Absence of Gradients and Nernstian Equilibrium Stripping (AGNES): An Electroanalytical Technique for Chemical Speciation: A Tutorial Review
Abstract
:Highlights
- AGNES technique determines free metal ion concentrations;
- AGNES principles lead to a very robust determination when suitable checks are run;
- Protocols and experimental details are provided in the article and in the Supplementary Materials;
- First AGNES [Zn2+] determined in a natural sample with the Nafion-covered thin mercury film rotating disc electrode.
Abstract
1. Introduction
2. Principles of AGNES
2.1. First Stage
2.1.1. Equilibrium Goal. The Gain
2.1.2. How to Reach Equilibrium? Simpler Variant: AGNES-1P
2.1.3. How to Reach Equilibrium? Potentially Faster Variant: AGNES-2P
2.2. Second Stage: The Analytical Response
2.2.1. Current in Variant AGNES-I
2.2.2. Charge in Variant AGNES–SCP
2.3. Fundamental AGNES Equation
3. Materials and Methods
3.1. Reagents and Equipment
3.2. Sample Preparation
3.2.1. Synthetic Samples
3.2.2. Environmental Sample
3.3. Procedures
3.4. Calculations
4. Case Study I: A Synthetic System
4.1. Determining the Gain with DPP
4.2. Checking the System with a Trajectory
4.3. Calibration
4.4. Titration
5. Case Study II: A Natural System
5.1. Selection of the Variants and Electrode
5.2. Calibration for the Segre Sample
5.3. Determination of the Free Zn Fraction in Segre River with AGNES-SCP_2P and Nafion-Covered Rotating Disk Electrode
6. Some Practical Issues
6.1. Temperature
6.2. pH
6.3. Electrodic Adsorption
6.4. Ionic Strength
6.5. Interferences
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanchez-Marin, P. A Review of Chemical Speciation Techniques Used for Predicting Dissolved Copper Bioavailability in Seawater. Environ. Chem. 2020, 17, 469–478. [Google Scholar] [CrossRef]
- Marszalek, I.; Goch, W.; Bal, W. Ternary Zn(II) Complexes of Fluorescent Zinc Probes Zinpyr-1 and Zinbo-5 with the Low Molecular Weight Component of Exchangeable Cellular Zinc Pool. Inorg. Chem. 2019, 58, 14741–14751. [Google Scholar] [CrossRef]
- Rotureau, E. Analysis of Metal Speciation Dynamics in Clay Minerals Dispersion by Stripping Chronopotentiometry Techniques. Colloids Surf. A 2014, 441, 291–297. [Google Scholar] [CrossRef]
- Vale, G.; Franco, C.; Diniz, M.S.; dos Santos, M.M.C.; Domingos, R.F. Bioavailability of Cadmium and Biochemical Responses on the Freshwater Bivalve Corbicula Fluminea-The Role of TiO2 Nanoparticles. Ecotoxicol. Environ. Saf. 2014, 109, 161–168. [Google Scholar] [CrossRef]
- Vale, G.; Franco, C.; Brunnert, A.M.; dos Santos, M.M.C. Adsorption of Cadmium on Titanium Dioxide Nanoparticles in Freshwater Conditions-A Chemodynamic Study. Electroanalysis 2015, 27, 2439–2447. [Google Scholar] [CrossRef]
- David, C.A.; Galceran, J.; Quattrini, F.; Puy, J.; Rey-Castro, C. Dissolution and Phosphate-Induced Transformation of ZnO Nanoparticles in Synthetic Saliva Probed by AGNES without Previous Solid-Liquid Separation. Comparison with UF-ICP-MS. Environ. Sci. Technol. 2019, 53, 3823–3831. [Google Scholar] [CrossRef]
- Domingos, R.F.; Franco, C.; Pinheiro, J.P. Stability of Core/Shell Quantum Dots-Role of PH and Small Organic Ligands. Environ. Sci. Pollut. Res. 2013, 20, 4872–4880. [Google Scholar] [CrossRef]
- Galceran, J.; Companys, E.; Puy, J.; Cecília, J.; Garcés, J.L. AGNES: A New Electroanalytical Technique for Measuring Free Metal Ion Concentration. J. Electroanal. Chem. 2004, 566, 95–109. [Google Scholar] [CrossRef]
- Companys, E.; Cecília, J.; Codina, G.; Puy, J.; Galceran, J. Determination of the Concentration of Free Zn2+ with AGNES Using Different Strategies to Reduce the Deposition Time. J. Electroanal. Chem. 2005, 576, 21–32. [Google Scholar] [CrossRef]
- Diaz-de-Alba, M.; Galindo-Riano, M.D.; Pinheiro, J.P. Lead Electrochemical Speciation Analysis in Seawater Media by Using AGNES and SSCP Techniques. Environ. Chem. 2014, 11, 137–149. [Google Scholar] [CrossRef]
- Galceran, J.; Companys, E.; Puy, J.; Pinheiro, J.P.; Rotureau, E. AGNES in Irreversible Systems: The Indium Case. J. Electroanal. Chem. 2021, 901, 115750. [Google Scholar] [CrossRef]
- Rotureau, E.; Pinheiro, J.P.; Duval, J.F.L. On the Evaluation of the Intrinsic Stability of Indium-Nanoparticulate Organic Matter Complexes. Colloids Surf. A-Physicochem. Eng. Asp. 2022, 645, 128859. [Google Scholar] [CrossRef]
- Alberti, G.; Biesuz, R.; Huidobro, C.; Companys, E.; Puy, J.; Galceran, J. A Comparison between the Determination of Free Pb(II) by Two Techniques: Absence of Gradients and Nernstian Equilibrium Stripping and Resin Titration. Anal. Chim. Acta 2007, 599, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Lao, M.; Companys, E.; Weng, L.P.; Puy, J.; Galceran, J. Speciation of Zn, Fe, Ca and Mg in Wine with the Donnan Membrane Technique. Food Chem. 2018, 239, 1143–1150. [Google Scholar] [CrossRef]
- Monteiro, A.C.S.; Parat, C.; Rosa, A.H.; Pinheiro, J.P. Towards Field Trace Metal Speciation Using Electroanalytical Techniques and Tangential Ultrafiltration. Talanta 2016, 152, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Town, R.M.; van Leeuwen, H.P. Intraparticulate Speciation Analysis of Soft Nanoparticulate Metal Complexes. The Impact of Electric Condensation on the Binding of Cd2+/Pb2+/Cu2+ by Humic Acids. Phys. Chem. Chem. Phys. 2016, 18, 10049–10058. [Google Scholar] [CrossRef]
- Duval, J.F.L.; Farinha, J.P.S.; Pinheiro, J.P. Impact of Electrostatics on the Chemodynamics of Highly Charged Metal-Polymer Nanoparticle Complexes. Langmuir 2013, 29, 13821–13835. [Google Scholar] [CrossRef]
- Janot, N.; Pinheiro, J.P.; Botero, W.G.; Meeussen, J.C.; Groenenberg, J.E. PEST-ORCHESTRA, a Tool for Optimising Advanced Ion-Binding Model Parameters: Derivation of NICA-Donnan Model Parameters for Humic Substances Reactivity. Environ. Chem. 2017, 14, 31–38. [Google Scholar] [CrossRef]
- Town, R.M.; van Leeuwen, H.P. Intraparticulate Metal Speciation Analysis of Soft Complexing Nanoparticles. The Intrinsic Chemical Heterogeneity of Metal-Humic Acid Complexes. J. Phys. Chem. A 2016, 120, 8637–8644. [Google Scholar] [CrossRef]
- Companys, E.; Galceran, J.; Puy, J.; Sedo, M.; Vera, R.; Antico, E.; Fontas, C. Comparison of Different Speciation Techniques to Measure Zn Availability in Hydroponic Media. Anal. Chim. Acta 2018, 1035, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Galceran, J.; Lao, M.; David, C.; Companys, E.; Rey-Castro, C.; Salvador, J.; Puy, J. The Impact of Electrodic Adsorption on Zn, Cd or Pb Speciation Measurements with AGNES. J. Electroanal. Chem. 2014, 722–723, 110–118. [Google Scholar] [CrossRef]
- López-Solis, L.; Companys, E.; Puy, J.; Blindauer, C.A.; Galceran, J. Direct Determination of Free Zn Concentration in Samples of Biological Interest. Anal. Chim. Acta 2022, in press. [Google Scholar] [CrossRef]
- Companys, E.; Galceran, J.; Pinheiro, J.P.; Puy, J.; Salaün, P. A Review on Electrochemical Methods for Trace Metal Speciation in Environmental Media. Curr. Opin. Electrochem. 2017, 3, 144–162. [Google Scholar] [CrossRef]
- Domingos, R.F.; Carreira, S.; Galceran, J.; Salaün, P.; Pinheiro, J.P. AGNES at Vibrated Gold Microwire Electrode for the Direct Quantification of Free Copper Concentrations. Anal. Chim. Acta 2016, 920, 29–36. [Google Scholar] [CrossRef]
- Rocha, L.S.; Galceran, J.; Puy, J.; Pinheiro, J.P. Determination of the Free Metal Ion Concentration Using AGNES Implemented with Environmentally Friendly Bismuth Film Electrodes. Anal. Chem. 2015, 87, 6071–6078. [Google Scholar] [CrossRef]
- Galceran, J.; Huidobro, C.; Companys, E.; Alberti, G. AGNES: A Technique for Determining the Concentration of Free Metal Ions. The Case of Zn(II) in Coastal Mediterranean Seawater. Talanta 2007, 71, 1795–1803. [Google Scholar] [CrossRef] [PubMed]
- Town, R.M.; van Leeuwen, H.P. Fundamental Features of Metal Ion Determination by Stripping Chronopotentiometry. J. Electroanal. Chem. 2001, 509, 58–65. [Google Scholar] [CrossRef]
- Parat, C.; Authier, L.; Aguilar, D.; Companys, E.; Puy, J.; Galceran, J.; Potin-Gautier, M. Direct Determination of Free Metal Concentration by Implementing Stripping Chronopotentiometry as Second Stage of AGNES. Analyst 2011, 136, 4337–4343. [Google Scholar] [CrossRef]
- Galceran, J.; Chito, D.; Martinez-Micaelo, N.; Companys, E.; David, C.; Puy, J. The Impact of High Zn0 Concentrations on the Application of AGNES to Determine Free Zn(II) Concentration. J. Electroanal. Chem. 2010, 638, 131–142. [Google Scholar] [CrossRef]
- Pei, J.H.; Tercier-Waeber, M.L.; Buffle, J. Simultaneous Determination and Speciation of Zinc, Cadmium, Lead, and Copper in Natural Water with Minimum Handling and Artifacts, by Voltammetry on a Gel-Integrated Microelectrode Array. Anal. Chem. 2000, 72, 161–171. [Google Scholar] [CrossRef]
- Zavarise, F.; Companys, E.; Galceran, J.; Alberti, G.; Profumo, A. Application of the New Electroanalytical Technique AGNES for the Determination of Free Zn Concentration in River Water. Anal. Bioanal. Chem. 2010, 397, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Lao, M.; Dago, A.; Serrano, N.; Companys, E.; Puy, J.; Galceran, J. Free Zn2+ Determination in Systems with Zn-Glutathione. J. Electroanal. Chem. 2015, 756, 207–211. [Google Scholar] [CrossRef]
- Gustafsson, J.P. Visual MINTEQ Version 3.1. 2016. Available online: https://vminteq.lwr.kth.se/download/ (accessed on 22 March 2021).
- Chito, D.; Galceran, J.; Companys, E. The Impact of Intermetallic Compounds CuxZn in the Determination of Free Zn2+ Concentration with AGNES. Electroanalysis 2010, 22, 2024–2033. [Google Scholar] [CrossRef]
- Puy, J.; Galceran, J.; Huidobro, C.; Companys, E.; Samper, N.; Garcés, J.L.; Mas, F. Conditional Affinity Spectra of Pb2+-Humic Acid Complexation from Data Obtained with AGNES. Environ. Sci. Technol. 2008, 42, 9289–9295. [Google Scholar] [CrossRef] [PubMed]
- Indices Indicating Tendency of a Water to Precipitate CaCO3 or Dissolve CaCO3. In Standard Methods for the Examination of Water and Wastewater; Clesceri, L.S.; Greenberg, A.E.; Eaton, A.D. (Eds.) American Public Health Association, American Water Works Association, and Water Environment Federation: Washington, DC, USA, 1998; pp. 2-30–2-33. [Google Scholar]
- Chito, D.; Galceran, J.; Companys, E.; Puy, J. Determination of the Complexing Capacity of Wine for Zn Using the Absence of Gradients and Nernstian Equilibrium Stripping Technique. J. Agric. Food Chem. 2013, 61, 1051–1059. [Google Scholar] [CrossRef]
- Pernet-Coudrier, B.; Companys, E.; Galceran, J.; Morey, M.; Mouchel, J.M.; Puy, J.; Ruiz, N.; Varrault, G. Pb-Binding to Various Dissolved Organic Matter in Urban Aquatic Systems: Key Role of the Most Hydrophilic Fraction. Geochim. Cosmochim. Acta 2011, 75, 4005–4019. [Google Scholar] [CrossRef]
- Chito, D.; Weng, L.; Galceran, J.; Companys, E.; Puy, J.; van Riemsdijk, W.H.; van Leeuwen, H.P. Determination of Free Zn2+ Concentration in Synthetic and Natural Samples with AGNES (Absence of Gradients and Nernstian Equilibrium Stripping) and DMT (Donnan Membrane Technique). Sci. Total Environ. 2012, 421–422, 238–244. [Google Scholar] [CrossRef]
- Parat, C.; Authier, L.; Castetbon, A.; Aguilar, D.; Companys, E.; Puy, J.; Galceran, J.; Potin-Gautier, M. Free Zn2+ Determination in Natural Freshwaters of the Pyrenees: Towards on-Site Measurements with AGNES. Environ. Chem. 2015, 12, 329–337. [Google Scholar] [CrossRef]
- Rosales-Segovia, K.; Sans-Duñó, J.; Companys, E.; Puy, J.; Alcalde, B.; Antico, E.; Fontas, C.; Galceran, J. Effective Concentration Signature of Zn in a Natural Water Derived from Various Speciation Techniques. Sci. Total Environ. 2022, 806, 151201. [Google Scholar] [CrossRef]
- Vidal, J.C.; Cepria, G.; Castillo, J.R. Models for Studying the Binding-Capacity of Albumin to Zinc by Stripping Voltammetry. Anal. Chim. Acta 1992, 259, 129–138. [Google Scholar] [CrossRef]
- Tercier, M.L.; Buffle, J. Antifouling Membrane-Covered Voltammetric Microsensor for in- Situ Measurements in Natural-Waters. Anal. Chem. 1996, 68, 3670–3678. [Google Scholar] [CrossRef]
- Aguilar, D.; Galceran, J.; Companys, E.; Puy, J.; Parat, C.; Authier, L.; Potin-Gautier, M. Non-Purged Voltammetry Explored with AGNES. Phys. Chem. Chem. Phys. 2013, 15, 17510–17521. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.B.; Gueguen, C.; Smith, D.S.; Galceran, J.; Puy, J.; Companys, E. Metal (Pb, Cd, and Zn) Binding to Diverse Organic Matter Samples and Implications for Speciation Modeling. Environ. Sci. Technol. 2018, 52, 4163–4172. [Google Scholar] [CrossRef] [PubMed]
- Rotureau, E.; Rocha, L.S.; Goveia, D.; Alves, N.G.; Pinheiro, J.P. Investigating the Binding Heterogeneity of Trace Metal Cations with SiO2 Nanoparticles Using Full Wave Analysis of Stripping Chronopotentiometry at Scanned Deposition Potential. Front. Chem. 2020, 8, 614574. [Google Scholar] [CrossRef] [PubMed]
- Tehrani, M.H.; Companys, E.; Dago, A.; Puy, J.; Galceran, J. Free Indium Concentration Determined with AGNES. Sci. Total Environ. 2018, 612, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Rotureau, E.; Pla-Vilanova, P.; Galceran, J.; Companys, E.; Pinheiro, J.P. Towards Improving the Electroanalytical Speciation Analysis of Indium. Anal. Chim. Acta 2019, 1052, 57–64. [Google Scholar] [CrossRef]
- Pla-Vilanova, P.; Galceran, J.; Puy, J.; Companys, E.; Filella, M. Antimony Speciation in Aqueous Solution Followed with AGNES. J. Electroanal. Chem. 2019, 849, 113334. [Google Scholar] [CrossRef]
- Aguilar, D.; Parat, C.; Galceran, J.; Companys, E.; Puy, J.; Authier, L.; Potin-Gautier, M. Determination of Free Metal Ion Concentrations with AGNES in Low Ionic Strength Media. J. Electroanal. Chem. 2013, 689, 276–283. [Google Scholar] [CrossRef]
- Tehrani, M.H.; Companys, E.; Dago, A.; Puy, J.; Galceran, J. New Methodology to Measure Low Free Indium (III) Concentrations Based on the Determination of the Lability Degree of Indium Complexes. Assessment of In(OH)3 Solubility Product. J. Electroanal. Chem. 2019, 847, 113185. [Google Scholar] [CrossRef]
Physicochemical Parameters in the Sample Segre Water | |
---|---|
Temperature (°C) | 21 |
pH | 8.12 |
Conductivity (µS cm−1) | 720 |
cT,Zn in filtered sample (nmol L−1) | 28 |
cT,Zn non-filtered sample (nmol L−1) | 103 |
TC (mg L−1) | 36.46 |
TIC (mg L−1) | 31.51 |
TOC (mg L−1) | 4.95 |
TN (mg L−1) | 5.14 |
cT,Zn /mol L−1 | cT,Oxalate /mol L−1 | [Zn2+]/mol L−1 Visual MINTEQ | Estimated Minimum Y | Rounded Minimum Y | Applied Y |
---|---|---|---|---|---|
9.65 × 10−5 | 0.00 | 8.85 × 10−5 | 0.3 | 1 | 2 |
9.64 × 10−5 | 9.64 × 10−5 | 5.89 × 10−5 | 0.4 | 1 | 2; 5 |
9.63 × 10−5 | 2.41 × 10−4 | 3.54 × 10−5 | 0.7 | 1 | 5; 10 |
9.62 × 10−5 | 5.29 × 10−4 | 1.72 × 10−5 | 1.5 | 2 | 10; 20 |
9.60 × 10−5 | 1.25 × 10−3 | 5.93 × 10−6 | 4.2 | 5 | 20; 50 |
9.56 × 10−5 | 2.82 × 10−3 | 1.73 × 10−6 | 14.5 | 20 | 100; 200 |
9.46 × 10−5 | 6.34 × 10−3 | 4.31 × 10−7 | 58.1 | 100 | 200; 500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Solis, L.; Galceran, J.; Puy, J.; Companys, E. Absence of Gradients and Nernstian Equilibrium Stripping (AGNES): An Electroanalytical Technique for Chemical Speciation: A Tutorial Review. Chemosensors 2022, 10, 351. https://doi.org/10.3390/chemosensors10090351
López-Solis L, Galceran J, Puy J, Companys E. Absence of Gradients and Nernstian Equilibrium Stripping (AGNES): An Electroanalytical Technique for Chemical Speciation: A Tutorial Review. Chemosensors. 2022; 10(9):351. https://doi.org/10.3390/chemosensors10090351
Chicago/Turabian StyleLópez-Solis, Lucía, Josep Galceran, Jaume Puy, and Encarna Companys. 2022. "Absence of Gradients and Nernstian Equilibrium Stripping (AGNES): An Electroanalytical Technique for Chemical Speciation: A Tutorial Review" Chemosensors 10, no. 9: 351. https://doi.org/10.3390/chemosensors10090351
APA StyleLópez-Solis, L., Galceran, J., Puy, J., & Companys, E. (2022). Absence of Gradients and Nernstian Equilibrium Stripping (AGNES): An Electroanalytical Technique for Chemical Speciation: A Tutorial Review. Chemosensors, 10(9), 351. https://doi.org/10.3390/chemosensors10090351