Adsorption Properties of ZSM-5 Molecular Sieve for Perfluoroisobutyronitrile Mixtures and Its Fluorocarbon Decomposition Products
Abstract
:1. Introduction
2. ZSM-5 Adsorption Experiment
2.1. Adsorption Experiment Method
2.2. Concentration Detection
2.3. Analysis of Results
3. Adsorption Simulation
3.1. Model Building and Parameter Setting
3.2. Analysis of Simulation Results
4. Conclusions
- (1)
- ZSM-5 molecular sieve has a certain adsorption effect on six kinds of fluorocarbon gases, of which the adsorption performance of C3F6, and C3F8 is the best, with an adsorption efficiency of over 85%.
- (2)
- The concentration of the two main insulating gases CO2 and C4F7N will be affected by the ZSM-5 molecular sieve; if the insulation performance of the gas is not affected in practical application, the proportion of C4F7N in the mixture can be increased 1.04~1.08 times.
- (3)
- NaZSM-5 molecular sieve has the strongest adsorption to C4F7N and the weakest adsorption to CO2. The stronger the polarity of the gas molecule, the more obvious the adsorption effect of molecular sieve structure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rabie, M.; Franck, C.M. Computational Screening of new High Voltage Insulation Gases with Low Global Warming Potential. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Chu, F.Y. SF6 Decomposition in Gas-Insulated Equipment. IEEE Trans. Electr. Insul. 1986, EI-21, 693–725. [Google Scholar] [CrossRef]
- Christophorou, L.G.; Olthoff, J.K.; Van Brunt, R.J. Sulfur hexafluoride and the electric power industry. IEEE Electr. Insul. Mag. 1997, 13, 20–24. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, D.; Wang, Y.; Zhou, C.; Lu, H.; Zhang, X. Defect recognition and condition assessment of epoxy insulators in gas insulated switchgear based on multi-information fusion. Measurement 2022, 190, 110701. [Google Scholar] [CrossRef]
- Xiao, S.; Li, Y.; Zhang, X.; Zhuo, R.; Wang, D.; Tian, S. Discharge Decomposition Components Forming Mechanism of CF3I Under Micro-aerobic Condition. High Volt. Eng. 2017, 43, 9. [Google Scholar]
- Li, Y.; Zhang, X.; Fu, M.; Xiao, S.; Tang, J.; Tian, S. Research and Application Progress of Eco-Friendly Gas Insulating Medium C4F7N, Part I: Insulation and Electrical, Thermal Decomposition Properties. Trans. China Electrotech. Soc. 2021, 36, 18. [Google Scholar]
- Gao, K.; Yan, X.; Wang, H.; He, J.; Li, Z.; Bai, C.; Liu, Y.; Huang, H. Progress in Environment-friendly Gas-insulated Transmission Line (GIL). High Volt. Eng. 2018, 44, 9. [Google Scholar]
- Piemontesi, M.; Niemeyer, L. Sorption of SF6 and SF6 decomposition products by activated alumina and molecular sieve 13X. In Proceedings of the Conference Record of the IEEE International Symposium on Electrical Insulation, Montreal, QC, Canada, 16–19 June 1996. [Google Scholar]
- Zhao, M.; Han, D.; Rong, W.; Zhang, G.; Huang, H.; Liu, Z. Decomposition Characteristics of Binary Mixtures of (CF3)2CFCN Buffer Gases Under Corona Discharge. High Volt. Eng. 2019, 45, 76–83. [Google Scholar]
- Kieffel, Y. Characteristics of g3—An alternative to SF6. In Proceedings of the IEEE International Conference on Dielectrics, Montpellier, France, 3 July 2017; pp. 54–57. [Google Scholar]
- Scheels, B. Decomposition of alternative gaseous insulation under partial discharge. In Proceedings of the 20th International Symposium High Voltage Engineering, Buenos Aires, Argentina, 28 August–1 September 2017; pp. 534–539. [Google Scholar]
- Radisavljevic, B.; Stoller, P.C.; Doiron, C.B.; Over, D.; Di-Gianni, A.; Scheel, S. Switching performance of alternative gaseous mixtures in high-voltage circuit breakers. In Proceedings of the 20th International Symposium High Voltage Engineering, Buenos Aires, Argentina, 28 August–1 September 2017; pp. 550–555. [Google Scholar]
- Yang, T.; Zhang, B.; Li, X.; Li, C. Experimental Study of Decomposition Products of C4F7N/CO2 Mixture under Different Fault Conditions. High Volt. Eng. 2021, 47, 4216–4228. [Google Scholar]
- Su, Z.; Zhao, C. Experimental Investigation into Effects of Adsorbents on Detection of SF6 Decomposition Products in SF6 Equipment. High Volt. Appar. 2013, 49, 7. [Google Scholar]
- Tang, J.; Zend, F.; Liang, X.; Qiu, Y.; Yuan, J.; Zhang, X. A Comparative Experimental Study on the Interaction of SF6 Feature Decomposition Products with Alumina and Molecular Sieve kdhF-03. Proc. CSEE 2013, 33, 9. [Google Scholar]
- Meyer, F.; Kieffel, Y. Application of fluoronitrile/CO2/O2 mixtures in high voltage products to lower the environmental footprint. In Proceedings of the Conference International des Grands Reseaux Electriques, Paris, France, 2018; pp. D1–D201. [Google Scholar]
- Zhao, M.; Han, D.; Zhou, L.; Zhang, G. Adsorption Characteristics of Activated Alumina and Molecular Sieves for C3F7CN/CO2 and Its Decomposition By-Products of Overheating Fault. Trans. China Electrotech. Soc. 2020, 35, 9. [Google Scholar]
- Hou, H.; Yan, X.; Yu, X.; Liu, W.; Liu, Z.; Wang, B. Theoretical Investigation on the Adsorption of C4F7N/CO2 Dielectric Gas and Decomposition Products in Zeolite. High Volt. Eng. 2019, 45, 8. [Google Scholar]
- Wada, J.; Ueta, G.; Okabe, S.; Hikita, M. Dielectric Properties of Gas Mixtures with Per-Fluorocarbon Gas and Gas with Low Liquefaction Temperature. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 838–847. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, B.; Ma, X.; Chen, J. Comparative Research on the Mechanism of CO2 and CF3H Inhibiting Bituminous Coal Combustion. J. Eng. Thermophys. 2018, 39, 10. [Google Scholar]
- Li, S.; Xie, S.; Wu, Y.; Liao, H. Decomposition of Greenhouse Gas of SF6 and CF4 by Means of Atmospheric Pressure Microwave Plasma Torch. High Volt. Eng. 2021, 47, 8. [Google Scholar]
- Duus, H.C. Thermochemical Studies on Fluorocarbons—Heat of Formation of CF4, C2F4, C3F6, C2F4 Dimer, and C2F4 Polymer. Ind. Eng. Chem. 1955, 47, 1445–1449. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, D.; Zhang, Y.; Yuan, Z.; Tian, S.; Zhang, X. Research on infrared spectrum characteristics and detection technology of environmental-friendly insulating medium C5F10O. Vib. Spectrosc. 2022, 118, 103336. [Google Scholar] [CrossRef]
- Hirotani, A.; Mizukami, K.; Miura, R.; Takaba, H.; Miyamoto, A. Grand canonical Monte Carlo simulation of the adsorption of CO2 on silicalite and NaZSM-5. Appl. Surf. Sci. 1997, 120, 81–84. [Google Scholar] [CrossRef]
- Hu, J.; Liu, Y.; Liu, J.; Gu, C.; Wu, D. High CO2 adsorption capacities in UiO type MOFs comprising heterocyclic ligand. Microporous Mesoporous Mater. 2018, 256, 25–31. [Google Scholar] [CrossRef]
Type of Gas | CF3H | CF4 | C2F6 | C3F6 | C3F8 | C4F7N Standard Gas | CO2 Standard Gas | Gas Mixtures |
---|---|---|---|---|---|---|---|---|
concentration | 200 ppm | 200 ppm | 200 ppm | 200 ppm | 200 ppm | 15%C4F7N/85%He | 15%CO2/85%He | 15%C4F7N/85%CO2 |
Step | Operation Content |
---|---|
| Checking the tightness of the device |
| Loading with 3 g of adsorption material |
| Pumping of the chamber to vacuum |
| Heating activates the adsorbent |
| Vacuuming for five minutes to remove the residual impurity gas in the chamber |
| Filling the chamber with gas to an absolute pressure of 0.15 MPa, and then letting it stand for 48 h. |
| Detecting the concentration of the gas in the chamber after 48 h |
Peak Area | Absorbance Intensity | |
---|---|---|
adsorption rate of CO2 | 2.3% | 1.9% |
adsorption rate of C4F7N | 5.6% | 3.4% |
Peak area | Absorbance intensity | |
---|---|---|
adsorption rate of CO2 | −1.8% | −2.3% |
adsorption rate of C4F7N | 3.9% | 8.0% |
Molecule | Charge (e) | Dynamic Diameter (Å) | ||||
---|---|---|---|---|---|---|
C | F | N | H | O | ||
CF4 | +1.66 | −0.41; −0.41; −0.41; −0.41 | - | - | - | 4.89 |
C2F6 | +1.35; +1.35 | −0.45; −0.45; −0.45; −0.45; −0.45; −0.45 | - | - | - | 6.24 |
C3F6 | +1.11; −0.23; −1.65 | −0.38; −0.40; −0.45; −0.41; −0.48; −0.41 | - | - | - | 7.25 |
C3F8 | +1.37; +1.02; +1.37 | −0.50; −0.46; −0.50; −0.46; −0.46; −0.46; −0.46; −0.46 | - | - | - | 7.44 |
CF3H | +0.98 | −0.38; −0.38; −0.38 | - | +0.16 | - | 6.21 |
CO2 | +0.60 | - | - | - | −0.30; −0.30 | 5.15 |
C4F7N | −0.14; +1.64; +1.64;+0.98 | −0.43; −0.45; −0.46; −0.47; −0.45; −0.42; −0.46 | −0.98 | - | - | 7.45 |
Atom | σ/Å | ε/kJ·mol−1 |
---|---|---|
Si | 4.27 | 1.30 |
Al | 4.39 | 1.30 |
O | 3.40 | 0.40 |
Na | 3.14 | 2.10 |
C | 3.89 | 0.39 |
N | 3.66 | 0.32 |
F | 3.47 | 0.30 |
H | 3.19 | 0.06 |
Type of Gas | CF3H | CF4 | C2F6 | C3F6 | C3F8 | C4F7N | CO2 |
---|---|---|---|---|---|---|---|
average adsorption heat (kJ/mol) | −89.2 | −60.5 | −83.5 | −113.1 | −96.5 | −124.0 | −49.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Qiu, X.; Zhang, X.; Tian, S.; Yuan, Z.; Liu, W. Adsorption Properties of ZSM-5 Molecular Sieve for Perfluoroisobutyronitrile Mixtures and Its Fluorocarbon Decomposition Products. Chemosensors 2022, 10, 121. https://doi.org/10.3390/chemosensors10040121
Liu W, Qiu X, Zhang X, Tian S, Yuan Z, Liu W. Adsorption Properties of ZSM-5 Molecular Sieve for Perfluoroisobutyronitrile Mixtures and Its Fluorocarbon Decomposition Products. Chemosensors. 2022; 10(4):121. https://doi.org/10.3390/chemosensors10040121
Chicago/Turabian StyleLiu, Wei, Xinjie Qiu, Xiaoxing Zhang, Shuangshuang Tian, Zian Yuan, and Weihao Liu. 2022. "Adsorption Properties of ZSM-5 Molecular Sieve for Perfluoroisobutyronitrile Mixtures and Its Fluorocarbon Decomposition Products" Chemosensors 10, no. 4: 121. https://doi.org/10.3390/chemosensors10040121
APA StyleLiu, W., Qiu, X., Zhang, X., Tian, S., Yuan, Z., & Liu, W. (2022). Adsorption Properties of ZSM-5 Molecular Sieve for Perfluoroisobutyronitrile Mixtures and Its Fluorocarbon Decomposition Products. Chemosensors, 10(4), 121. https://doi.org/10.3390/chemosensors10040121