallic NiSe2 Nanoclusters-Based Low-Cost, Flexible, Amperometric Sensor for Detection of Neurological Drug Carbamazepine in Human Sweat Samples. Front. Chem. 2020, 8, 337. [Google Scholar]
- Pavinatto, A.; Imani, S.; Sempionatto, J. Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab A Chip 2017, 17, 1834–1842. [Google Scholar]
- Petar, K.; Marija, S.; Ivana, M.S. Paper-based ion-selective optodes for continuous sensing: Reversible potassium ion monitoring. Talanta 2019, 193, 51–55. [Google Scholar]
- Yu, W.; Xiao, W.; Wei, L.; Qing, Y.; You, Z.; Bo, Y. A thin film polyethylene terephthalate (PET) electrochemical sensor for detection of glucose in sweat. Talanta 2019, 198, 62–89. [Google Scholar]
- Zhao, Z.; Li, Q.; Sun, Y.; Zhao, C.; Chen, Y. Highly sensitive and portable electrochemical detection system based on AuNPs@CuO NWs/Cu2O/CF hierarchical nanostructures for enzymeless glucose sensing. Sens. Actuators B Chem. 2021, 345, 130379. [Google Scholar] [CrossRef]
- Yoon, H.; Nah, J.; Kim, H.; Ko, S.; Sharifuzzaman, M.; Barman, S.C.; Xuan, X.; Kim, J.; Park, J.Y. A chemically modified laser-induced porous graphene based flexible and ultrasensitive electrochemical biosensor for sweat glucose detection-ScienceDirect. Sens. Actuators B Chem. 2021, 311, 127866. [Google Scholar] [CrossRef]
- Curto, V.F.; Coyle, S.; Byrne, R.; Angelov, N.; Diamond, D.; Benito-Lopez, F. Concept and development of an autonomous wearable micro-fluidic platform for real time pH sweat analysis. Sens. Actuators B Chem. 2012, 175, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Yu, L.; You, H.; Li, T.; Guo, Z. Gold nanostructure-programmed flexible electrochemical biosensor for detection of glucose and lactate in sweat. J. Electroanal. Chem. 2021, 882, 115029. [Google Scholar]
- Seung, Y.O.; Soo, Y.H.; Yu, R.J.; Junyeong, Y.; Heun, P.; Sang, W.J.; Geumbee, L.; Ju, H.O.; Hanchan, L.; Sang-Soo, L.; et al. Skin-Attachable, Stretchable Electrochemical Sweat Sensor for Glucose and pH Detection. ACS Appl. Mater. Interfaces 2018, 10, 13729–13740. [Google Scholar]
- Rafael, H.; Pascal, B.; Francisco, J.A. IonSens: A Wearable Potentiometric Sensor Patch for Monitoring Total Ion Content in Sweat. Electroanalysis 2018, 30, 1536–1544. [Google Scholar]
- Gamella, M.; Campuzano, S.; Manso, J.; González de Rivera, G.; López-Colino, F.; Reviejo, A.J.; Pingarrón, J.M. A novel non-invasive electrochemical biosensing device for in situ determination of the alcohol content in blood by monitoring ethanol in sweat. Anal. Chim. Acta 2014, 806, 1–7. [Google Scholar] [CrossRef]
- Sánchez, M.; González, A.; Sabio, L.; Zou, W.; Dominguez-Vera, J.M. Photochromic polyoxometalate–based enzyme-free reusable sensors for real-time colorimetric detection of alcohol in sweat and saliva. Mater. Today Chem. 2021, 21, 100491. [Google Scholar] [CrossRef]
- Hussain, M.H.; Fook, L.P.; Putri, M.; Tan, H.L.; Bakar, N.; Radacsi, N. Advances on ultra-sensitive electrospun nanostructured electrochemical and colorimetric sensors for diabetes mellitus detection. Nano Mater. Sci. 2021, 3, 321–343. [Google Scholar] [CrossRef]
- Frank, W.B.; Christian, K.R.; Matthew, J.L. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2021, 2, 1143–1211. [Google Scholar]
- Ahyeon, K.; Daeshik, K.; Ye, X.; Seungmin, L.; Rafal, M.P.; Jeonghyun, K.; Taehwan, H.; Seunghwan, M.; Anthony, B.; Philippe, B.; et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 2016, 8, 165. [Google Scholar]
- Matthew, G.; Peter, E. Dietary Vitamin C in Human Health. Adv. Food Nutr. Res. 2018, 83, 281–310. [Google Scholar]
- Gabriel, H.R.; Qiang, L.; Tao, Y.; Cong, C.; Alex, I.; Tian, J.; Dimitri, P.O.; Erin, B.; Sylvane, D.; Barbara, R.; et al. Association of Gray Matter and Personality Development With Increased Drunkenness Frequency During Adolescence. JAMA Psychiatry 2019, 77, 409–419. [Google Scholar]
- Güneş, A.; Berna, H. Determination of ethyl glucuronide (EtG) in blood samples using partial least squares discriminant analysis applied to surface-enhanced Raman spectroscopy. Vib. Spectrosc. 2020, 106, 103012. [Google Scholar]
- Emilie, E.A.; Andreas, L.; Anton, L.; Peter, A.; Ilona, K.; Sven, A.; Claes-Göran, Ö.; Anna-Karin, D. Alcohol and type 2 diabetes: The role of socioeconomic, lifestyle and psychosocial factors. Scand. J. Public Health 2018, 47, 408–416. [Google Scholar]
- Chun, C.; Yuan, W.; Shui, D.; Cheng, H.; Zi, W. A novel sensitive and selective electrochemical sensor based on integration of molecularly imprinted with hollow silver nanospheres for determination of carbamazepine. Microchem. J. 2019, 147, 191–197. [Google Scholar] [CrossRef]
- Shu, L.; Bo, W.; Wen, Y.; Kait, C.; Clastillo, H.; Xuan, C.; Yi, Z.; Yu, G.; Zhao, W.; Hai, L.; et al. Design Framework and Sensing System for Noninvasive Wearable Electroactive Drug Monitoring. ACS Sens. 2020, 5, 265–273. [Google Scholar]
- Subhas, C.M. Wearable Sensors for Human Activity Monitoring: A Review. IEEE Sens. J. 2021, 15, 1321–1330. [Google Scholar]
- Jing, N.; Yan, L.; Yi, H.; Yuan, W.; Steghen, X.; Matthias, P.; Xiao, J. SPIDERS+: A light-weight, wireless, and low-cost glasses-based wearable platform for emotion sensing and bio-signal acquisition. Pervasive Mob. Comput. 2021, 75, 101724. [Google Scholar]
- Yi, Y.; Yu, S.; Xiang, B.; Ji, M.; On, S.P.; Lai, Z.; Min, W.; Jiao, T.; Adam, K.; Hai, Z.; et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 2020, 38, 217–224. [Google Scholar]
- Jaehong, L.; Byron, L.Z.; Janghoon, W.; Kukro, Y.; Taeyoon, L. Recent Advances in 1D Stretchable Electrodes and Devices for Textile and Wearable Electronics: Materials, Fabrications, and Applications. Adv. Mater. 2019, 32, 1902532. [Google Scholar]
- Tiance, A.; David, V.A.; Shu, G.; Lim, W.Y.; Fenge, L.; Ren, W.; Mehmet, R.Y.; Wen, C. Self-powered gold nanowire tattoo triboelectric sensors for soft wearable human-machine interface. Nano Energy 2020, 77, 105295. [Google Scholar]
- Jun, S.; Lin, G.; Ying, L.; Pei, W.; Xiao, D.; Xing, Y.; Kong, Q.; Lu, L. MXene/tissue paper composites for wearable pressure sensors and 2thermotherapy electronics. Thin Solid Film. 2022, 743, 139054. [Google Scholar]
- Hao, D.; Yu, X.; Jun, W. Nanomaterial-sensors for herbicides detection using electrochemical techniques and prospect applications. TrAC Trends Anal. Chem. 2021, 135, 116178. [Google Scholar]
- Fatemeh, H.; Leila, N.; Majid, A. Comparative study of electrochemically-grown vanadium pentoxide nanostructures synthesized using differential pulse voltammetry, cyclic voltammetry, and chronoamperometry methods as the hole transport layer. J. Alloys Compd. 2022, 900, 163501. [Google Scholar]
- Pan, M.; Lin, W.; Wang, H.; Hsieh, S.; Hsieh, P.; Su, Y.; Huang, P. Determination of carbamazepine: A comparison of the differential pulse voltammetry (DPV) method and the immunoassay method in a clinical trial. J. Anal. Chem. 2014, 69, 57–61. [Google Scholar] [CrossRef]
- Yi, D.; Alireza, M.; Kevin, A.; Chung, L. A Cuprous Oxide Thin Film Non-Enzymatic Glucose Sensor Using Differential Pulse Voltammetry and Other Voltammetry Methods and a Comparison to Different Thin Film Electrodes on the Detection of Glucose in an Alkaline Solution. Biosensors 2018, 8, 4. [Google Scholar]
- Yan, Z.; Li, C.; Xin, Y.; Fei, L.; Yi, X.; Xin, L.; Shao, W. Dual-mode biosensor for femtomolar miRNA-155 detection by electrochemiluminescence and adsorptive stripping voltammetry. Microchem. J. 2021, 165, 106091. [Google Scholar]
- Grégoire, H.; Valerio, B. Stripping voltammetry at micro-interface arrays: A review. Anal. Chim. Acta 2013, 769, 10–21. [Google Scholar]
- Jorge, H.A.; Mario, V.; José, C.C. Electrochemical methods as a tool for determining the antioxidant capacity of food and beverages: A review. Food Chem. 2016, 221, 1371–1381. [Google Scholar]
- John, C.H.; Megan, A.M.; Lawrence, A.B. Diagnostic Criteria for the Characterization of Electrode Reactions with Chemical Reactions Following Electron Transfer by Cyclic Square Wave Voltammetry. Chemphyschem A Eur. J. Chem. Phys. Phys. Chem. 2016, 17, 2596–2606. [Google Scholar]
- Balwant, K.S.; Aasiya, S.; Rajiv, O.D.; Smrutiranjan, P. Copper oxide nanosheets and nanowires grown by one-step linear sweep voltammetry for supercapacitor application. J. Energy Storage 2020, 31, 101631. [Google Scholar]
- Yuki, U.; Enno, K.; Richard, G.C. Linear sweep voltammetry with non-triangular waveforms: New opportunities in electroanalysis. J. Electroanal. Chem. 2018, 818, 140–148. [Google Scholar]
- Ajay, P.V.S.; Printo, J.; Kiruba, D.; Lakshmanan, S.; Takatoshi, K.; Sivakumar, M. Colorimetric sensors for rapid detection of various analytes. Mater. Sci. Eng. C 2017, 78, 1231–1245. [Google Scholar]
- Yan, L.; Liang, F. Progress in Paper-based Colorimetric Sensor Array. Chin. J. Anal. Chem. 2020, 48, 1448–1457. [Google Scholar]
- Jing, S.; Yue, L.; Liu, H.; Jia, P.; Feng, Y.; Yue, L. Colorimetric sensor array based on gold nanoparticles: Design principles and recent advances. TrAC Trends Anal. Chem. 2020, 122, 115754. [Google Scholar]
- Nina, M.; Marco, H.; Frédéric, O.; Jong-Sook, L.; Vanesa, R.; Emilio, N.; Steffen, S.; Gareth, H.; Rinaldo, R.; Miran, G.; et al. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: A review. J. Power Sources 2020, 480, 228742. [Google Scholar]
- Jia, H.; Ying, Z.; Jayne, W. Review of Non-invasive Continuous Glucose Monitoring Based on Impedance Spectroscopy. Sens. Actuators A Phys. 2020, 311, 112103. [Google Scholar]
- Jose, M.; Raquel, M.; Mireia, B. Trends in Electrochemical Impedance Spectroscopy involving nanocomposite transducers: Characterization, architecture surface and bio-sensing. Trac Trends Anal. Chem. 2017, 97, 201–205. [Google Scholar]
- Burakhta, V.A.; Sataeva, S.S. A Gallium Arsenide Sensor for the Potentiometric Titration of Silver, Copper, Lead, and Cadmium Ions. J. Anal. Chem. 2020, 75, 1080–1085. [Google Scholar] [CrossRef]
- Somaiyeh, K.K.; Xuan, A.N.; Hamid, A.; Robert, B.; Sarah, C.; Marcel, M.; Nichola, M.; Yorck-Michael, N.; Graeme, P. Activity-based Analysis of Potentiometric pH Titrations. Anal. Chim. Acta 2019, 1075, 49–56. [Google Scholar]
- Zhong, Z.; David, W.F. Modified potentiometric titration method to distinguish and quantify oxygenated functional groups on carbon materials by pK a and chemical reactivity. Carbon 2020, 166, 436–445. [Google Scholar] [CrossRef]
- Jin, H.; Andreas, S.; Philippe, B. Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC Trends Anal. Chem. 2016, 76, 102–114. [Google Scholar]
- Jing, W.; Hong, Z. Recent advances in electrochemical techniques for characterizing surface properties of minerals. Adv. Colloid Interface Sci. 2021, 288, 102346. [Google Scholar]
- Sam, E.; Gao, W.; Eric, W.; Zoe, A.D.; Hnin, Y.Y.N.; Samyuktha, C.; Sean, P.R.; Hossain, M.; Kevin, C.; Ziba, S.; et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl. Acad. Sci. USA 2017, 114, 4625–4630. [Google Scholar]
- Dong, L.; Wen, L.; Yi, Z.; Wei, H. Printable Transparent Conductive Films for Flexible Electronics. Adv. Mater. 2018, 30, 1704738. [Google Scholar]
- Wei, G.; Hiroki, O.; Daisuke, K.; Kuniharu, T.; Ali, J. Flexible Electronics toward Wearable Sensing. Acc. Chem. Res. 2019, 52, 523–533. [Google Scholar]
- Byeong, U.H.; Ju-Hyuck, L.; Tran, Q.T.; Eun, R.; Do-Il, K.; Sang-Woo, K.; Nae-Eung, L. Transparent Stretchable Self-Powered Patchable Sensor Platform with Ultrasensitive Recognition of Human Activities. ACS Nano 2015, 9, 8801–8810. [Google Scholar]
- Tanmoy, D.; Bhupendra, K.S.; Ajit, K.K.; Jong, H.A. Graphene-based flexible and wearable electronics. J. Semicond. 2018, 39, 90–108. [Google Scholar]
- Yin, M.; Hai, L.; Si, C.; Yan, M.; Jia, C.; Xue, F. Skin-Like Electronics for Perception and Interaction: Materials, Structural Designs, and Applications. Adv. Intell. Syst. 2020, 3, 1–17. [Google Scholar]
- Shun, M.; Tian, W.; Xin, C.; Yin, W.; Hong, T.; Yu, Y.; Yan, W.; Jian, D.; Jing, W.; Zheng, S.; et al. An artificial neural network chip based on two-dimensional semiconductor. Sci. Bull. 2022, 67, 270–277. [Google Scholar]
- Abdelrahman, B.; Hong, Z. Nanocellulose-Graphene Hybrids: Advanced Functional Materials as Multifunctional Sensing Platform. Nano-Micro Lett. 2021, 13, 231–267. [Google Scholar]
- Jiao, H.; Rui, L.; Ye, S. An overview of healthcare monitoring by flexible electronics. Sci. China Phys. Mech. Astron. 2018, 61, 5–22. [Google Scholar]
- Shi, C.; Zhi, H.; Feng, W.; Kun, Z.; Yu, C.; Yin, M.; Xue, F. Review on flexible photonics/electronics integrated devices and fabrication strategy. Sci. China Inf. Sci. 2018, 61, 5–31. [Google Scholar]
- Yong, H.; Chen, Z.; Wen, X.; Yu, W.; Yong, J.; Lei, Q.; Dong, G.; Chao, H.; Shan, J.; Zhao, Y.; et al. Flexible smart sensing skin for “Fly-by-Feel” morphing aircraft. Sci. China Technol. Sci. 2022, 65, 1–29. [Google Scholar]
- Naveen, T.; Subhodeep, C.; Kuldeep, K.; Jun, C.; Kai, F.; Zong, L. Recent advancements in sampling, power management strategies and development in applications for non-invasive wearable electrochemical sensors. J. Electroanal. Chem. 2022, 907, 116064. [Google Scholar]
- Chang, W.; Zheng, L. Proteomic Profiling of Sweat Exosome Suggests its Involvement in Skin Immunity. J. Investig. Dermatol. 2018, 138, 89–97. [Google Scholar]
- Vani, S.R.; Tabea, M.S.; Margaret, V.W. Protein Kinase C-Mediated Cardiac Troponin I S43/45 Phosphorylation Causes Contractile Dysfunction in Human Heart Failure and in Rodents-ScienceDirect. Biophys. J. 2019, 116, 29a. [Google Scholar]
- Yasmine, F.M.; Nichollas, E.S.; Antonio, M.; Carole, C.; Ximena, O.; Ganjana, L.; Michael, M.T.; Heather, G.; Andrew, M.J.; David, D.; et al. A general protein O-glycosylation machinery conserved in Burkholderia species improves bacterial fitness and elicits glycan immunogenicity in humans. J. Biol. Chem. 2019, 36, 13248–13268. [Google Scholar]
- Alejandra, Z.M.; Ramsés, G.W.; Roxana, C.; Luis-Ángel, N.; Mabel, B. The regulation of protein acetylation influences the redox homeostasis to protect the heart. Life Sci. 2021, 277, 119599. [Google Scholar]
Common Components in Sweat | Relative Content | Related Human Condition Monitoring | References |
---|---|---|---|
Glucose | 10–200 μM | Diabetes | [35,36,37] |
Lactate acid | 5–20 mM | Cystic Fibrosis, Stress Ischemia, Lactic Acidosis | [2,38,39] |
Cortisol | 8–140 ng·mL−1 | Muscle weakness, Osteoporosis, Hyperglycemia, obesity, Bilateral Adrenal Hyperplasia | [40,41,42] |
Ascorbic acid | 10–50 μM | Tumors, Cancer, Kidney Disease, Thrombosis, Stones | [43,44,45] |
Caffeine | - | Heart Disease, Insomnia, Panic Attacks, Hyperexcitability, Psychomotor Agitation | [46,47] |
Ethanol | 2.5–22.5 mM | Alcoholism, Hepatitis B, Diabetes, Drunk Driving | [48,49] |
Uric acid | 2–10 mM | Hyperuricemia, Gout, Kidney Disease | [50,51] |
pH | 3.0–8.0 | Dermatitis, Fungal Infections Skin Disease, Hydration Status | [52] |
Protein | 0.3–1.2 mg/mL | Cardiovascular Disease, Cancer | [53] |
Na+ | 10–100 mM | Hypernatremia, Collapsed Superficial Veins, Increased Heart Rate | [38,54,55] |
K+ | 1–18.5 mM | Hyperkalemia, Hypokalemia, Renal Failure | [54,55,56,57] |
Cl− | 10–100 mM | Cerebral Cell Edema, Hypochloremic Alkalosis, Hyperchloremia | [54,58,59] |
NH4+ | 0.1–1 mM | Liver Disease | [60] |
Ca2+ | 0.41–12.4 mM | Renal failure, Rhabdomyolysis, Primary Hyperparathyroidism, Hypocalcemia, Muscle Spasm | [61,62] |
Zn2+ | 100–50 μg·L−1 | Immunocompromised, Zinc Poisoning | [63,64] |
Cu2+ | 100–1000 μg·L−1 | Anemia, edema, Bone Disorders, Copper Toxicity | [64] |
Hg2+ | <100 μg·L−1 | Gastrointestinal Mucosal Hemorrhage, Acute Renal Failure, Chronic Nephritis, Uremia. | [64] |
Cd2+ | <100 μg·L−1 | Hypertension, Bronchitis, Emphysema, Lung Cancer, Renal Failure, Acute Cadmium Poisoning | [64] |
Pb2+ | <100 μg·L−1 | Lead Poisoning, Movement Disorders, Paralysis, Visual Disturbances | [64] |
Sensor Types | Analytes | References |
---|---|---|
Colorimetric Sensing Platform | Glucose | [89,90] |
pH, Lactate | [91] | |
Ethanol | [92] | |
pH | [93,94] | |
Electrochemical Biosensing Platform | Lactate, pH, Na+ | [38] |
Vitamins C | [43,44] | |
Caffeine | [47] | |
Phosphoproteins | [53] | |
Na+, K+, Cl−, Mg2+ | [54] | |
Cl− | [58] | |
Na+, K+, Ca2+ | [61] | |
Zn2+ | [63] | |
Glucose, Lactate | [95] | |
Lactate | [96,97,98,99,100,101,102] | |
Na+, K+ | [103,104] | |
pH | [105,106,107,108] | |
Na+ | [109,110,111] | |
Cortisol | [40,41,112,113,114,115] | |
Ethanol | [48,95,92,116] | |
Carbamazepine | [117] | |
Lactate, K+ | [118] | |
K+ | [119] | |
Glucose | [35,120,121,122] | |
pH, Glucose | [123] |
Analytes | Sensor Types | Substrate Material | Primitive Materials | Linear Range | Detection Limit | Sensitivity | Whether to Measure Continuously | References |
---|---|---|---|---|---|---|---|---|
Glucose | Textile type sensor | Nylon fiber covered latex rubber core elastic fiber thread | Gold nanofiber | 0–500 μM | - | 11.7 μA mM−1·cm−2 | Yes | [35] |
Wearable colorimetric sensor | Microfluidic chip | Glucose oxidase | 0.1–0.5 mM | - | 0.03 mM | No | [89] | |
Microfluidic device | Paper-Based | Hydrophilic cotton thread | 50–250 μM | - | 35 μM | No | [90] | |
Enzyme sensor | Graphene oxide and chitosan composite materials | Glucose oxidase | up to 3.8 nM | - | 32 nM | Yes | [95] | |
Disposable PGE-glucose sensor | Polyethylene terephthalate film | Glucose oxidase | 0.02–1.11 mM | 35 μM | 22.05 μA·mM−1 ·cm−2 | No | [120] | |
Enzyme-free electrochemical sensing device | Polydimethylsiloxane | AuNPs@ CuO NWs/Cu2O/CF hierarchical nanostructures | 2.8–2000 μM | 0.9 μM | 1.619 μA·μM−1 ·cm−2 | No | [121] | |
Three electrodes biosensor | Porous laser-induced graphene | Chitosan/ Glucose oxidase | up to 2.1 mM | less than 300 nM | 4.622 μA·mM−1 | No | [122] | |
Gold nanoarray flexible sweat sensor | Polyethylene glycol diglycidyl ether | Gold nanoarray | - | - | 7 μmol·L−1 | No | [124] | |
Stretchable electrochemical sensing platform | Polydimethylsiloxane | CNT-AuNS | - | 1.3 μM | 10.89 μA·mM−1 ·cm−2 | Yes | [125] | |
Flexible probe sensor array | Polyvinyl chloride | Poly(3,4-ethylenedioxythiophene) | up to 28 mM | - | (RSD) 4% | Yes | [38] | |
Fabric colorimetric sensing platform | Cotton fabric | Methyl orange Bromocresol green Lactase | 0–25 mM | - | - | Yes | [91] | |
Lactate | Enzyme sensor | Graphene oxide and chitosan composite materials | Lactate oxidase | up to 50 nM | - | 68 nM | Yes | [95] |
Molecularly imprinted polymer | Polyethylene Terephthalate | Silver nanowire | 10−6–0.1 M | 0.22 μM | 99.8 ± 1.7% | No | [96] | |
Enzyme-based high flexibility | Polycarbonate film | Lactate oxidase | 0–70 mM | - | - | Yes | [97] | |
Electrochemical impedance sensor | Graphene oxide nanosheets | Lactate oxidase | up to 138.6 mM | 1 mM | - | Yes | [98] | |
Enzyme-free lactic acid biosensor | Polyethylene glycol phthalate | NiCo LDH Electric catalyst | 2–26 mM | - | 83.98 μA·mM−1 ·cm−2 | No | [99] | |
Screen printed lactic acid sensor | Polydimethylsiloxane | Lactate oxidase | up to 50 mM | 0.3 mM | - | Yes | [100] | |
Screen printing technology | Polypropylene | Lactate oxidase- peroxidase | 0–25 mM | 0.04 mM | 0.74 A·mM−1 | Yes | [101] | |
Textile type | Fabric | Gold fiber | 0–30 mM | 0.137 mM | 14.6 μA·mM−1 ∙cm−2 (Artificial Sweat) 19.13 μA·mM−1 ∙cm−2 (PBS) | Yes | [102] | |
Wireless integrated glasses chemical sensing platform | Polyethylene terephthalate | Lactate oxidase | 0–10 mM | 0.39 mM | - | Yes | [117] | |
Gold nanoarray flexible sweat sensor | Polyethylene glycol diglycidyl ether | Gold nanoarray | - | - | 54 μmol·L−1 | No | [124] | |
Na+ | Flexible probe sensor array | Polyvinyl chloride | Poly(3,4-ethylenedioxythiophene) | up to 28 mM | - | 56 ± 1 mV/unit | Yes | [38] |
Adsorption radio frequency identification sensor patch | Standard copper/ Polyimide flexible electronic layer | Porous adhesive | 20–70 mM | - | 0.3 mV·mM | Yes | [54] | |
Ion selective membrane type | Yarn | Poly(3,4-dioxythiophene) Polystyrene sulfonate | 10−5–1 mM | - | - | No | [61] | |
Ion selective | Polyethylene Terephthalate | Platinum-plated, Gold-plated | - | - | 55.7 mV | Yes | [103] | |
Solid state ion sensitive electrode | Polyethylene terephthalate | Poly(3,4–ethylenedioxyt-hiophene) (PEDOT) Poly(3-octylthiophene-2,5-diyl) (POT) | 1.89–2.97 mM | - | (PEDOT): 52.4 ± 6.3 mV/dec (POT): 56.4 ± 2.2 mV/dec | No | [104] | |
Screen-printed electrochemical sensor | Flexible polyester films | Carbon black nanomaterials | 10−4–1 M | 63 μM | 58 ± 3 mV/dec | No | [109] | |
Tattoo potential sensing platform | Polyethylene terephthalate | Perfluorosulfonic acid membrane | 0.1–100 mM | - | 63.75 –60.41 mV/log10 | Yes | [111] | |
Disposable solid contact sensor | Cationic polymer substrate | Perfluorosulfonic acid membrane | 0.1–1000 mM | 48.3 ± 5.0 μM | 55.3 ± 1.0 mV/dec | No | [126] | |
Cl− | Adsorption radio frequency identification sensor patch | Standard copper/ Polyimide flexible electronic layer | Porous adhesive | 20–70 mM | - | 0.3 mV·mM | Yes | [54] |
Potentiometric sweat chloride sensor with integrated salt bridge. | Polyethylene terephthalate film | Salt bridge | 10–150 mM | - | - | No | [58] | |
K+ | Adsorption radio frequency identification sensor patch | Standard copper/ Polyimide flexible electronic layer | Porous adhesive | 20–70 mM | - | 0.3 mV·mM | Yes | [54] |
Ion selective membrane type | Yarn | Poly(3,4-dioxythiophene) Polystyrene sulfonate | 10−5–1 mM | - | - | No | [61] | |
Ion selective | Polyethylene Terephthalate | Platinum-plated, Gold-plated | - | - | 53.9 mV | Yes | [103] | |
Solid state ion sensitive electrode | Polyethylene terephthalate | Poly(3,4–ethylenedioxyt-hiophene) (PEDOT) Poly(3-octylthiophene-2,5-diyl) (POT) | 3.31–7.25 mM | - | (PEDOT): 45.7± 7.4 mV/dec (POT): 54.3 ± 1.5 mV/dec | No | [104] | |
Wireless integrated glasses chemical sensing platform | Polyethylene terephthalate | Potassium ionophore | 0.1–100 mM | 10−3.9 M | - | Yes | [117] | |
Ion Selective sensing platform | Paper | Valinomycin | 10−4–10−1 mM | - | - | Yes | [119] | |
NH4+ | Adsorption radio frequency identification sensor patch | Standard copper/ Polyimide flexible electronic layer | Porous adhesive | 20–70 mM | - | 0.3 mV·mM | Yes | [54] |
Ca2+ | Ion selective membrane type | Yarn | Poly(3,4-dioxythiophene) Polystyrene sulfonate | 10−5–1 mM | - | - | No | [61] |
Mg2+ | Adsorption radio frequency identification sensor patch | Standard copper/ Polyimide flexible electronic layer | Porous adhesive | 20–70 mM | - | 0.3 mV·mM | Yes | [54] |
Zn2+ | Adsorption radio frequency identification sensor patch | Standard copper/ Polyimide flexible electronic layer | Porous adhesive | 20–70 mM | - | 0.3 mV·mM | Yes | [54] |
Temporary tattoo printable platform | Inkjet paper | Bismuth/ Perfluorosulfonic acid film | - | 0.05 μg/mL | - | No | [63] | |
Cortisol | Affinity biosensing platform | Polyamide film | Cortisol antibody | 1–500 ng/mL | 1 ng/mL | - | No | [40] |
Perspiration pressure sensing wireless mHealth device | Polyimide | Graphene composite 1H-pyrrolipropionic acid | 0.43–50.2 ng/mL | - | 0.08 ng/mL | Yes | [41] | |
Electrochemical immunosensing platform | Conductive carbon yarn | Anti-cortisol antibody | 1 fg/mL–1 μg/mL | 0.45 fg/mL (CV) 0.098 fg/mL (DPV) | 2.12 mA/(g ⋅ mL−1) | Yes | [112] | |
Flexible wearable electrochemical impedance sensing patch | Polydimethylsiloxane | Ti3C2Tx MXene loaded laser-burned graphene sheets | 0.01–100 nM | 3.88 pM | - | No | [113] | |
Electrochemical immunosensor patch | Polyethylene terephthalate | Cortisol antibody | - | - | - | No | [114] | |
Flexible immune sensing platform | Polydimethylsiloxane | Anti-cortisol monoclonal antibody | 1 fg/mL –1 mg/mL | 0.3 fg/mL | - | No | [118] | |
Vitamin C | Wearable bioelectronics platform | Polyurethane | Ascorbate oxidase | - | - | - | Yes | [43] |
Wearable sensing platform | Polyethylene terephthalate | Gold nanomaterials, Poly(3,4-ethylenedio-xythiophene) | 0–5000 μm | 4 µm | 12% | No | [44] | |
Ethanol | Wearable steady-State analysis Sensor platform | Polyimide | Ethyl glucuronate | Au: 1–10,000 μg/L ZnO: 0.001–100 μg/L | Au: 1 μg/L ZnO: 0.001 μg/L | Au: 0.001 μg/L ZnO: >0.001 μg/L | Yes | [48] |
Biosensing platform | Zinc oxide film | Alcohol oxidase glucose oxidase | 0.01–200 mg/dl | 0.01 mg/dl | 0.2 ± 0.02 µA/mM | No | [92] | |
Dual-enzyme amperometric biosensor | Polytetrafluoroethylene film | Alcohol oxidase/horseradish peroxidase | - | - | - | Yes | [127] | |
Alcohol colorimetric sensor | Non-woven material | Phosphotunstic acid | - | - | - | No | [128] | |
Caffeine | Electrochemical differential Pulse voltammetry sensing platform | Polyethylene terephthalate | Carbon nanotube /Nano Film | 0–40 μM | 3 × 10−6 M | 110 nA/μM | Yes | [47] |
Carbamazepine | Ampere sensing platform | Polyimide | NiSe2 | 50 nM–10 μM | 18.2 nM | 65.65 μA/nM | No | [116] |
pH | Flexible probe sensor array | Polyvinyl chloride | Poly(3,4-ethylenedioxythiophene) | up to 28 mM | - | 71.90 ± 0.8 mV/unit | Yes | [38] |
Fabric colorimetric sensing platform | Cotton fabric | Methyl orange Bromocresol green Lactase | 1–14 | - | - | Yes | [91] | |
Multifunctional wearable sensing patch | Fiber patch | Absorbent sodium polyacrylate particles | 4–9 | - | - | No | [93] | |
Intelligent textile wearable sensor platform | Cotton fabric | Organically modified silicate PH indicator litmus | - | - | - | Yes | [94] | |
Flexible wireless wearable sensor equipment | Polyimide film | Iridium oxide | - | - | - | Yes | [105] | |
pH cable sensor | Carbon fiber wire | Self-healing polymer SHP | 4.73–8.02 | - | 58.7 mV/pH | Yes | [106] | |
Potentiometric sweat pH monitoring equipment | Polydimethylsiloxane | Graphite/ Polyurethane composite material | 5–9 | - | 1.13 ± 5.8 mV/pH | No | [107] | |
Flexible pH Sensing Platform | ITO | rGO/PANI | 2–8 | - | 62.3 mV/pH | No | [108] | |
Phosphoprotein | Flexible Sensing Platform | PI flexible substrate | g-C3N4@Fe3O4 | 0.01–1.0 mg/mL | 9.7 μM | No | [53] |
Detect Methods | Method Overview | Related Characteristics | References |
---|---|---|---|
Cyclic Voltammetry (CV) | When the concentration of reactants is detected by this method, it is necessary to have a certain redox activity of the substance to be tested, and the oxidation or reduction reaction can occur within the given electrochemical window of the working electrode, which can be used as an excellent method for surface characterization and the detection of the electrode and electrode modification. |
| [144,145] |
Differential Pulse Voltammetry (DPV) | The superposition of the linear step potential and fixed amplitude pulse is used as the excitation signal. Before the application of the pulse and at the end of the pulse, the current sampling records at these two moments are taken as the corresponding current response, and the corresponding current values at the latter moment and the previous moment are subtracted. The obtained differential current is the required measurement current. The input voltage is plotted using this difference to obtain the differential pulse voltammetry curve. |
| [146,147] |
Stripping Voltammetry (SV) | The method of electrolytic enrichment and the dissolution determination is combined. After a long period of electrolysis, the measured substance is enriched and concentrated and electrodeposited on the electrode to improve the sensitivity. Reverse voltage was applied to make the substances enriched on the electrode dissolve again. According to the voltametric curves obtained in the dissolution process, quantitative analysis and detection were carried out. This method can be divided into anodic stripping voltammetry and cathodic stripping voltammetry. |
| [148,149] |
Square-Wave Voltammetry (SWV) | The excitation signal is formed by the superposition of the symmetric square wave and step voltage to act on the working electrode. The current is sampled twice at the end of the previous pulse and the end of the reverse pulse in a cycle. The differential current obtained by subtracting the two currents is used as the input current, but the differential current is larger than the current at the two moments, which improves the sensitivity. The square wave volt-ampere characteristic curve is obtained by drawing differential current and step voltage. | The basic parameters of square wave voltammetry include the pulse height and square wave frequency of the step potential, and a complete voltammograms can be completed in a shorter time. | [150,151] |
Linear Sweep Voltammetry (LSV) | Taking the working electrode as the probe, the applied linear change potential signal as the scanning signal, and the recorded current signal as the feedback signal, the qualitative and quantitative analysis of the material are realized by scanning detection. | In the linear scanning voltammetry analysis, the linear scanning detection using the working electrode should meet the following requirements:
| [152,153] |
Colorimetric Analysis (CA) | The detection method for determining the content of the tested substance was determined by measuring or comparing the color depth of the chromogenic reaction between the tested substance and the reagent solution, which was based on the Lambert–Beer law. | The colorimetric analysis method for detecting the molecules of the substances to be tested can mainly be divided into:
| [154,155,156] |
Electrochemical Impedance Spectroscopy (EIS) | A small amplitude sinusoidal alternating voltage or alternating current disturbance signal is applied to the electrochemical system under a certain potential or current, and the corresponding linear correlation current or potential response signal is collected. The impedance spectrum of the electrochemical system in the wide frequency domain is obtained, and the relevant electrochemical information of the system to be studied is analyzed. | When testing the electrochemical impedance spectroscopy of the electrode system, the following basic conditions can ensure the reliability and accuracy of the impedance spectrum data:
| [157,158,159] |
Potentiometric Titration (PT) | Combined with the potential analysis and traditional titration method, the titration end point was determined by using the mutation of the electrode potential to replace the color change in the indicator near the stoichiometric point. | With the sudden change in the concentration of the measured substance, the potential of the indicator electrode jumped. The titration curve was obtained by plotting the measured battery electromotive force near the stoichiometric point to the volume of the titration agent. The stoichiometric point was the intermediate point of the curve jump range. | [160,161,162] |
Solid State Potential Sensing Technology | Combined with the sensitive selective film and conductive substrate, a solid contact layer was formed to realize the conduction between the ions and electrons. This technology includes solid polymer membrane potential sensing technology and solid biological potential sensing technology. | The all-solid-state ion selective electrode contains no electrolyte, which can effectively avoid the influence of ion flux on the electrode film. It has the advantages of a low detection limit and easy miniaturization design. | [163] |
Chronoamperometry | The fixed potential was applied to the working electrode through the electrochemical equipment to measure the electrochemical test method for the analysis of the current–time relationship. | The current generated by the redox reaction caused by the applied potential is proportional to the concentration of the target analyte, and can be continuously added to test the sensitivity, anti-interference performance of the working electrode, and the actual sample detection. | [164,165] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, Y.; Qiao, L.; Chen, Z.; Liu, B.; Gao, L.; Zhang, L. Wearable Sensor for Continuous Sweat Biomarker Monitoring. Chemosensors 2022, 10, 273. https://doi.org/10.3390/chemosensors10070273
Qiao Y, Qiao L, Chen Z, Liu B, Gao L, Zhang L. Wearable Sensor for Continuous Sweat Biomarker Monitoring. Chemosensors. 2022; 10(7):273. https://doi.org/10.3390/chemosensors10070273
Chicago/Turabian StyleQiao, Yuting, Lijuan Qiao, Zhiming Chen, Bingxin Liu, Li Gao, and Lei Zhang. 2022. "Wearable Sensor for Continuous Sweat Biomarker Monitoring" Chemosensors 10, no. 7: 273. https://doi.org/10.3390/chemosensors10070273
APA StyleQiao, Y., Qiao, L., Chen, Z., Liu, B., Gao, L., & Zhang, L. (2022). Wearable Sensor for Continuous Sweat Biomarker Monitoring. Chemosensors, 10(7), 273. https://doi.org/10.3390/chemosensors10070273