Effect of the Microstructure of ZnO Thin Films Prepared by PLD on Their Performance as Toxic Gas Sensors
Abstract
:1. Introduction
2. Experimental Section
3. Results
Measurements under the Exposure of H2S
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fasquelle, D.; Députier, S.; Mascot, M.; Uschanoff, N.; Bouquet, V.; Demange, V.; Guilloux-Viry, M.; Carru, J.-C. Lead-free oxide thin films for gas detection. Adv. Mater. Res. 2013, 789, 105–111. [Google Scholar] [CrossRef]
- Fasquelle, D. Sensible Sensors. Int. Innov. Sci. Cycles 2014, 125, 106–108. [Google Scholar]
- Barsan, N.; Koziej, D.; Weimar, U. Metal oxide-based gas sensor research: How to? Sens. Actuators B 2007, 121, 18–35. [Google Scholar] [CrossRef]
- Korotcenkov, G. Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B 2007, 139, 1–23. [Google Scholar] [CrossRef]
- Fasquelle, D.; Verbrugghe, N.; Députier, S. Tungsten-Based Cost-Effective Gas Sensors for H2S Detection. Chemosensors 2021, 9, 295. [Google Scholar] [CrossRef]
- Gas’kov, A.M.; Rumyantseva, M.N. Materials for Solid-State Gas Sensors. Inorg. Mater. 2000, 36, 293–301. [Google Scholar] [CrossRef]
- Marikutsa, A.; Rumyantseva, M.; Gaskov, A. Selectivity of Catalytically Modified Tin Dioxide to CO and NH3 Gas Mixtures. Chemosensors 2015, 3, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Vorobyeva, N.; Rumyantseva, M.; Filatova, D.; Konstantinova, E.; Grishina, D.; Abakumov, A.; Turner, S.; Gaskov, A. Nanocrystalline ZnO(Ga): Paramagnetic centers, surface acidity and gas sensor properties. Sens. Actuators B 2013, 182, 555–564. [Google Scholar] [CrossRef]
- Kanan, S.M.; El-Kadri, O.M.; Abu-Yousef, I.A.; Kanan, M.C. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection. Sensors 2009, 9, 8158–8196. [Google Scholar] [CrossRef] [Green Version]
- Bochenkov, V.E.; Sergeev, G.B. Sensitivity, Selectivity, and Stability of Gas-Sensitive Metal-Oxide Nanostructures, Metal Oxide Nanostructures and Their Applications; American Scientific Publishers: Moscow, Russian, 2010; Volume 3, pp. 31–52. [Google Scholar]
- Chakraborty, S.; Sen, A.; Maiti, H.S. Selective detection of methane and butane by temperature modulation in iron doped tin oxide sensors. Sens. Actuators B 2006, 115, 610. [Google Scholar] [CrossRef]
- Parret, F.; Ménini, P.; Martinez, A.; Soulantica, K.; Maisonnat, A.; Chaudret, B. Improvement of micromachined SnO2 gas sensors selectivity by optimised dynamic temperature operating mode. Sens. Actuators B 2006, 118, 276. [Google Scholar] [CrossRef]
- Nakata, S.; Okunishi, H.; Nakashima, Y. Distinction of gases with a semiconductor sensor under a cyclic temperature modulation with second-harmonic heating. Sens. Actuators B 2006, 119, 556. [Google Scholar] [CrossRef]
- Huang, J.R.; Li, C.Y.; Huang, Z.Y.; Huang, X.J.; Liu, J.H. Temperature modulation and artificial neural network evaluation for improving the CO selectivity of SnO2 gas sensor. Sens. Actuators B 2006, 114, 1059. [Google Scholar] [CrossRef]
- Huang, J.R.; Gu, C.P.; Meng, F.L.; Li, M.Q.; Liu, J.H. Detection of volatile organic compounds by using a single temperature-modulated SnO2 gas sensor and artificial neural network. Smart Mater. Struct. 2007, 16, 701. [Google Scholar] [CrossRef]
- Sysoev, V.V.; Goschnick, J.; Schneider, T.; Strelcov, E.; Kolmakov, A. A Gradient Microarray Electronic Nose Based on Percolating SnO2 Nanowire Sensing Elements. Nano Lett. 2007, 7, 3182. [Google Scholar] [CrossRef] [PubMed]
- Röck, F.; Barsan, N.; Weimar, U. Electronic Nose: Current Status and Future Trends. Chem. Rev. 2008, 108, 705. [Google Scholar] [CrossRef]
- MQ136 Technical Datasheet; Winsen Corp.: Zhengzhou, China, 2015.
- TGS 2602 Technical Datasheet; Figaro USA, Inc.: Arlington Heights, IL, USA, 2017.
- TGS 825 Technical Datasheet; Figaro USA, Inc.: Arlington Heights, IL, USA, 2013.
- Pati, S.; Banerji, P.; Majumder, S.B. MOCVD grown ZnO thin film gas sensors: Influence of microstructure. Sens. Actuators A 2014, 213, 52–58. [Google Scholar] [CrossRef]
- Bao, D.; Gu, H.; Kuang, A. Sol-gel-derived c-axis oriented ZnO thin films. Thin Solid Film 1998, 312, 37–39. [Google Scholar] [CrossRef]
- Bouderbala, M.; Hamzaoui, S.; Amrani, B.; Reshak, A.H.; Adnane, M.; Sahraoui, T.; Zerdali, M. Thickness dependence of structural, electrical and opticalbehaviour of undoped ZnO thin films. Phys. B 2008, 403, 3326–3330. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, K.-M.; Kim, M.; Park, H.-H. Film thickness effect in c-axis oxygen vacancy-passivated ZnO prepared via atomic layer deposition by using H2O2. Appl. Surf. Sci. 2020, 529, 147095. [Google Scholar] [CrossRef]
- Amirhaghi, S.; Craciun, V.; Craciun, D.; Elder, J.; Boyd, I.W. Low temperature growth of highly transparent c-axis oriented ZnO thin films by pulsed laser deposition. Microelectron. Eng. 1994, 25, 32l–326. [Google Scholar] [CrossRef] [Green Version]
- Zerdali, M.; Hamzaoui, S.; Teherani, F.H.; Rogers, D. Growth of ZnO thin film on SiO2/Si substrate by pulsed laser deposition and study of their physical properties. Mater. Lett. 2006, 60, 504–508. [Google Scholar] [CrossRef]
- Carpenter, M.A.; Mathur, S.; Kolmakov, A. Metal. Oxide Nanomaterials for Chemical Sensors; Springer: Berlin/Heidelberg, Germany, 2013; p. 548. ISBN 978-1-4614-5394-9. [Google Scholar]
- Kalyamwar, V.S.; Raghuwanshi, F.C.; Jadhao, N.L.; Gadewar, A.J. Zinc Oxide Nanostructure Thick Films as H2S Gas Sensors at Room Temperature. J. Sens. Technol. 2013, 3, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Bhati, V.S.; Hojamberdiev, M.; Kumar, M. Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review. Energy Rep. 2020, 6, 46–62. [Google Scholar] [CrossRef]
- Comini, E.; Baratto, C.; Faglia, G.; Ferroni, M.; Vomiero, A.; Sberveglieri, G. Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors. Prog. Mater. Sci. 2009, 54, 1–67. [Google Scholar] [CrossRef]
Sample | C10 | C9 | C12 | C15 | C11 | C14 | C22 |
---|---|---|---|---|---|---|---|
Temperature (°C) | 350 | 350 | 350 | 700 | 700 | 700 | 700 |
Pressure (mbar) | vacuum | 0.06 | 0.7 | vacuum | 0.06 | 0.7 | 1 |
Deposition duration (min) | 30 | 30 | 15 | 15 | 15 | 10 | 10 |
(002) diffraction peak position (°2θ) | 34.033 | 34.372 | 34.475 | 34.451 | 34.583 | 34.469 | 34.471 |
c parameter (Å) | 5.264 | 5.214 | 5.199 | 5.202 | 5.183 | 5.200 | 5.199 |
FWHM (002) (°) | 0.893 | 0.130 | 0.290 | 0.124 | 0.102 | 0.115 | 0.113 |
Crystallite size D (Å) | 93 | 694 | 289 | 734 | 932 | 800 | 817 |
Film thickness (nm) | 700 | 700 | 500 | 200 | 400 | 500 | 600 |
Sheet resistance | 1 kΩ | 10 kΩ | 100 kΩ | 10 kΩ | 400 kΩ | 10 MΩ | 10 MΩ |
Sample | C39 | C40 | C41 | C42 | C43 | |
---|---|---|---|---|---|---|
Deposition conditions | Laser frequency (Hz) | 5 | 5 | 4 | 4 | 4 |
T (°C) | 350 | 700 | 700 | 700 | 700 | |
p (mbar) | 0.7 | 0.7 | 1 | 0.7 | 0.3 | |
Substrate-target distance (mm) | 42 | 42 | 42 | 34 | 34 | |
Duration (min) | 15 | 10 | 10 | 20 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fasquelle, D.; Députier, S.; Bouquet, V.; Guilloux-Viry, M. Effect of the Microstructure of ZnO Thin Films Prepared by PLD on Their Performance as Toxic Gas Sensors. Chemosensors 2022, 10, 285. https://doi.org/10.3390/chemosensors10070285
Fasquelle D, Députier S, Bouquet V, Guilloux-Viry M. Effect of the Microstructure of ZnO Thin Films Prepared by PLD on Their Performance as Toxic Gas Sensors. Chemosensors. 2022; 10(7):285. https://doi.org/10.3390/chemosensors10070285
Chicago/Turabian StyleFasquelle, Didier, Stéphanie Députier, Valérie Bouquet, and Maryline Guilloux-Viry. 2022. "Effect of the Microstructure of ZnO Thin Films Prepared by PLD on Their Performance as Toxic Gas Sensors" Chemosensors 10, no. 7: 285. https://doi.org/10.3390/chemosensors10070285
APA StyleFasquelle, D., Députier, S., Bouquet, V., & Guilloux-Viry, M. (2022). Effect of the Microstructure of ZnO Thin Films Prepared by PLD on Their Performance as Toxic Gas Sensors. Chemosensors, 10(7), 285. https://doi.org/10.3390/chemosensors10070285