Self-Powered Photoelectrochemical Assay for Hg2+ Detection Based on g-C3N4-CdS-CuO Composites and Redox Cycle Signal Amplification Strategy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Photoelectrochemical Measurement
2.3. Real Sample Processing
3. Results and Discussion
3.1. Characterizations of Composite Material
3.2. Electrochemical Activity of g-C3N4-CdS-CuO Electrode
3.3. Feasibility of the Designed Strategy
3.4. Optimization of Experimental Conditions
3.5. Analytical Performance and Selectivity and Stability
3.6. Analysis of Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Saleh, I. Potential health consequences of applying mercury-containing skin-lightening creams during pregnancy and lactation periods. Int. J. Hyg. Environ. Health 2016, 219, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tai, W.J.; Wang, D.L.; Liu, J.; Su, J.; Yu, L. Cholesteric liquid crystal photonic hydrogel films immobilized with urease used for the detection of Hg2+. Chemosensors 2022, 10, 140. [Google Scholar] [CrossRef]
- Shellaiah, M.; Sun, K. Progress in metal-organic frameworks facilitated mercury detection and removal. Chemosensors 2021, 9, 101. [Google Scholar] [CrossRef]
- Lian, Q.; Liu, H.; Zheng, X.F.; Li, X.M.; Zhang, F.J.; Gao, J. Enhanced peroxidase-like activity of CuO/Pt nanoflowers for colorimetric and ultrasensitive Hg2+ detection in water sample. Appl. Surf. Sci. 2019, 483, 551–561. [Google Scholar] [CrossRef]
- Lu, L.L.; Han, X.; Lin, J.W.; Zhang, Y.X.; Qiu, M.H.; Chen, Y.; Li, M.J.; Tang, D.P. Ultrasensitive fluorometric biosensor based on Ti3C2 MXenes with Hg2+-triggered exonuclease III-assisted recycling amplification. Analyst 2021, 146, 2664–2669. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, T.T.; Wu, Z.Y.; Yu, R.Q. Novel ratiometric surface-enhanced Raman spectroscopy aptasensor for sensitive and reproducible sensing of Hg2+. Biosens. Bioelectron. 2018, 99, 646–652. [Google Scholar] [CrossRef]
- Chang, Y.Y.; Tang, X.L.; Huang, J.Q.; Chai, Y.Q.; Zhuo, Y.; Li, H.; Yuan, R. Programming a “crab claw”-like DNA nanomachine as a super signal amplifier for ultrasensitive electrochemical assay of Hg2+. Anal. Chem. 2021, 93, 12075–12080. [Google Scholar] [CrossRef]
- Hisham, A.; Alexei, N.; Thomas, J.S. Development of novel and highly specific ssDNA-aptamer-based electrochemical biosensor for rapid detection of mercury (II) and lead (II) Ions in Water. Chemosensors 2019, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Gai, Q.; Huang, R.; Zheng, X. Label-free electrochemiluminescence assay for aqueous Hg2+ through oligonucleotide mediated assembly of gold nanoparticles. Biosens. Bioelectron. 2017, 98, 134–139. [Google Scholar] [CrossRef]
- Singh, S.; Numan, A.; Zhan, Y.Q.; Singh, V.; Hung, T.V.; Nam, N.D. A novel highly efficient and ultrasensitive electrochemical detection of toxic mercury (II) ions in canned tuna fish and tap water based on a copper metal-organic framework. J. Hazard. Mater. 2020, 399, 123042. [Google Scholar] [CrossRef]
- Shu, J.; Tang, D.P. Recent advances in photoelectrochemical sensing: From engineered photoactive materials to sensing devices and detection modes. Anal. Chem. 2020, 92, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.C.; Xu, J.H.; Gong, H.X.; Li, Y.X.; Li, L.; Wei, Q.H.; Tang, D.P. Bioinspired self-powered piezoresistive sensor for simultaneous monitoring of human health and outdoor UV light intensity. ACS Appl. Mater. Interfaces 2022, 14, 5101–5111. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.C.; Gong, H.X.; Li, Y.X.; Xu, J.H.; Zhang, J.; Zeng, Y.Y.; Liu, X.L.; Tang, D.P. Chemiluminescence-derived self-powered photoelectrochemical immunoassay for detecting low-abundance disease-related protein. Anal. Chem. 2021, 93, 13389–13397. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Zhang, Z.L.; Tang, L.; Ouyang, X.L.; Zhu, X.; Chen, L.; Fan, X.Y.; Zhou, Z.P.; Wang, J.J. Self-powered photoelectrochemical aptasensor for oxytetracycline cathodic detection based on a dual Z-scheme WO3/g-C3N4/MnO2 photoanode. Anal. Chem. 2021, 93, 9129–9138. [Google Scholar] [CrossRef]
- Cao, J.T.; Lv, J.L.; Liao, X.J.; Ma, S.H.; Liu, Y.M. A membraneless self-powered photoelectrochemical biosensor based on Bi2S3/BiPO4 heterojunction photoanode coupling with redox cycling signal amplification strategy. Biosens. Bioelectron. 2022, 195, 113651. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.Y.; Lv, S.Z.; Zhou, Q.; Tang, D.P. CoOOH nanosheets-coated g-C3N4/CuInS2 nanohybrids for photoelectrochemical biosensor of carcinoembryonic antigen coupling hybridization chain reaction with etching reaction. Sens. Actuators B 2020, 307, 127631. [Google Scholar] [CrossRef]
- Duan, W.; Yan, P.C.; Dong, J.T.; Chen, Y.; He, X.Y.; Chen, J.P.; Qian, J.C.; Xu, L.; Li, H.N. A self-powered photoelectrochemical aptamer probe for oxytetracycline based on the use of a NiO nanocrystal/g-C3N4 heterojunction. Microchim. Acta 2019, 186, 737. [Google Scholar] [CrossRef]
- Zeng, R.J.; Luo, Z.B.; Su, L.S.; Zhang, L.J.; Tang, D.P.; Niessner, R.; Knopp, D. Palindromic molecular beacon-based Z-scheme BiOCl-Au-CdS photoelectrochemical biodetection. Anal. Chem. 2019, 91, 2447–2454. [Google Scholar] [CrossRef]
- Liu, Y.X.; Ma, H.M.; Zhang, Y.; Pang, X.H.; Fan, D.W.; Wu, D.; Wei, Q. Visible light photoelectrochemical aptasensor for adenosine detection based on CdS/PPy/g-C3N4 nanocomposites. Biosens. Bioelectron. 2016, 86, 439–445. [Google Scholar] [CrossRef]
- Luo, Z.B.; Zhang, L.J.; Zeng, R.J.; Su, L.S.; Tang, D.P. Near-infrared light-excited core-core-shell UCNP@Au@CdS upconversion nanospheres for ultrasensitive photoelectrochemical enzyme immunoassay. Anal. Chem. 2018, 90, 9568–9575. [Google Scholar] [CrossRef]
- Li, X.M.; Kong, W.S.; Qin, X.; Qu, F.L.; Lu, L.M. Self-powered cathodic photoelectrochemical aptasensor based on in situ–synthesized CuO-Cu2O nanowire array for detecting prostate-specific antigen. Microchim. Acta 2020, 187, 325. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.L.; Chen, Y.R.; Wu, X.M.; Li, Z.J.; Dong, Y.M.; Wang, G.L. Invoking cathodic photoelectrochemistry through a spontaneously coordinated electron transporter: A proof of concept toward signal transduction for bioanalysis. Anal. Chem. 2021, 93, 17119–17126. [Google Scholar] [CrossRef]
- Senobari, S.; Nezamzadeh-Ejhieh, A. A comprehensive study on the photocatalytic activity of coupled copper oxide-cadmium sulfide nanoparticles. Spectrochim. Acta Part A 2018, 196, 334–343. [Google Scholar] [CrossRef] [PubMed]
- He, L.Y.; Lu, Y.X.; Gao, X.Y.; Song, P.S.; Huang, Z.X.; Liu, S.; Liu, Y.Y. Self-cascade system based on cupric oxide nanoparticles as dual-functional enzyme mimics for ultrasensitive detection of silver ions. ACS Sustain. Chem. Eng. 2018, 6, 12132–12139. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Li, M.Y.; He, L.M.; Tian, D.D.; Zhang, L.J.; Zhang, J.H.; Liu, M. Highly sensitive and selective photoelectrochemical sensor for mercury (II) detection based on efficient Bi2MoO6 photoanode decorated with CuS. J. Alloys Compd. 2020, 864, 157905. [Google Scholar] [CrossRef]
- Moreno-Sánchez, R.; Marín-Hernández, Á.; Gallardo-Pérez, J.C.; Vázquez, C.; Rodríguez-Enríquez, S.; Saavedra, E. Control of the NADPH supply and GSH recycling for oxidative stress management in hepatoma and liver mitochondria. BBA-Bioenerg. 2018, 1859, 1138–1150. [Google Scholar] [CrossRef]
- Pang, X.L.; Bai, H.Y.; Zhao, H.Q.; Liu, Y.C.; Qin, F.Y.; Han, X.; Fan, W.Q.; Shi, W.D. Biothiol-functionalized cuprous oxide Sensor for dual-mode sensitive Hg2+ detection. ACS Appl. Mater. Interfaces 2021, 13, 46980–46989. [Google Scholar] [CrossRef]
- She, P.; Chu, Y.X.; Liu, C.W.; Guo, X.; Zhao, K.; Li, J.G.; Du, H.J.; Zhang, X.; Wang, H.; Deng, A.P. A competitive immunoassay for ultrasensitive detection of Hg2+ in water, human serum and urine samples using immunochromatographic test based on surface-enhanced Raman scattering. Anal. Chim. Acta 2016, 906, 139–147. [Google Scholar] [CrossRef]
- Wordofa, D.N.; Ramnani, P.; Tran, T.; Mulchandani, A. An oligonucleotide-functionalized carbon nanotube chemiresistor for sensitive detection of mercury in saliva. Analyst 2016, 141, 2756–2760. [Google Scholar] [CrossRef]
- Saghi, E.; Rounaghi, G.H.; Sarafraz-Yazdi, A.; Razavipanah, I.; Moosavi, P.M. Fluorine-tin oxide (FTO) electrode modified with platinum nanoparticles dispersed into montmorillonite clay as an effective and low-cost catalyst for ethanol electrooxidation. RSC Adv. 2016, 6, 113240–113248. [Google Scholar] [CrossRef]
- Li, R.Z.; Liu, Y.; Cheng, L.; Yang, C.Z.; Zhang, J.D. Photoelectrochemical Aptasensing of Kanamycin Using Visible Light-Activated Carbon Nitride and Graphene Oxide Nanocomposites. Anal. Chem. 2014, 86, 9372–9375. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yan, K.; Zhang, J.D. Graphitic carbon nitride sensitized with CdS quantum dots for visible-light-driven photoelectrochemical aptasensing of tetracycline. ACS Appl. Mater. Interfaces 2016, 8, 28255–28264. [Google Scholar] [CrossRef] [PubMed]
- Alsamhary, K.; Al-Enazi, N.M.; Alhomaidi, E.; Alwakeel, S. Spirulina platensis mediated biosynthesis of Cuo Nps and photocatalytic degradation of toxic azo dye Congo red and kinetic studies. Environ. Res. 2021, 207, 112172. [Google Scholar] [CrossRef]
- Li, Z.P.; Dong, W.X.; Du, X.Y.; Wen, G.G.; Fan, X.J. A novel photoelectrochemical sensor based on g-C3N4@CdS QDs for sensitive detection of Hg2+. Microchem. J. 2020, 152, 104259. [Google Scholar] [CrossRef]
- Yu, Z.G.; Huang, L.T.; Chen, J.L.; Li, M.J.; Tang, D.P. Graded oxygen-doped CdS electrode for portable photoelectrochemical immunoassay of alpha-fetoprotein coupling with a digital multimeter readout. Sens. Actuators B 2021, 343, 130136. [Google Scholar] [CrossRef]
- Ouyang, X.L.; Feng, C.Y.; Tang, L.; Zhu, X.; Peng, B.; Fan, X.Y.; Liao, Y.B.; Zhou, Z.P.; Zhang, Z.L. A flexible photoelectrochemical aptasensor using heterojunction architecture of α-Fe2O3/d-C3N4 for ultrasensitive detection of penbritin. Biosens. Bioelectron. 2022, 197, 113734. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.Y.; Lv, S.Z.; Lin, Z.Z.; Tang, D.P. CdS:Mn quantum dot-functionalized g-C3N4 nanohybrids as signal-generation tags for photoelectrochemical immunoassay of prostate specific antigen coupling DNAzyme concatamer with enzymatic biocatalytic precipitation. Biosens. Bioelectron. 2017, 95, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Ali, K.; Ahmed, B.; Ansari, S.M.; Saquib, Q.; Al-Khedhairy, A.A.; Dwivedi, S.; Alshaeri, M.; Khan, M.S.; Musarrat, J. Comparative in situ ROS mediated killing of bacteria with bulk analogue, eucalyptus leaf extract (ELE)-capped and bare surface copper oxide nanoparticles. Mater. Sci. Eng. C 2019, 100, 747–758. [Google Scholar] [CrossRef]
- Anwaar, S.; Maqbool, Q.; Jabeen, N.; Nazar, M.; Abbas, F.; Nawaz, B.; Hussain, T.; Hussain, S.Z. The effect of green synthesized CuO nanoparticles on callogenesis and regeneration of Oryza sativa. Front. Plant Sci. 2016, 7, 1330. [Google Scholar] [CrossRef] [Green Version]
- Lv, Z.J.; Zhu, L.; Yin, Z.P.; Li, M.J.; Tang, D.P. Signal-on photoelectrochemical immunoassay mediated by the etching reaction of oxygen/phosphorus co-doped g-C3N4/AgBr/MnO2 nanohybrids. Anal. Chim. Acta 2021, 1171, 338680. [Google Scholar] [CrossRef]
- Gaillard, M.; Kanso, H.; Denat, F.; Calas-Blanchard, C.; Inguimbert, N.; Noguer, T. Fe (III)-DOTA/ Fe (III)-NOTA complexes: Attractive alternative markers for future electrochemical biosensors. J. Electrochem. Soc. 2020, 167, 117502. [Google Scholar] [CrossRef]
- Luo, D.J.; Fu, Q.P.; Gao, R.; Su, L.X.; Su, Y.H.; Liu, B.Q. Signal-on photoelectrochemical immunoassay for salivary cortisol based on silver nanoclusters-triggered ion-exchange reaction with CdS quantum dots. Anal. Bioanal. Chem. 2022, 414, 3033–3042. [Google Scholar] [CrossRef]
- Lee, Y.L.; Lo, Y.S. Highly Efficient quantum-dot-sensitized solar cell based on Co-sensitization of CdS/CdSe. Adv. Funct. Mater 2009, 19, 604–609. [Google Scholar] [CrossRef]
- Luo, D.J.; Liu, B.Q.; Gao, R.; Su, L.X.; Su, Y.H. TiO2/CuInS2-sensitized structure for sensitive photoelectrochemical immunoassay of cortisol in saliva. J. Solid State Electrochem. 2022, 26, 749–759. [Google Scholar] [CrossRef]
- Dong, Y.X.; Cao, J.T.; Wang, B.; Ma, S.H.; Liu, Y.M. Spatial-Resolved Photoelectrochemical Biosensing Array Based on a CdS@g-C3N4 Heterojunction: A Universal Immunosensing Platform for Accurate Detection. ACS Appl. Mater. Interfaces 2018, 10, 3723–3731. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Li, M.J.; Wang, H.J.; Yuan, R.; Wei, S.P. Supersensitive Photoelectrochemical Aptasensor Based on Br,N-Codoped TiO2 Sensitized by Quantum Dots. Anal. Chem. 2019, 91, 10864–10869. [Google Scholar] [CrossRef]
- Zhang, K.Y.; Sang, Y.X.; Gao, Y.D.; Sun, Q.X.; Li, W.N. A fluorescence turn-on CDs-AgNPs composites for highly sensitive and selective detection of Hg2+. Spectrochim. Acta Part A 2022, 264, 120281. [Google Scholar] [CrossRef]
- Li, D.W.; Ling, S.; Cheng, X.R.; Yang, Z.Q.; Lv, B. Development of a DNAzyme-based colorimetric biosensor assay for dual detection of Cd2+ and Hg2+. Anal. Bioanal. Chem. 2021, 413, 7081–7091. [Google Scholar] [CrossRef]
- Ran, Q.X.; Sheng, F.F.; Chang, G.R.; Zhong, M.; Xu, S.X. Sulfur-doped reduced graphene oxide@chitosan composite for the selective and sensitive electrochemical detection of Hg2+ in fish muscle. Microchem. J. 2022, 175, 107138. [Google Scholar] [CrossRef]
- Wang, L.Y.; Yang, Y.X.; Liang, H.H.; Wu, N.; Peng, X.; Wang, L.; Song, Y.H. A novel N,S-rich COF and its derived hollow N,S-doped carbon@Pd nanorods for electrochemical detection of Hg2+ and paracetamol. J. Hazard. Mater. 2021, 409, 124528. [Google Scholar] [CrossRef]
Chemicals | Manufacturer | Address |
---|---|---|
Melamine (C3H6N6, 99.0%) | Macklin Co., Ltd. | Shanghai, China |
Cadmium chloride hemi (pentahydrate) (CdCl2·2.5H2O, 98.0%) | Macklin Co., Ltd. | Shanghai, China |
Cupric oxide (CuO NPs, 99.5%) | Macklin Co., Ltd. | Shanghai, China |
Sodium sulfide nonahydrate (Na2S·9H2O, 98.0%) | Xilong Scientific Co., Ltd. | Guangdong, China |
Hydroxylammonium chloride (AR) | Cameo Chemical Reagent Co., Ltd. | Tianjin, China |
Hydrochloric acid (HCl, AR) | Chuandong Chemical Engineering Co., Ltd. | Chongqing, China |
Sodium chloride (NaCl, 99.5%) | Jinshan Chemical Reagent Co., Ltd. | Chendu, China |
Calcium chloride anhydrous (CaCl, 96.0%) | Sinopharm Chemical Reagent Co., Ltd. | Shanghai, China |
Mucin | Sangong Bioengineering Co., Ltd. | Shanghai, China |
Urea | Aladdin Industrial Co., Ltd. | Shanghai, China |
Potassium bromate (KBrO3, 99.9%) | Macklin Co., Ltd. | Shanghai, China |
Potassium bromide (KBr, 99%) | Macklin Co., Ltd. | Shanghai, China |
Sodium carbonate anhydrous (Na2CO3, 99.8%) | Yongda Chemical Reagent Co., Ltd. | Tianjin, China |
Sodium hydrogen carbonate (NaHCO3, 99.8%) | Yongda Chemical Reagent Co., Ltd. | Tianjin, China |
Tris | Cameo chemical reagent Co., Ltd. | Tianjin, China |
Nitric acid (HNO3, 65.0–68.0%) | Chuandong Chemical Engineering Co., Ltd. | Chongqing, China |
Potassium chloride (KCL, 99.5%) | Jinshan Chemical Reagent Co., Ltd. | Chendu, China |
Reduced glutathione (GSH, 98.0%) | Solarbio Science & Technology Co., Ltd. | Beijing, China |
Glutathione reductase (GR, AR) | Solarbio Science & Technology Co., Ltd. | Beijing, China |
Dihydronicotinamide-adenine dinu-cleotide phosphate, tetrasodium salt (NADPH, >98.0%) | Solarbio Science & Technology Co., Ltd. | Beijing, China |
Sodium phosphate dibasic (Na2HPO4, 99.0%) | Cameo Chemical Reagent Co., Ltd. | Tianjin, China |
Sodium dihydrogen phosphate (NaH2PO4, >99.0%) | Cameo Chemical Reagent Co., Ltd. | Tianjin, China |
Potassium ferricyanide (K3[Fe(CN6)], >99.5%) | Jinshan Chemical Reagent Co., Ltd. | Chendu, China |
Potassium ferrocyanide (K4[Fe(CN6)], >99.5%) | Jinshan Chemical Reagent Co., Ltd. | Chendu, China |
Mercury chloride (HgCl2, >99.5%) | Silver Lake Chemical Co., Ltd. | Guizhou, China |
Apparatus | Model | Address |
---|---|---|
Electrochemical workstation | CHI660E | Shanghai Chenhua |
Scanning electron microscopy (SEM) | Zeiss Sigma 300 | Germany |
Powder X-ray diffraction (XRD) | Bruker D8 Advance | Germany |
UV-visible diffuse reflectance spectrum (UV-vis DRS) | Shimadzu UV-3600 Plus | Japan |
Energy dispersive X-ray Spectroscopy (EDS) | Oxford Spectroscopy | Britain |
Fourier transform infrared spectroscopy (FT-IR) | Perkin Elmer Spectrum Two FTIR-DTG | Britain |
Sample | Applied (nM) | Found (nM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Urine | 0 | - | - | 1.76 |
0.1 | 0.09 | 97.14 | 2.03 | |
1 | 0.98 | 98.81 | 2.74 | |
10 | 10.3 | 103.02 | 2.19 | |
Saliva | 0 | - | - | 2.71 |
0.1 | 0.09 | 93.56 | 2.88 | |
1 | 0.97 | 97.97 | 2.33 | |
10 | 9.92 | 99.24 | 3.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.; Su, L.; Liu, B.; Lin, Y.; Tang, D. Self-Powered Photoelectrochemical Assay for Hg2+ Detection Based on g-C3N4-CdS-CuO Composites and Redox Cycle Signal Amplification Strategy. Chemosensors 2022, 10, 286. https://doi.org/10.3390/chemosensors10070286
Su Y, Su L, Liu B, Lin Y, Tang D. Self-Powered Photoelectrochemical Assay for Hg2+ Detection Based on g-C3N4-CdS-CuO Composites and Redox Cycle Signal Amplification Strategy. Chemosensors. 2022; 10(7):286. https://doi.org/10.3390/chemosensors10070286
Chicago/Turabian StyleSu, Yonghuan, Lixia Su, Bingqian Liu, Youxiu Lin, and Dianping Tang. 2022. "Self-Powered Photoelectrochemical Assay for Hg2+ Detection Based on g-C3N4-CdS-CuO Composites and Redox Cycle Signal Amplification Strategy" Chemosensors 10, no. 7: 286. https://doi.org/10.3390/chemosensors10070286
APA StyleSu, Y., Su, L., Liu, B., Lin, Y., & Tang, D. (2022). Self-Powered Photoelectrochemical Assay for Hg2+ Detection Based on g-C3N4-CdS-CuO Composites and Redox Cycle Signal Amplification Strategy. Chemosensors, 10(7), 286. https://doi.org/10.3390/chemosensors10070286