High-Performance Bidirectional Chemical Sensor Platform Using Double-Gate Ion-Sensitive Field-Effect Transistor with Microwave-Assisted Ni-Silicide Schottky-Barrier Source/Drain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of the Ambipolar DG ISFET and EG Unit
2.2. Characterization of the Fabricated Ambipolar DG ISFET
2.3. Signal Amplification of the Ambipolar DG ISFET
3. Results and Discussion
3.1. Evaluation of the Ni-Silicide S/D Region for Ambipolar DG ISFET
3.2. Electrical Characteristics of the Ambipolar DG ISFET with Ni-Silicide SB S/D
3.3. pH Sensing Performance of the Ambipolar DG ISFET
3.4. Reliability and Stability of the Ambipolar DG ISFET
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ndiaye, M.; Oyewobi, S.S.; Abu-Mahfouz, A.M.; Hancke, G.P.; Kurien, A.M.; Djouani, K. IoT in the wake of COVID-19: A survey on contributions, challenges and evolution. IEEE Access 2020, 8, 186821–186839. [Google Scholar] [PubMed]
- Giwan, S.; Geonhee, L.; Mi, J.K.; Seung-Hwa, B.; Minsuk, C.; Keun, B.K.; Chang-Seop, L.; Sangmi, J.; Deaui, P.; Hong, G.K.; et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using a field-effect transistor-based biosensor. ACS Nano 2020, 14, 5135–5142. [Google Scholar]
- Abdulhadee, Y.; Umaporn, P.; Sirirat, R.; Nattiya, H.; Orawon, C.; Sudkate, C. Paper-based electrochemical biosensor for diagnosing COVID-19: Detection of SARS-CoV-2 antibodies and antigen. Biosens. Bioelectron. 2021, 176, 112912. [Google Scholar]
- Kim, S.; Ahn, J.H.; Park, T.J.; Lee, S.Y.; Choi, Y.K. A biomolecular detection method based on charge pumping in a nanogap embedded field-effect-transistor biosensor. Appl. Phys. Lett. 2009, 94, 243903. [Google Scholar]
- Tsai, C.-C.; Chiang, P.-L.; Sun, C.-J.; Lin, T.-W.; Tsai, M.-H.; Chang, Y.-C.; Chen, Y.-T. Surface potential variations on a silicon nanowire transistor in biomolecular modification and detection. Nanotechnology 2011, 22, 135503. [Google Scholar]
- Bergveld, P. Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sens. Actuators B Chem. 2003, 88, 1–20. [Google Scholar]
- Sadighbayan, D.; Hasanzadeh, M.; Ghafar-Zadeh, E. Biosensing based on field-effect transistors (FET): Recent progress and challenges. Trends Anal. Chem. 2020, 133, 116067. [Google Scholar]
- Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE. Trans. Biomed. Eng. 1970, 1, 70–71. [Google Scholar]
- Li, B.-R.; Chen, C.-W.; Yang, W.-L.; Lin, T.-Y.; Pan, C.-Y.; Chen, Y.-T. Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor. Biosens. Bioelectron. 2013, 45, 252–259. [Google Scholar]
- Cho, S.-K.; Cho, W.-J. High-sensitivity pH sensor based on coplanar gate AlGaN/GaN metal-oxide-semiconductor high electron mobility transistor. Chemosensors 2021, 9, 4213. [Google Scholar]
- Jang, H.J.; Cho, W.J. Performance enhancement of capacitive-coupling dual-gate ion-sensitive field-effect transistor in ultra-thin-body. Sci. Rep. 2014, 4, 1–8. [Google Scholar]
- Ioannidis, E.G.; Theodorou, C.G.; Haendler, S.; Josse, E.; Dimitriadis, C.A.; Ghibaudo, G. Impact of source–drain series resistance on drain current mismatch in advanced fully depleted SOI n-MOSFETs. IEEE Electron. Device Lett. 2015, 36, 433–435. [Google Scholar]
- Rahhal, L.; Bajolet, A.; Diouf, C.; Cros, A.; Rosa, J.; Planes, N.; Ghibaudo, G. New methodology for drain current local variability characterization using Y function method. In Proceedings of the 2013 IEEE International Conference on Microelectronic Test Structures (ICMTS), Osaka, Japan, 25–28 March 2013; pp. 99–103. [Google Scholar]
- Dubois, E.; Larrieu, G. Low Schottky barrier source/drain for advanced MOS architecture: Device design and material considerations. Solid State Electron. Lett. 2002, 46, 997–1004. [Google Scholar]
- Hwang, H.; Lee, D.-H.; Hwang, J.M. Degradation of MOSFETs drive current due to halo ion implantation. Tech. Dig. Int. Electron. Devices Meet. 1996, 4, 567–570. [Google Scholar]
- Won-Jae, L.; Do-Woo, K.; Soon-Young, O.; Yong-Jin, K.; Ying-Ying, Z.; Zhun, Z.; Shi-Guang, L.; Soon-Yen, J.; In-Sik, H.; Tae-Kyu, G. Work function variation of nickel silicide using an ytterbium buffer layer for Schottky barrier metal-oxide-semiconductor field-effect transistors. Int. J. Appl. Phys. 2007, 101, 103710. [Google Scholar]
- Seger, J.; Hellström, P.E.; Lu, J.; Malm, B.G.; von Haartman, M.; Östling, M.; Zhang, S.L. Lateral encroachment of Ni-silicides in the source/drain regions on ultrathin silicon-on-insulator. Appl. Phys. Lett. 2005, 86, 253507. [Google Scholar]
- Xu, Z.; Zi, W.; Ruxin, S.; Yadan, Z.; Lunan, Z.; Di, X.; Lizhen, H.; Lifeng, C. High performance gas sensors with dual response based on organic ambipolar transistors. J. Mater. Chem. C 2021, 9, 1584–1592. [Google Scholar]
- Ajay, S.; Rakhi, N.; Manoj, S.; Mridula, G. Ambipolar behaviour of tunnel field effect transistor (TFET) as an advantage for biosensing applications. In Physics of Semiconductor Devices; Springer: Berlin/Heidelberg, Germany, 2014; pp. 171–174. [Google Scholar]
- Yuan, L.; Guo, Z.; Hailong, Z.; Zheng, L.; Rui, C.; Yang, X.; Vincent, G.; Yu, H.; Xiangfeng, D. Ambipolar barristors for reconfigurable logic circuits. Nano Lett. 2017, 17, 1448–1454. [Google Scholar]
- Jakobson, C.G.; Nemirovsky, Y. 1/f noise in ion sensitive field effect transistors from subthreshold to saturation. IEEE Trans. Electron. Devices 1999, 46, 259–261. [Google Scholar]
- Panahi, A.; Sadighbayan, D.; Forouhi, S.; Ghafar-Zadeh, E. Recent advances of field-effect transistor technology for infectious diseases. Biosensors 2021, 11, 103. [Google Scholar]
- Schmitt, A.L.; Higgins, J.M.; Szczech, J.R.; Jin, S. Synthesis and applications of metal silicide nanowires. J. Mater. Chem. 2010, 20, 223–235. [Google Scholar]
- Byon, K.; Tham, D.; Fischer, J.E.; Johnson, A.T. Systematic study of contact annealing: Ambipolar silicon nanowire transistor with improved performance. Appl. Phys. Lett. 2007, 90, 143513. [Google Scholar]
- Min, J.G.; Lee, D.H.; Kim, Y.U.; Cho, W.J. Implementation of ambipolar polysilicon thin-film transistors with nickel silicide Schottky junctions by low-thermal-budget microwave annealing. Nanomaterials 2022, 12, 628. [Google Scholar]
- Yates, D.E.; Levine, S.; Healy, T.W. Site-binding model of the electrical double layer at the oxide/water interface. J. Chem. Soc. Faraday Trans. 1974, 70, 1807–1818. [Google Scholar]
- Jang, H.J.; Cho, W.J. Fabrication of high-performance fully depleted silicon-on-insulator based dual-gate ion-sensitive field-effect transistor beyond the Nernstian limit. Appl. Phys. Lett. 2012, 100, 073701. [Google Scholar]
- Bhaskaran, M.; Sriram, S.; Mitchell, D.R.G.; Short, K.T.; Holland, A.S.; Mitchell, A. Effect of multi-layered bottom electrodes on the orientation of strontium-doped lead zirconate titanate thin films. Micron 2008, 40, 11–14. [Google Scholar]
- Wen-Li, C.; Chung-Hua, C.; Jui-Yuan, C.; Chun-Wei, H.; Yu-Ting, H.; Kuo-Chang, L.; Cheng-Lun, H.; Ping-Hung, Y.; Wen-Wei, W. Single-crystalline δ-Ni2Si nanowires with excellent physical properties. Nanoscale Res. Lett. 2013, 8, 1–5. [Google Scholar]
- Chou, J.C.; Wang, Y.F. Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol–gel method. Sens. Actuators B Chem. 2002, 86, 58–62. [Google Scholar]
- Bousse, L.; Mostarshed, S.; van der Schoot, B.; De Rooij, N.F. Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators. Sens. Actuators B Chem. 1994, 17, 157–164. [Google Scholar]
- Bousse, L.; Bergveld, P. The role of buried OH sites in the response mechanism of inorganic-gate pH-sensitive ISFETs. Sens. Actuators 1984, 6, 65–78. [Google Scholar]
- Chou, J.C.; Hsiao, C.N. The hysteresis and drift effect of hydrogenated amorphous silicon for ISFET. Sens. Actuators B Chem. 2000, 66, 181–183. [Google Scholar]
- Al-Ahdal, A.; Toumazou, C. ISFET-based chemical switch. IEEE Sens. J. 2011, 12, 1140–1146. [Google Scholar]
- Wong, W.; Shepherd, L.; Georgiou, P.; Toumazou, C. Towards ISFET based DNA logic for rapid nucleic acid detection. Sensors 2009, 8, 1451–1454. [Google Scholar]
Sensitivity (mV/pH) | VH (mV) | Drift Rate (mV/h) | ||
---|---|---|---|---|
p-region | SG mode | 58.8 | 5.8 | 23.0 |
DG mode | 177.5 | 8.6 | 30.2 | |
n-region | SG mode | 58.7 | 4.2 | 14.1 |
DG mode | 175.0 | 5.1 | 18.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-U.; Cho, W.-J. High-Performance Bidirectional Chemical Sensor Platform Using Double-Gate Ion-Sensitive Field-Effect Transistor with Microwave-Assisted Ni-Silicide Schottky-Barrier Source/Drain. Chemosensors 2022, 10, 122. https://doi.org/10.3390/chemosensors10040122
Kim Y-U, Cho W-J. High-Performance Bidirectional Chemical Sensor Platform Using Double-Gate Ion-Sensitive Field-Effect Transistor with Microwave-Assisted Ni-Silicide Schottky-Barrier Source/Drain. Chemosensors. 2022; 10(4):122. https://doi.org/10.3390/chemosensors10040122
Chicago/Turabian StyleKim, Yeong-Ung, and Won-Ju Cho. 2022. "High-Performance Bidirectional Chemical Sensor Platform Using Double-Gate Ion-Sensitive Field-Effect Transistor with Microwave-Assisted Ni-Silicide Schottky-Barrier Source/Drain" Chemosensors 10, no. 4: 122. https://doi.org/10.3390/chemosensors10040122
APA StyleKim, Y. -U., & Cho, W. -J. (2022). High-Performance Bidirectional Chemical Sensor Platform Using Double-Gate Ion-Sensitive Field-Effect Transistor with Microwave-Assisted Ni-Silicide Schottky-Barrier Source/Drain. Chemosensors, 10(4), 122. https://doi.org/10.3390/chemosensors10040122