Adsorption and Sensing Properties of Dissolved Gas in Oil on Cr-Doped InN Monolayer: A Density Functional Theory Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structure of Cr–InN Monolayer
3.2. Geometric Structures and Adsorption Energy Analysis for Adsorption System
3.3. Electron Density Analysis for Adsorption System
3.4. DOS Analysis for Adsorption System
3.5. Band Structure Analysis
4. Discussion and Conclusions
- (1)
- The Cr–InN monolayer was found to have an excellent adsorption performance to C2H4 and CO, while its adsorption effect for CH4 was found to be relatively ordinary.
- (2)
- Despite the excellent adsorption properties of the Cr–InN monolayer for CO and C2H4, the response of the Cr–InN monolayer to these two gases was found to be far from satisfactory. In contrast, the adsorption behavior of CH4 molecule was found to lead to a more sensitive response.
- (3)
- We advise that the Cr–InN monolayer be exploited as a substrate material of a selective detector for CH4 and a new type of adsorbing material for treating CO and C2H4 gases.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wani, S.A.; Rana, A.S.; Sohail, S.; Rahman, O.; Parveen, S.; Khan, S.A. Advances in DGA based condition monitoring of transformers: A review. Renew. Sustain. Energy Rev. 2021, 149, 111347. [Google Scholar] [CrossRef]
- Liao, R.J.; Feng, Y.; Yang, L.J. Study on Generation Rate of Characteristic Products of Oil-paper Insulation Aging. Proc. CSEE 2008, 4, 142–147. [Google Scholar]
- Lopes, S.M.D.; Flauzino, R.A.; Altafim, R.A.C. Incipient fault diagnosis in power transformers by data-driven models with over-sampled dataset. Electr. Power Syst. Res. 2021, 201, 107519. [Google Scholar] [CrossRef]
- Jin, L.F.; Chen, W.G.; Tang, S.R. Metal-doped SnO2 based H2/C2H2 gas sensor array and its detection characteristics. Chin. J. Sci. Instrum. 2019, 40, 144–152. [Google Scholar]
- Tran, D.; Mac, H.; Tong, V.; Tran, H.A.; Nguyen, L.G. A LSTM based framework for handling multiclass imbalance in DGA botnet detection. Neurocomputing 2018, 275, 2401–2413. [Google Scholar] [CrossRef]
- Cui, H.Z.; Yang, L.Q.; Zhu, Y.W.; Li, S.T.; Abu-Siada, A.; Islam, S. A Dissolved Gas Analysis for Power Transformers within Distributed Renewable Generation-Based Systems. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1349–1356. [Google Scholar] [CrossRef]
- Zhang, X.X.; Yu, L.; Gui, Y.G.; Hu, W.H. First-principles study of SF6 decomposed gas adsorbed on au-decorated graphene. Appl. Surf. Sci. 2016, 367, 259–269. [Google Scholar] [CrossRef]
- Diego, C.A.; Nery, V.E.; Daniela, E.O. Fe–doped graphene nanosheet as an adsorption platform of harmful gas molecules (CO, CO2, SO2 and H2S), and the co–adsorption in O2 environments. Appl. Surf. Sci. 2018, 427, 227–236. [Google Scholar]
- Yao, W.; Zhou, S.; Wang, Z.; Lu, Z.; Hou, C. Antioxidant behaviors of graphene in marine environment: A first–principles simulation. Appl. Surf. Sci. 2020, 499, 143962. [Google Scholar] [CrossRef]
- Zhang, X.X.; Fang, R.X.; Chen, D.C.; Zhang, G.Z. Using Pd-Doped γ-Graphyne to Detect Dissolved Gases in Transformer Oil: A Density Functional Theory Investigation. Nanomaterials 2019, 9, 1490. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.S.; Meng, F.C.; Wang, H.Y.; Wang, H. Novel two-dimensional semiconductor SnP3: Highest ability, tunable bandgaps and high carrier mobility explored using first-principles calculations. Mater. Chem. 2018, 6, 11890. [Google Scholar] [CrossRef]
- Chen, D.C.; Zhang, X.X.; Xiong, H.; Tang, J.; Xiao, S.; Zhang, D.Z. A First-Principles Study of the SF6 Decomposed Products Adsorbed Over Defective WS2 Monolayer as Promising Gas Sensing Device. IEEE Trans. Device Mater. Reliab. 2019, 19, 473–483. [Google Scholar] [CrossRef]
- Liu, Y.P.; Zhou, Q.; Mi, H.W.; Wang, J.X.; Zeng, W. Gas-sensing mechanism of Cr doped SnP3 monolayer to SF6 partial discharge decomposition components. Appl. Surf. Sci. 2021, 546, 149084. [Google Scholar] [CrossRef]
- Rajput, K.; He, J.; Frauenheim, T.; Roy, D.R. Monolayer PC3: A promising material for environmentally toxic nitrogen-containing multi gases. J. Hazard. Mater. 2022, 422, 12761. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhou, Y.; Wang, Y.H.; Zhang, R.J.; Li, J.; Li, X.; Zang, Z.G. Conductometric room temperature ammonia sensors based on titanium dioxide nanoparticles decorated thin black phosphorus nanosheets. Sens. Actuators B-Chem. 2021, 349, 130770. [Google Scholar] [CrossRef]
- Wang, J.C.; Zhang, X.X.; Liu, L.; Wang, Z.T. Dissolved gas analysis in transformer oil using Ni-Doped GaN monolayer: A DFT study. Superlattices Microst. 2021, 159, 107055. [Google Scholar] [CrossRef]
- Cui, H.; Liu, T.; Zhang, Y.; Liu, Y.X.; Zhou, Z.P. Ru-InN monolayer as a gas scavenger to guard the operation status of SF6 insulation devices: A firstprinciples theory. IEEE Sens. J. 2019, 19, 5249–5255. [Google Scholar] [CrossRef]
- Guo, Y.H.; Zhang, Y.M.; Wu, W.X. Transition metal (Pd, Pt, Ag, Au) decorated InN monolayer and their adsorption properties towards NO2: Density functional theory study. Appl. Surf. Sci. 2018, 455, 106–144. [Google Scholar] [CrossRef]
- Suski, T.; Schulz, T.; Albrecht, M.; Wang, X.Q.; Gorczyca, I.; Skrobas, K.; Svane, A. The discrepancies between theory and experiment in the optical emission of monolayer In (Ga) N quantum wells revisited by transmission electron microscopy. Appl. Phys. Lett. 2014, 104, 182103. [Google Scholar] [CrossRef]
- Zhou, L.; Dimakis, E.; Hathwar, R.; Aoki, T.; Smith, D.J.; Moustakas, T.D.; McCartney, M.R. Measurement and effects of polarization fields on one-monolayer- thick InN/GaN multiple quantum wells. Phys. Rev. B 2013, 88, 125310. [Google Scholar] [CrossRef]
- Sun, X.; Yang, Q.; Meng, R.S.; Tan, C.J.; Liang, Q.H.; Jiang, J.K.; Ye, H.Y.; Chen, X.P. Adsorption of gas molecules on graphene-like InN monolayer: A first-principle study. Appl. Surf. Sci. 2017, 404, 291–299. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef] [Green Version]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.C.; Zhang, X.X.; Tang, J.; Cui, Z.L.; Cui, H. Pristine and Cu decorated hexagonal InN monolayer, a promising candidate to detect and scavenge SF6 decompositions based on first-principle study. J. Hazard. Mater. 2019, 363, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.X.; Zhou, Q.; Zeng, W. Competitive adsorption of SF6 decompositions on Ni-doped ZnO (100) surface: Computational and experimental study. Appl. Surf. Sci. 2019, 479, 185–197. [Google Scholar] [CrossRef]
- Gui, Y.G.; Tang, C.; Zhou, Q.; Xu, L.N.; Zhao, Z.Y.; Zhang, X.X. The sensing mechanism of N-doped SWCNTs toward SF6 decomposition products: A first-principle study. Appl. Surf. Sci. 2018, 440, 846–852. [Google Scholar] [CrossRef]
- Wang, J.X.; Zhou, Q.; Xu, L.N.; Gao, X.; Zeng, W. Gas sensing mechanism of transformer oil decomposed gases on Ag-MoS2 monolayer: A DFT study. Physica E 2020, 118, 113947. [Google Scholar] [CrossRef]
- Liu, Y.P.; Zhou, Q.; Hou, W.J.; Li, J.; Zeng, W. Adsorption properties of Cr modified GaN monolayer for H2, CO, C2H2 and C2H4. Chem. Phys. 2021, 550, 111304. [Google Scholar] [CrossRef]
- Liu, Y.P.; Zhou, Q.; Wang, J.X.; Zeng, W. Cr doped MN (M = In, Ga) monolayer: A promising candidate to detect and scavenge SF6 decomposition components. Sens. Actuators A-Phys. 2021, 330, 112854. [Google Scholar] [CrossRef]
- He, X.; Gui, Y.G.; Xie, J.F.; Liu, X.; Wang, Q.; Tang, C. A DFT study of dissolved gas (C2H2, H2, CH4) detection in oil on CuO-modified BNNT. Appl. Surf. Sci. 2020, 500, 144030. [Google Scholar] [CrossRef]
- Du, J.G.; Jiang, G. First-principle study on monolayer and bilayer SnP3 sheets as the potential sensors for NO2, NO, and NH3 detection. Nanotechnology 2020, 31, 325504. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Zhang, X.X.; Li, Y.; Chen, D.C.; Zhang, Y. First-principles insight into Ni-doped InN monolayer as a noxious gases scavenger. Appl. Surf. Sci. 2019, 494, 859–866. [Google Scholar] [CrossRef]
Adsorption System | Qt (eV) |
---|---|
Pd–SnP3/CO | 0.199 |
Pd–SnP3/CH4 | 0.052 |
Pd–SnP3/C2H4 | 0.204 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, G.; Hu, J.; Wang, S.; Dai, W.; Zhou, Q. Adsorption and Sensing Properties of Dissolved Gas in Oil on Cr-Doped InN Monolayer: A Density Functional Theory Study. Chemosensors 2022, 10, 30. https://doi.org/10.3390/chemosensors10010030
Qian G, Hu J, Wang S, Dai W, Zhou Q. Adsorption and Sensing Properties of Dissolved Gas in Oil on Cr-Doped InN Monolayer: A Density Functional Theory Study. Chemosensors. 2022; 10(1):30. https://doi.org/10.3390/chemosensors10010030
Chicago/Turabian StyleQian, Guochao, Jin Hu, Shan Wang, Weiju Dai, and Qu Zhou. 2022. "Adsorption and Sensing Properties of Dissolved Gas in Oil on Cr-Doped InN Monolayer: A Density Functional Theory Study" Chemosensors 10, no. 1: 30. https://doi.org/10.3390/chemosensors10010030
APA StyleQian, G., Hu, J., Wang, S., Dai, W., & Zhou, Q. (2022). Adsorption and Sensing Properties of Dissolved Gas in Oil on Cr-Doped InN Monolayer: A Density Functional Theory Study. Chemosensors, 10(1), 30. https://doi.org/10.3390/chemosensors10010030