Electrochemical Sensors and Their Applications: A Review
Abstract
:1. Introduction
2. Types of Electrochemical Sensors
2.1. Potentiometric Sensors
- 1.
- Ion-selective electrodes (ISEs);
- 2.
- Coated-wire electrodes (CWEs);
- 3.
- Field-effect transistors (FETs).
2.2. Amperometric Sensors
2.3. Impedimetric Sensors
3. Electrochemical Sensor Applications
- i.
- Quick data collection;
- ii.
- Detection of the important substrate is frequently accomplished without previous separation;
- iii.
- A sensitivity that can reach ng/mL;
- iv.
- Good selectivity and, occasionally, even specificity;
- v.
- Biocomponents or systems of biological detection: Biocomponents include enzymes, antibodies, other similar binding molecules, DNA probes, live cells, and organelles;
- Transducers: Converts the signal generated by the analyte’s interaction with the biocomponent into a quantifiable electrical signal;
- A signal processing system: It turns the measured signal into a form that is accessible and readable.
3.1. Biomolecule Electrochemical Detection
3.1.1. Electrochemical Biosensing for Viral Infections
3.1.2. Electrochemical Sensors: Recognition of the SARS-CoV-2 Virus
3.2. Enzyme-Based Electrosensor Applications
3.3. Ion-Selective Electrodes (ISEs): Application in Medicine
3.4. Biosensors’ Distinct Characteristics in Health Services
3.5. Electrochemical Sensors: Environmental Applications
3.6. Recent Uses of Carbon-Based Nanosensors in Pharmaceutical Analysis
3.7. Electrochemical Sensors: Design of Analytical Kits
4. Role of Nanomaterials in Electrochemical Sensors
4.1. Carbon Nanotubes
4.2. Graphene in Sensors
4.3. Electrosensing Using Gold Nanoparticles
5. Future Aspects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hulanicki, A.; Glab, S.; Ingman, F. Chemical sensors: Definitions and classification. Pure Appl. Chem. 1991, 63, 1247–1250. [Google Scholar] [CrossRef]
- Miri, P.S.; Khosroshahi, N.; Darabi Goudarzi, M.; Safarifard, V. MOF-biomolecule nanocomposites for electrosensing. Nanochem. Res. 2021, 6, 213–222. [Google Scholar] [CrossRef]
- Shetti, N.P.; Nayak, D.S.; Reddy, K.R.; Aminabhvi, T.M. Graphene–Clay-Based Hybrid Nanostructures for Electrochemical Sensors and Biosensors. In Graphene-Based Electrochemical Sensors for Biomolecules; Elsevier: Amsterdam, The Netherlands, 2019; pp. 235–274. [Google Scholar] [CrossRef]
- Meti, M.D.; Abbar, J.C.; Lin, J.; Han, Q.; Zheng, Y.; Wang, Y.; Huang, J.; Xu, X.; Hu, Z.; Xu, H. Nanostructured Au-graphene modified electrode for electrosensing of chlorzoxazone and its biomedical applications. Mater. Chem. Phys. 2021, 266. [Google Scholar] [CrossRef]
- Neiva, E.G.C.; Bergamini, M.F.; Oliveira, M.M.; Marcolino, L.H.; Zarbin, A.J.G. PVP-capped nickel nanoparticles: Synthesis, characterization and utilization as a glycerol electrosensor. Sens. Actuators B Chem. 2014, 196, 574–581. [Google Scholar] [CrossRef]
- Rahman, M.; Kumar, P.; Park, D.-S.; Shim, Y.-B. Electrochemical Sensors Based on Organic Conjugated Polymers. Sensors 2008, 8, 118–141. [Google Scholar] [CrossRef] [PubMed]
- Yunus, S.; Jonas, A.M.; Lakard, B. Potentiometric Biosensors. In Encyclopedia of Biophysics; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1941–1946. [Google Scholar] [CrossRef]
- Thiruppathi, M.; Thiyagarajan, N.; Ho, J.-A.A. Applications of Metals, Metal Oxides, and Metal Sulfides in Electrochemical Sensing and Biosensing. In Metal, Metal-Oxides and Metal Sulfides for Batteries, Fuel Cells, Solar Cells, Photocatalysis and Health Sensors; Springer: Cham, Switzerland, 2021; pp. 209–244. [Google Scholar] [CrossRef]
- Pollap, A.; Kochana, J. Electrochemical Immunosensors for Antibiotic Detection. Biosensors 2019, 9, 61. [Google Scholar] [CrossRef]
- Cosnier, S. Electrochemical Biosensors; Jenny Stanford Publishing: Singapore, 2015. [Google Scholar] [CrossRef]
- Yoshinobu, T.; Schöning, M.J. Light-addressable potentiometric sensors for cell monitoring and biosensing. Curr. Opin. Electrochem. 2021, 28, 100727. [Google Scholar] [CrossRef]
- Isildak, Ö.; Özbek, O. Application of Potentiometric Sensors in Real Samples. Crit. Rev. Anal. Chem. 2020, 51, 218–231. [Google Scholar] [CrossRef]
- ElDin, N.B.; El-Rahman, M.K.A.; Zaazaa, H.E.; Moustafa, A.A.; Hassan, S.A. Microfabricated potentiometric sensor for personalized methacholine challenge tests during the COVID-19 pandemic. Biosens. Bioelectron. 2021, 190, 113439. [Google Scholar] [CrossRef] [PubMed]
- Cuartero, M.; Parrilla, M.; Crespo, G. Wearable Potentiometric Sensors for Medical Applications. Sensors 2019, 19, 363. [Google Scholar] [CrossRef] [PubMed]
- Bohnke, C.; Duroy, H.; Fourquet, J.L. pH sensors with lithium lanthanum titanate sensitive material: Applications in food industry. Sens. Actuators B Chem. 2003, 89, 240–247. [Google Scholar] [CrossRef]
- Yuskina, E.; Tugashov, K.; Shur, V.B.; Tikhonova, I.A.; Babain, V.; Kirsanov, D. Cross-Sensitive Potentiometric Sensors Based on Anti-Crown (C6HgF4)3. In Proceedings of the 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry, Online, 1–15 July 2021. [Google Scholar]
- Trujillo, R.M.; Barraza, D.E.; Zamora, M.L.; Cattani-Scholz, A.; Madrid, R.E. Nanostructures in Hydrogen Peroxide Sensing. Sensors 2021, 21, 2204. [Google Scholar] [CrossRef] [PubMed]
- Cho, G.; Azzouzi, S.; Zucchi, G.; Lebental, B. Electrical and Electrochemical Sensors Based on Carbon Nanotubes for the Monitoring of Chemicals in Water—A Review. Sensors 2021, 22, 218. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Sang, G.; Zeng, N.; Lv, C.; Xu, C. Amperometric sensor for the detection of hydrogen stable isotopes based on Pt nanoparticles confined within single-walled carbon nanotubes (SWNTs). Sens. Actuators B Chem. 2022, 356, 131344. [Google Scholar] [CrossRef]
- Stasyuk, N.Y.; Gayda, G.Z.; Zakalskiy, A.E.; Fayura, L.R.; Zakalska, O.M.; Sibirny, A.A.; Nisnevitch, M.; Gonchar, M.V. Amperometric biosensors for L-arginine and creatinine assay based on recombinant deiminases and ammonium-sensitive Cu/Zn(Hg)S nanoparticles. Talanta 2022, 238, 122996. [Google Scholar] [CrossRef] [PubMed]
- Matthews, C.J.; Andrews, E.S.V.; Patrick, W.M. Enzyme-based amperometric biosensors for malic acid—A review. Anal. Chim. Acta 2021, 1156, 338218. [Google Scholar] [CrossRef] [PubMed]
- Emir, G.; Dilgin, Y.; Ramanaviciene, A.; Ramanavicius, A. Amperometric nonenzymatic glucose biosensor based on graphite rod electrode modified by Ni-nanoparticle/polypyrrole composite. Microchem. J. 2021, 161, 105751. [Google Scholar] [CrossRef]
- Janata, J.; Josowicz, M.; Vanýsek, P.; DeVaney, D.M. Chemical Sensors. Anal. Chem. 1998, 70, 179–208. [Google Scholar] [CrossRef]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification 1 International Union of Pure and Applied Chemistry: Physical Chemistry Division, Commission I.7 (Biophysical Chemistry); Analytical Chemistry Division, Commission V.5 (Electroanalytical Chemistry) 1. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef]
- Fatibello-Filho, O. Potentiometric Biosensors. In Tools and Trends in Bioanalytical Chemistry; Springer International Publishing: Cham, Switzerland, 2022; pp. 265–272. [Google Scholar] [CrossRef]
- Haritha, V.S.; Kumar, S.R.S.; Rakhi, R.B. Amperometric cholesterol biosensor based on cholesterol oxidase and Pt-Au/ MWNTs modified glassy carbon electrode. Mater. Today Proc. 2022, 50, 34–39. [Google Scholar] [CrossRef]
- Soldatkin, O.O.; Soldatkina, O.V.; Piliponskiy, I.I.; Rieznichenko, L.S.; Gruzina, T.G.; Dybkova, S.M.; Dzyadevych, S.V.; Soldatkin, A.P. Correction to: Application of gold nanoparticles for improvement of analytical characteristics of conductometric enzyme biosensors. Appl. Nanosci. 2021, 12, 1005. [Google Scholar] [CrossRef]
- Zhou, Y.; Kubota, L.T. Trends in Electrochemical Sensing. ChemElectroChem 2020, 7, 3684–3685. [Google Scholar] [CrossRef]
- Castillo, J.; Gáspár, S.; Leth, S.; Niculescu, M.; Mortari, A.; Bontidean, I.; Soukharev, V.; Dorneanu, S.A.; Ryabov, A.D.; Csöregi, E. Biosensors for life quality. Sens. Actuators B Chem. 2004, 102, 179–194. [Google Scholar] [CrossRef]
- Chaubey, A.; Malhotra, B.D. Mediated biosensors. Biosens. Bioelectron. 2002, 17, 441–456. [Google Scholar] [CrossRef]
- Llorent-Martínez, E.J.; Ortega-Barrales, P.; Fernández-de Córdova, M.L.; Ruiz-Medina, A. Trends in flow-based analytical methods applied to pesticide detection: A review. Anal. Chim. Acta 2011, 684, 30–39. [Google Scholar] [CrossRef]
- Knutson, S.D.; Sanford, A.A.; Swenson, C.S.; Korn, M.M.; Manuel, B.A.; Heemstra, J.M. Thermoreversible Control of Nucleic Acid Structure and Function with Glyoxal Caging. J. Am. Chem. Soc. 2020, 142, 17766–17781. [Google Scholar] [CrossRef]
- Hannocks, M.J.; Zhang, X.; Gerwien, H.; Chashchina, A.; Burmeister, M.; Korpos, E.; Song, J.; Sorokin, L. The gelatinases, MMP-2 and MMP-9, as fine tuners of neuroinflammatory processes. Matrix Biol. 2019, 75–76, 102–113. [Google Scholar] [CrossRef]
- Lu, M.; Flanagan, J.U.; Langley, R.J.; Hay, M.P.; Perry, J.K. Targeting growth hormone function: Strategies and therapeutic applications. Signal Transduct. Target. Ther. 2019, 4, 3. [Google Scholar] [CrossRef]
- Kurbanoglu, S.; Ozkan, S.A.; Merkoçi, A. Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications. Biosens. Bioelectron. 2017, 89, 886–898. [Google Scholar] [CrossRef]
- Wang, C.-F.; Sun, X.-Y.; Su, M.; Wang, Y.-P.; Lv, Y.-K. Electrochemical biosensors based on antibody, nucleic acid and enzyme functionalized graphene for the detection of disease-related biomolecules. Analyst 2020, 145, 1550–1562. [Google Scholar] [CrossRef]
- Asal, M.; Özen, Ö.; Şahinler, M.; Polatoğlu, İ. Recent Developments in Enzyme, DNA and Immuno-Based Biosensors. Sensors 2018, 18, 1924. [Google Scholar] [CrossRef] [PubMed]
- Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron. 2018, 103, 113–129. [Google Scholar] [CrossRef] [PubMed]
- Ezzati Nazhad Dolatabadi, J.; de la Guardia, M. Nanomaterial-based electrochemical immunosensors as advanced diagnostic tools. Anal. Methods 2014, 6, 3891–3900. [Google Scholar] [CrossRef]
- Cheng, M.; Cuda, G.; Bunimovich, Y.; Gaspari, M.; Heath, J.; Hill, H.; Mirkin, C.; Nijdam, A.; Terracciano, R.; Thundat, T. Nanotechnologies for biomolecular detection and medical diagnostics. Curr. Opin. Chem. Biol. 2006, 10, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Mohan, R.; Mach, K.E.; Bercovici, M.; Pan, Y.; Dhulipala, L.; Wong, P.K.; Liao, J.C. Clinical Validation of Integrated Nucleic Acid and Protein Detection on an Electrochemical Biosensor Array for Urinary Tract Infection Diagnosis. PLoS ONE 2011, 6, e26846. [Google Scholar] [CrossRef]
- Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical Biosensing for the Diagnosis of Viral Infections and Tropical Diseases. ChemElectroChem 2017, 4, 753–777. [Google Scholar] [CrossRef]
- Faria, H.A.M.; Zucolotto, V. Label-free electrochemical DNA biosensor for zika virus identification. Biosens. Bioelectron. 2019, 131, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Salimian, R.; Shahrokhian, S.; Panahi, S. Enhanced Electrochemical Activity of a Hollow Carbon Sphere/Polyaniline-Based Electrochemical Biosensor for HBV DNA Marker Detection. ACS Biomater. Sci. Eng. 2019, 5, 2587–2594. [Google Scholar] [CrossRef]
- Shabaninejad, Z.; Yousefi, F.; Movahedpour, A.; Ghasemi, Y.; Dokanehiifard, S.; Rezaei, S.; Aryan, R.; Savardashtaki, A.; Mirzaei, H. Electrochemical-based biosensors for microRNA detection: Nanotechnology comes into view. Anal. Biochem. 2019, 581, 113349. [Google Scholar] [CrossRef]
- Cui, F.; Zhou, Z.; Zhou, H.S. Molecularly Imprinted Polymers and Surface Imprinted Polymers Based Electrochemical Biosensor for Infectious Diseases. Sensors 2020, 20, 996. [Google Scholar] [CrossRef]
- Chowdhury, A.D.; Takemura, K.; Li, T.-C.; Suzuki, T.; Park, E.Y. Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection. Nat. Commun. 2019, 10, 3737. [Google Scholar] [CrossRef] [PubMed]
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef]
- Lou, B.; Liu, Y.; Shi, M.; Chen, J.; Li, K.; Tan, Y.; Chen, L.; Wu, Y.; Wang, T.; Liu, X.; et al. Aptamer-based biosensors for virus protein detection. TrAC Trends Anal. Chem. 2022, 157. [Google Scholar] [CrossRef]
- Khunseeraksa, V.; Kongkaew, S.; Thavarungkul, P.; Kanatharana, P.; Limbut, W. Electrochemical sensor for the quantification of iodide in urine of pregnant women. Microchim. Acta 2020, 187, 591. [Google Scholar] [CrossRef] [PubMed]
- Crulhas, B.P.; Basso, C.R.; Castro, G.R.; Pedrosa, V.A. Review—Recent Advances Based on a Sensor for Cancer Biomarker Detection. ECS J. Solid State Sci. Technol. 2021, 10, 047004. [Google Scholar] [CrossRef]
- Mishra, G.; Barfidokht, A.; Tehrani, F.; Mishra, R. Food Safety Analysis Using Electrochemical Biosensors. Foods 2018, 7, 141. [Google Scholar] [CrossRef] [PubMed]
- Luong, J.H.T.; Narayan, T.; Solanki, S.; Malhotra, B.D. Recent Advances of Conducting Polymers and Their Composites for Electrochemical Biosensing Applications. J. Funct. Biomater. 2020, 11, 71. [Google Scholar] [CrossRef] [PubMed]
- Sedlackova, E.; Bytesnikova, Z.; Birgusova, E.; Svec, P.; Ashrafi, A.M.; Estrela, P.; Richtera, L. Label-Free DNA Biosensor Using Modified Reduced Graphene Oxide Platform as a DNA Methylation Assay. Materials 2020, 13, 4936. [Google Scholar] [CrossRef]
- Suhito, I.R.; Koo, K.-M.; Kim, T.-H. Recent Advances in Electrochemical Sensors for the Detection of Biomolecules and Whole Cells. Biomedicines 2020, 9, 15. [Google Scholar] [CrossRef]
- Cinti, S.; Proietti, E.; Casotto, F.; Moscone, D.; Arduini, F. Paper-Based Strips for the Electrochemical Detection of Single and Double Stranded DNA. Anal. Chem. 2018, 90, 13680–13686. [Google Scholar] [CrossRef]
- Dutta, S.; Dutta Chowdhury, A.; Biswas, S.; Park, E.Y.; Agnihotri, N.; De, A.; De, S. Development of an effective electrochemical platform for highly sensitive DNA detection using MoS2—Polyaniline nanocomposites. Biochem. Eng. J. 2018, 140, 130–139. [Google Scholar] [CrossRef]
- Cheng, L.; Xu, C.; Cui, H.; Liao, F.; Hong, N.; Ma, G.; Xiong, J.; Fan, H. A sensitive homogenous aptasensor based on tetraferrocene labeling for thrombin detection. Anal. Chim. Acta 2020, 1111, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xia, J.; Zhang, F.; Wang, Z.; Liu, Q. Ultrasensitive label-free homogeneous electrochemical aptasensor based on sandwich structure for thrombin detection. Sens. Actuators B Chem. 2018, 267, 412–418. [Google Scholar] [CrossRef]
- Chen, Y.; Song, X.; Li, L.; Tang, B. A High-Fidelity Electrochemical Platform Based on Au–Se Interface for Biological Detection. Anal. Chem. 2020, 92, 5855–5861. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Yun, J.Y.; Lee, W.C.; Choi, S.; Lim, J.; Jeong, H.; Shin, D.-S.; Park, Y.J. A reference electrode-free electrochemical biosensor for detecting MMP-9 using a concentric electrode device. Sens. Actuators B Chem. 2017, 240, 735–741. [Google Scholar] [CrossRef]
- Ahirwar, R.; Dalal, A.; Sharma, J.G.; Yadav, B.K.; Nahar, P.; Kumar, A.; Kumar, S. An aptasensor for rapid and sensitive detection of estrogen receptor alpha in human breast cancer. Biotechnol. Bioeng. 2019, 116, 227–233. [Google Scholar] [CrossRef]
- Liu, M.; Ke, H.; Sun, C.; Wang, G.; Wang, Y.; Zhao, G. A simple and highly selective electrochemical label-free aptasensor of 17β-estradiol based on signal amplification of bi-functional graphene. Talanta 2019, 194, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Hazmi, M.; Lim, S.A.; Ahmed, M.U. A highly sensitive electrochemical detection of human chorionic gonadotropin on a carbon nano-onions/gold nanoparticles/polyethylene glycol nanocomposite modified glassy carbon electrode. J. Electroanal. Chem. 2019, 833, 462–470. [Google Scholar] [CrossRef]
- Khatri, R.; Parray, H.A.; Agrahari, A.K.; Rizvi, Z.A.; Kaul, R.; Raj, S.; Asthana, S.; Mani, S.; Samal, S.; Awasthi, A.; et al. Designing and characterization of a SARS-CoV-2 immunogen with receptor binding motif grafted on a protein scaffold: An epitope-focused vaccine approach. Int. J. Biol. Macromol. 2022, 209, 1359–1367. [Google Scholar] [CrossRef]
- Perra, C.; Kumar, A.; Losito, M.; Pirino, P.; Moradpour, M.; Gatto, G. Monitoring Indoor People Presence in Buildings Using Low-Cost Infrared Sensor Array in Doorways. Sensors 2021, 21, 4062. [Google Scholar] [CrossRef]
- Cui, J.; Li, F.; Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Geng, M.; Peng, Y.; Meng, L.; Lu, S. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal. 2020, 10, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Udugama, B.; Kadhiresan, P.; Kozlowski, H.N.; Malekjahani, A.; Osborne, M.; Li, V.Y.C.; Chen, H.; Mubareka, S.; Gubbay, J.B.; Chan, W.C.W. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano 2020, 14, 3822–3835. [Google Scholar] [CrossRef] [PubMed]
- Yakoh, A.; Chaiyo, S.; Siangproh, W.; Chailapakul, O. 3D Capillary-Driven Paper-Based Sequential Microfluidic Device for Electrochemical Sensing Applications. ACS Sens. 2019, 4, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Faustini, S.E.; Jossi, S.E.; Perez-Toledo, M.; Shields, A.M.; Allen, J.D.; Watanabe, Y.; Newby, M.L.; Cook, A.; Willcox, C.R.; Salim, M.; et al. Detection of antibodies to the SARS-CoV-2 spike glycoprotein in both serum and saliva enhances detection of infection. medRxiv 2020. preprint. [Google Scholar] [CrossRef]
- Kumar, A.; Delogu, F. Dynamical footprint of cross-reactivity in a human autoimmune T-cell receptor. Sci. Rep. 2017, 7, 42496. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Shetti, N.P.; Jagannath, S.; Aminabhavi, T.M. Electrochemical sensors for the detection of SARS-CoV-2 virus. Chem. Eng. J. 2022, 430, 132966. [Google Scholar] [CrossRef]
- Mäntsälä, P.; Niemi, J. Enzymes: The Biological Catalysts of Life. In Physiology and Maintenance—Volume II; Hanninen, O.O.P., Atalay, M., Eds.; EOLSS Publications: Abu Dhabi, United Arab Emirates, 2009; pp. 1–22. [Google Scholar]
- Aledo, J.C.; Lobo, C.; del Valle, A.E. Energy diagrams for enzyme-catalyzed reactions: Concepts and misconcepts. Biochem. Mol. Biol. Educ. 2003, 31, 234–236. [Google Scholar] [CrossRef]
- Mohammed, A.M.; Rahim, R.A.; Ibraheem, I.J.; Loong, F.K.; Hisham, H.; Hashim, U.; Al-Douri, Y. Application of Gold Nanoparticles for Electrochemical DNA Biosensor. J. Nanomater. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Kavita, V. DNA Biosensors—A Review. J. Bioeng. Biomed. Sci. 2017, 7, 2. [Google Scholar] [CrossRef]
- Ashrafi, A.M.; Sýs, M.; Sedláčková, E.; Farag, A.S.; Adam, V.; Přibyl, J.; Richtera, L. Application of the Enzymatic Electrochemical Biosensors for Monitoring Non-Competitive Inhibition of Enzyme Activity by Heavy Metals. Sensors 2019, 19, 2939. [Google Scholar] [CrossRef] [PubMed]
- Rutkowska, M.; Lindfors, T.; Boeva, Z.; Strawski, M. Low-cost flexible laminated graphene paper solid-contact ion-selective electrodes. Sens. Actuators B Chem. 2021, 337, 129808. [Google Scholar] [CrossRef]
- Burnett, R.W.; Covington, A.K.; Fogh-Andersen, N.; Külpmann, W.R.; Lewenstam, A.; Maas, A.H.J.; Müller-Plathe, O.; VanKessel, A.L.; Zijlstra, W.G. Use of Ion-Selective Electrodes for Blood-Electrolyte Analysis. Recommendations for Nomenclature, Definitions and Conventions. CCLM 2000, 38, 363–370. [Google Scholar] [CrossRef]
- Burnett, R.W.; Covington, A.K.; Fogh-Andersen, N.; Kulpmann, W.R.; Maas, A.H.; Muller-Plathe, O.; Siggaard-Andersen, O.; VanKessel, A.; Wimberley, P.D.; Zijlstra, W.G. International Federation of Clinical Chemistry (IFCC). Recommendation on mean molar activity coefficients and single ion activity coefficients of solutions for calibration of ion-selective electrodes for sodium, potassium and calcium determination. Eur. J. Clin. Chem. Clin. Biochem. 1997, 35, 345–349. [Google Scholar]
- Lewenstam, A. Chapter 1 Clinical analysis of blood gases and electrolytes by ion-selective sensors. In Electrochemical Sensor Analysis; Elsevier: Amsterdam, The Netherlands, 2007; pp. 5–24. [Google Scholar] [CrossRef]
- Umezewa, Y.; Aoki, H. Peer Reviewed: Ion Channel Sensors Based on Artificial Receptors. Anal. Chem. 2004, 76, 320.A–326.A. [Google Scholar] [CrossRef] [Green Version]
- Coşofre, V.V.; Buck, R.P. Recent Advances in Pharmaceutical Analysis with Potentiometric Membrane Sensors. Crit. Rev. Anal. Chem. 1993, 24, 1–58. [Google Scholar] [CrossRef]
- Mondal, N.K. Diagnosis of Fluorosis by Analysis of Fluoride Content in Body Fluids Using Ion Selective Electrode Method. In Translational Urinomics; Springer: Cham, Switzerland, 2021; pp. 121–127. [Google Scholar] [CrossRef]
- Lim, H.-R.; Lee, S.M.; Mahmood, M.; Kwon, S.; Kim, Y.-S.; Lee, Y.; Yeo, W.-H. Development of Flexible Ion-Selective Electrodes for Saliva Sodium Detection. Sensors 2021, 21, 1642. [Google Scholar] [CrossRef]
- Dimeski, G.; Badrick, T.; John, A.S. Ion Selective Electrodes (ISEs) and interferences—A review. Clin. Chim. Acta 2010, 411, 309–317. [Google Scholar] [CrossRef]
- Datta, S.K.; Chopra, P. Interference in Ion-Selective Electrodes Due to Proteins and Lipids. J. Appl. Lab. Med. 2022, 7, 589–595. [Google Scholar] [CrossRef]
- Monteyne, T.; Oyaert, M.; Van Dalem, A.; Godefroid, M.; Cuykx, M.; Callewaert, N. Impact of Bicarbonate Interference on Routine Ion-Selective Electrode Chloride Measurements. Ann. Lab. Med. 2022, 42, 566–574. [Google Scholar] [CrossRef]
- Gupta, V.K.; Singh, A.K.; Gupta, B. Development of membrane electrodes for selective determination of some antiepileptic drugs in pharmaceuticals, plasma and urine. Anal. Bioanal. Chem. 2007, 389, 2019–2028. [Google Scholar] [CrossRef] [PubMed]
- Marie, M.; Mandal, S.; Manasreh, O. An Electrochemical Glucose Sensor Based on Zinc Oxide Nanorods. Sensors 2015, 15, 18714–18723. [Google Scholar] [CrossRef] [PubMed]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Biosensors applications in medical field: A brief review. Sensors 2021, 2, 100100. [Google Scholar] [CrossRef]
- Sciutto, G.; Zangheri, M.; Anfossi, L.; Guardigli, M.; Prati, S.; Mirasoli, M.; Di Nardo, F.; Baggiani, C.; Mazzeo, R.; Roda, A. Miniaturized Biosensors to Preserve and Monitor Cultural Heritage: From Medical to Conservation Diagnosis. Angew. Chem. 2018, 130, 7507–7511. [Google Scholar] [CrossRef]
- Caygill, R.L.; Blair, G.E.; Millner, P.A. A review on viral biosensors to detect human pathogens. Anal. Chim. Acta 2010, 681, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Moro, G.; De Wael, K.; Moretto, L.M. Challenges in the electrochemical (bio)sensing of nonelectroactive food and environmental contaminants. Curr. Opin. Electrochem. 2019, 16, 57–65. [Google Scholar] [CrossRef]
- Ariño, C.; Banks, C.E.; Bobrowski, A.; Crapnell, R.D.; Economou, A.; Królicka, A.; Pérez-Ràfols, C.; Soulis, D.; Wang, J. Electrochemical stripping analysis. Nat. Rev. Methods Prim. 2022, 2, 63. [Google Scholar] [CrossRef]
- Lin, X.-Y.; Zhou, Q.-W.; Huo, X.-L.; Bao, N. Copper tape to improve analytical performance of disposable carbon electrodes in stripping analysis. Microchem. J. 2022, 179, 107428. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, L.; Perdicakis, M.; Walcarius, A. Electrochemical stripping analysis from micro-counter electrode. Electrochim. Acta 2021, 393, 139095. [Google Scholar] [CrossRef]
- Mohamad Nor, N.; Arivalakan, S.; Zakaria, N.D.; Nilamani, N.; Lockman, Z.; Abdul Razak, K. Self-Assembled Iron Oxide Nanoparticle-Modified APTES-ITO Electrode for Simultaneous Stripping Analysis of Cd(II) and Pb(II) Ions. ACS Omega 2022, 7, 3823–3833. [Google Scholar] [CrossRef]
- Jovanovski, V.; Xhanari, K.; Finšgar, M. Editorial: Recent advances of metal-film electrodes for trace electrochemical analysis. Front. Chem. 2022, 10, 973672. [Google Scholar] [CrossRef]
- Hanrahan, G.; Patil, D.G.; Wang, J. Electrochemical sensors for environmental monitoring: Design, development and applications. J. Environ. Monit. 2004, 6, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Ugo, P.; Ballarin, B.; Daniele, S.; Mazzocchin, G.A. Electrochemical behaviour and preconcentration of uranyl(VI) at Nafion-coated glassy carbon electrodes. J. Electroanal. Chem. 1992, 324, 145–159. [Google Scholar] [CrossRef]
- Wang, J.; Freiha, B.; Naser, N.; Gonzalez Romero, E.; Wollenberger, U.; Ozsoz, M.; Evans, O. Amperometric biosensing of organic peroxides with peroxidase-modified electrodes. Anal. Chim. Acta 1991, 254, 81–88. [Google Scholar] [CrossRef]
- Csoeregi, E.; Gorton, L.; Marko-Varga, G.; Tuedoes, A.J.; Kok, W.T. Peroxidase-Modified Carbon Fiber Microelectrodes in Flow-Through Detection of Hydrogen Peroxide and Organic Peroxides. Anal. Chem. 2002, 66, 3604–3610. [Google Scholar] [CrossRef]
- Wang, J.; Lu, Z. Electrocatalysis and determination of hydrazine compounds at glassy carbon electrodes coated with mixed-valent ruthenium(III, II) cyanide films. Electroanalysis 1989, 1, 517–521. [Google Scholar] [CrossRef]
- Simon, W.; Pretsch, E.; Morf, W.E.; Ammann, D.; Oesch, U.; Dinten, O. Design and application of neutral carrier-based ion-selective electrodes. Plenary lecture. Analyst 1984, 109, 207–209. [Google Scholar] [CrossRef]
- Wang, J. Preconcentration and voltammetric measurement of mercury with a crown-ether modified carbon-paste electrode. Talanta 1988, 35, 277–280. [Google Scholar] [CrossRef]
- Baldwin, R.P.; Christensen, J.K.; Kryger, L. Voltammetric determination of traces of nickel(II) at a chemically modified electrode based on dimethylglyoxime-containing carbon paste. Anal. Chem. 2002, 58, 1790–1798. [Google Scholar] [CrossRef]
- Smit, M.H.; Rechnitz, G.A. Toxin detection using a tyrosinase-coupled oxygen electrode. Anal. Chem. 1993, 65, 380–385. [Google Scholar] [CrossRef]
- Kalcher, K. A new method for the voltammetric determination of nitrite. Talanta 1986, 33, 489–494. [Google Scholar] [CrossRef]
- Gorski, W.; Cox, J.A. Amperometric Determination of N-Nitrosamines in Aqueous Solution at an Electrode Coated with a Ruthenium-Based Inorganic Polymer. Anal. Chem. 2002, 66, 2771–2774. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Q. Microfabricated Phenol Biosensors Based on Screen Printing of Tyrosinase Containing Carbon Ink. Anal. Lett. 1995, 28, 1131–1142. [Google Scholar] [CrossRef]
- Wang, J.; Fang, L.; Lopez, D. Amperometric biosensor for phenols based on a tyrosinase–graphite–epoxy biocomposite. Analyst 1994, 119, 455–458. [Google Scholar] [CrossRef] [PubMed]
- Nader, P.A.; Vives, S.S.; Mottola, H.A. Studies with a sulfite oxidase-modified carbon paste electrode for detection/determination of sulfite ion and SO2(g) in continuous-flow systems. J. Electroanal. Chem. Interfacial Electrochem. 1990, 284, 323–333. [Google Scholar] [CrossRef]
- Tan, H.-M.; Cheong, S.-P.; Tan, T.-C. An amperometric benzene sensor using whole cell Pseudomonas putida ML2. Biosensors Bioelectron. 1994, 9, 1–8. [Google Scholar] [CrossRef]
- Cheemalapati, S.; Palanisamy, S.; Chen, S.-M. A simple and sensitive electroanalytical determination of anxiolytic buspirone hydrochloride drug based on multiwalled carbon nanotubes modified electrode. J. Appl. Electrochem. 2013, 44, 317–323. [Google Scholar] [CrossRef]
- Baytak, A.K.; Aslanoglu, M. Decorating carbon nanotubes with nanoparticles of indium tin oxide for the voltammetric determination of metaproterenol. J. Electroanal. Chem. 2015, 757, 210–215. [Google Scholar] [CrossRef]
- Kutluay, A.; Aslanoglu, M. Nickel nanoparticles functionalized multi-walled carbon nanotubes at platinum electrodes for the detection of bromhexine. Sens. Actuators B Chem. 2014, 192, 720–724. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Karimi, F.; Alizadeh, M.; Sanati, A.L. Electrochemical Sensors, a Bright Future in the Fabrication of Portable Kits in Analytical Systems. Chem. Rec. 2019, 20, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Zheng, H.; Xing, Y.; Wang, C.; Yuan, X.; Zhu, X. A sensitive electrochemical sensor for environmental toxicity monitoring based on tungsten disulfide nanosheets/hydroxylated carbon nanotubes nanocomposite. Chemosphere 2022, 286, 131602. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tan, L.; Qu, K.; Cui, Z.; Wang, J. Novel electrochemical sensor modified with molecularly imprinted polymers for determination of enrofloxacin in marine environment. Microchim. Acta 2022, 189, 95. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Fu, L.; Chen, F.; Zhao, S.; Lai, G. Preparation of highly sensitive electrochemical sensor for detection of nitrite in drinking water samples. Environ. Res. 2022, 209, 112747. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.; Min, A.; Choi, M.Y. Fabrication of nonenzymatic electrochemical sensor based on Zn@ZnO core-shell structures obtained via pulsed laser ablation for selective determination of hydroquinone. Environ. Res. 2022, 204, 112340. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Xie, W.; Zhang, R.-L.; Wang, X.-D.; Liu, H.-F.; Li, J.; Sha, T.; Guo, X.-S.; Li, J.; Sun, Q.-M.; et al. Electrochemical sensor for human norovirus based on covalent organic framework/pillararene heterosupramolecular nanocomposites. Talanta 2022, 237, 122896. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.K.; Keerthi, M.; Sakthivel, R.; Dhawan, U.; Liu, X.; Chung, R.-J. Biocompatible Electrochemical Sensor Based on Platinum-Nickel Alloy Nanoparticles for In Situ Monitoring of Hydrogen Sulfide in Breast Cancer Cells. Nanomaterials 2022, 12, 258. [Google Scholar] [CrossRef]
- Ramírez-Chavarría, R.G.; Castillo-Villanueva, E.; Alvarez-Serna, B.E.; Carrillo-Reyes, J.; Ramírez-Zamora, R.M.; Buitrón, G.; Alvarez-Icaza, L. Loop-mediated isothermal amplification-based electrochemical sensor for detecting SARS-CoV-2 in wastewater samples. J. Environ. Chem. Eng. 2022, 10, 107488. [Google Scholar] [CrossRef]
- Zhu, C.; Xue, H.; Zhao, H.; Fei, T.; Liu, S.; Chen, Q.; Gao, B.; Zhang, T. A dual-functional polyaniline film-based flexible electrochemical sensor for the detection of pH and lactate in sweat of the human body. Talanta 2022, 242, 123289. [Google Scholar] [CrossRef] [PubMed]
- Yeasmin, S.; Wu, B.; Liu, Y.; Ullah, A.; Cheng, L.-J. Nano gold-doped molecularly imprinted electrochemical sensor for rapid and ultrasensitive cortisol detection. Biosens. Bioelectron. 2022, 206, 114142. [Google Scholar] [CrossRef]
- González-Fernández, E.; Staderini, M.; Marland, J.R.K.; Gray, M.E.; Uçar, A.; Dunare, C.; Blair, E.O.; Sullivan, P.; Tsiamis, A.; Greenhalgh, S.N.; et al. In vivo application of an implantable tri-anchored methylene blue-based electrochemical pH sensor. Biosens. Bioelectron. 2022, 197, 113728. [Google Scholar] [CrossRef]
- Fang, X.; Duan, R. Highly Sensitive Capsaicin Electrochemical Sensor Based on Bimetallic Metal-Organic Framework Nanocage. Front. Chem. 2022, 10, 822619. [Google Scholar] [CrossRef] [PubMed]
- Şenocak, A.; Sanko, V.; Tümay, S.O.; Orooji, Y.; Demirbas, E.; Yoon, Y.; Khataee, A. Ultrasensitive electrochemical sensor for detection of rutin antioxidant by layered Ti3Al0.5Cu0.5C2 MAX phase. Food Chem. Toxicol. 2022, 164, 113016. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Qin, Y.; Zhang, W.; Chen, F.; Zheng, L.; Xing, J.; Aihaiti, A.; Zhang, M. Amplified electrochemical sensor employing Ag NPs functionalized graphene paper electrode for high sensitive analysis of Sudan I. Food Chem. 2022, 371, 131204. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Bo, X. Laser-enabled flexible electrochemical sensor on finger for fast food security detection. J. Hazard. Mater. 2022, 423, 127014. [Google Scholar] [CrossRef]
- Kurbanoglu, S.; Ozkan, S.A. Electrochemical carbon based nanosensors: A promising tool in pharmaceutical and biomedical analysis. J. Pharm. Biomed. Anal. 2018, 147, 439–457. [Google Scholar] [CrossRef]
- Sanchez, F.; Sobolev, K. Nanotechnology in concrete—A review. Constr. Build. Mater. 2010, 24, 2060–2071. [Google Scholar] [CrossRef]
- Bhushan, B. Springer Handbook of Nanotechnology; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Pérez-López, B.; Merkoçi, A. Nanomaterials based biosensors for food analysis applications. Trends Food Sci. Technol. 2011, 22, 625–639. [Google Scholar] [CrossRef]
- Pandey, P.; Datta, M.; Malhotra, B.D. Prospects of Nanomaterials in Biosensors. Anal. Lett. 2008, 41, 159–209. [Google Scholar] [CrossRef]
- Petrie, A.A.; van der Ven, A.M.; Honek, J.F. Nanomaterial-based biosensors. In Biosensors and Their Applications in Healthcare; Future Science Group: London, UK, 2013; pp. 68–82. [Google Scholar] [CrossRef]
- Negahdary, M.; Angnes, L. Application of electrochemical biosensors for the detection of microRNAs (miRNAs) related to cancer. Coord. Chem. Rev. 2022, 464, 214565. [Google Scholar] [CrossRef]
- Pérez-Fernández, B.; de la Escosura-Muñiz, A. Electrochemical biosensors based on nanomaterials for aflatoxins detection: A review (2015–2021). Anal. Chim. Acta 2022, 1212, 339658. [Google Scholar] [CrossRef]
- Shrivastava, S.; Jadon, N.; Jain, R. Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: A. review. TrAC Trends Anal. Chem. 2016, 82, 55–67. [Google Scholar] [CrossRef]
- John, B. Polymer Nanocomposite-Based Electrochemical Sensors and Biosensors. In Nanorods and Nanocomposites; InTech Open: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Putzbach, W.; Ronkainen, N. Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review. Sensors 2013, 13, 4811–4840. [Google Scholar] [CrossRef] [PubMed]
- Batool, R.; Rhouati, A.; Nawaz, M.H.; Hayat, A.; Marty, J.L. A Review of the Construction of Nano-Hybrids for Electrochemical Biosensing of Glucose. Biosensors 2019, 9, 46. [Google Scholar] [CrossRef]
- Zhang, H.-W.; Li, H.-K.; Han, Z.-Y.; Yuan, R.; He, H. Incorporating Fullerenes in Nanoscale Metal–Organic Matrixes: An Ultrasensitive Platform for Impedimetric Aptasensing of Tobramycin. ACS Appl. Mater. Interfaces 2022, 14, 7350–7357. [Google Scholar] [CrossRef]
- Li, L.; Liu, X.; Su, B.; Zhang, H.; Li, R.; Liu, Z.; Chen, Q.; Huang, T.; Cao, H. An innovative electrochemical immunosensor based on nanobody heptamer and AuNPs@ZIF-8 nanocomposites as support for the detection of alpha fetoprotein in serum. Microchem. J. 2022, 179, 107463. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, R.; Sun, X.; Zaijun, L. Highly sensitive and selective electrochemical aptasensor with gold-aspartic acid, glycine acid-functionalized and boron-doped graphene quantum dot nanohybrid for detection of α-amanitin in blood. Anal. Chim. Acta 2022, 1219, 340033. [Google Scholar] [CrossRef]
- Filik, H.; Avan, A.A.; Özyürek, M. Electrochemical Immunosensors Based on Nanostructured Materials for Sensing of Prostate-Specific Antigen: A Review. Curr. Med. Chem. 2021, 28, 4023–4048. [Google Scholar] [CrossRef]
- Zhang, H.-W.; Zhu, Q.-Q.; Yuan, R.; He, H. Crystal engineering of MOF@COF core-shell composites for ultra-sensitively electrochemical detection. Sens. Actuators B Chem. 2021, 329, 129144. [Google Scholar] [CrossRef]
- Daniel, M.; Mathew, G.; Anpo, M.; Neppolian, B. MOF based electrochemical sensors for the detection of physiologically relevant biomolecules: An overview. Coord. Chem. Rev. 2022, 468, 214627. [Google Scholar] [CrossRef]
- Yan, T.; Wang, P.; Xu, Z.-H.; Sun, W.-Y. Copper(II) Frameworks with Varied Active Site Distribution for Modulating Selectivity of Carbon Dioxide Electroreduction. ACS Appl. Mater. Interfaces 2022, 14, 13645–13652. [Google Scholar] [CrossRef]
- Zhang, C.; Du, X. Electrochemical Sensors Based on Carbon Nanomaterial Used in Diagnosing Metabolic Disease. Front. Chem. 2020, 8, 651. [Google Scholar] [CrossRef]
- Gooding, J.J. Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing. Electrochim. Acta 2005, 50, 3049–3060. [Google Scholar] [CrossRef]
- Sims, M.J.; Li, Q.; Kachoosangi, R.T.; Wildgoose, G.G.; Compton, R.G. Using multiwalled carbon nanotube modified electrodes for the adsorptive striping voltammetric determination of hesperidin. Electrochim. Acta 2009, 54, 5030–5034. [Google Scholar] [CrossRef]
- Martinez, N.A.; Messina, G.A.; Bertolino, F.A.; Salinas, E.; Raba, J. Screen-printed enzymatic biosensor modified with carbon nanotube for the methimazole determination in pharmaceuticals formulations. Sens. Actuators B Chem. 2008, 133, 256–262. [Google Scholar] [CrossRef]
- Fanjul-Bolado, P.; Lamas-Ardisana, P.J.; Hernández-Santos, D.; Costa-García, A. Electrochemical study and flow injection analysis of paracetamol in pharmaceutical formulations based on screen-printed electrodes and carbon nanotubes. Anal. Chim. Acta 2009, 638, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Savk, A.; Özdil, B.; Demirkan, B.; Nas, M.S.; Calimli, M.H.; Alma, M.H.; Inamuddin; Asiri, A. M.; Şen, F. Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine, and ascorbic acid. Mater. Sci. Eng. C 2019, 99, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Dresselhaus, M.S.; Araujo, P.T. Perspectives on the 2010 Nobel Prize in Physics for Graphene. ACS Nano 2010, 4, 6297–6302. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, X.; Chen, P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 2012, 41, 2283–2307. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef]
- Pumera, M.; Ambrosi, A.; Bonanni, A.; Chng, E.L.K.; Poh, H.L. Graphene for electrochemical sensing and biosensing. TrAC Trends Anal. Chem. 2010, 29, 954–965. [Google Scholar] [CrossRef]
- Goenka, S.; Sant, V.; Sant, S. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release 2014, 173, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Artiles, M.S.; Rout, C.S.; Fisher, T.S. Graphene-based hybrid materials and devices for biosensing. Adv. Drug Del. Rev. 2011, 63, 1352–1360. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.; Berry, V. Graphene Interfaced with Biological Cells: Opportunities and Challenges. J. Phys. Chem. Lett. 2012, 3, 1024–1029. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.N.R.; Sood, A.K.; Voggu, R.; Subrahmanyam, K.S. Some Novel Attributes of Graphene. J. Phys. Chem. Lett. 2010, 1, 572–580. [Google Scholar] [CrossRef]
- Zheng, D.; Vashist, S.K.; Al-Rubeaan, K.; Luong, J.H.T.; Sheu, F.-S. Mediatorless amperometric glucose biosensing using 3-aminopropyltriethoxysilane-functionalized graphene. Talanta 2012, 99, 22–28. [Google Scholar] [CrossRef]
- Alwarappan, S.; Erdem, A.; Liu, C.; Li, C.-Z. Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications. J. Phys. Chem. C 2009, 113, 8853–8857. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Stozhko, N.Y.; Bukharinova, M.A.; Khamzina, E.I.; Tarasov, A.V. Electrochemical Properties of Phytosynthesized Gold Nanoparticles for Electrosensing. Sensors 2021, 22, 311. [Google Scholar] [CrossRef]
- Brainina, K.; Stozhko, N.; Bukharinova, M.; Vikulova, E. Nanomaterials: Electrochemical Properties and Application in Sensors. Phys. Sci. Rev. 2018, 3, 20188050. [Google Scholar] [CrossRef]
- Herrero-Calvillo, R.; Santoveña-Uribe, A.; Esparza, R.; Rosas, G. A photocatalytic and electrochemical study of gold nanoparticles synthesized by a green approach. Mater. Res. Express 2020, 7, 015019. [Google Scholar] [CrossRef]
- Paiva-Santos, A.C.; Herdade, A.M.; Guerra, C.; Peixoto, D.; Pereira-Silva, M.; Zeinali, M.; Mascarenhas-Melo, F.; Paranhos, A.; Veiga, F. Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications. Int. J. Pharm. 2021, 597, 120311. [Google Scholar] [CrossRef]
- Jadoun, S.; Arif, R.; Jangid, N.K.; Meena, R.K. Green synthesis of nanoparticles using plant extracts: A review. Environ. Chem. Lett. 2020, 19, 355–374. [Google Scholar] [CrossRef]
- Lee, K.X.; Shameli, K.; Yew, Y.P.; Teow, S.-Y.; Jahangirian, H.; Rafiee-Moghaddam, R.; Webster, T. Recent Developments in the Facile Bio-Synthesis of Gold Nanoparticles (AuNPs) and Their Biomedical Applications. Int. J. Nanomed. 2020, 15, 275–300. [Google Scholar] [CrossRef]
- Can, M. Green gold nanoparticles from plant-derived materials: An overview of the reaction synthesis types, conditions, and applications. Rev. Chem. Eng. 2020, 36, 859–877. [Google Scholar] [CrossRef]
- Hashmi, S.S.; Shah, M.; Muhammad, W.; Ahmad, A.; Ullah, M.A.; Nadeem, M.; Abbasi, B.H. Potentials of phyto-fabricated nanoparticles as ecofriendly agents for photocatalytic degradation of toxic dyes and waste water treatment, risk assessment and probable mechanism. J. Indian Chem. Soc. 2021, 98, 100019. [Google Scholar] [CrossRef]
- El-Borady, O.M.; Fawzy, M.; Hosny, M. Antioxidant, anticancer and enhanced photocatalytic potentials of gold nanoparticles biosynthesized by common reed leaf extract. Appl. Nanosci. 2021. [Google Scholar] [CrossRef]
- Dauthal, P.; Mukhopadhyay, M. Antioxidant activity of phytosynthesized biomatrix-loaded noble metallic nanoparticles. Chin. J. Chem. Eng. 2018, 26, 1200–1208. [Google Scholar] [CrossRef]
- Boomi, P.; Ganesan, R.; Prabu Poorani, G.; Jegatheeswaran, S.; Balakumar, C.; Gurumallesh Prabu, H.; Anand, K.; Marimuthu Prabhu, N.; Jeyakanthan, J.; Saravanan, M. Phyto-Engineered Gold Nanoparticles (AuNPs) with Potential Antibacterial, Antioxidant, and Wound Healing Activities Under in vitro and in vivo Conditions. Int. J. Nanomed. 2020, 15, 7553–7568. [Google Scholar] [CrossRef] [PubMed]
- Kalimuthu, K.; Cha, B.S.; Kim, S.; Park, K.S. Eco-friendly synthesis and biomedical applications of gold nanoparticles: A review. Microchem. J. 2020, 152, 104296. [Google Scholar] [CrossRef]
- Jena, B.K.; Raj, C.R. Optical sensing of biomedically important polyionic drugs using nano-sized gold particles. Biosensors Bioelectron. 2008, 23, 1285–1290. [Google Scholar] [CrossRef]
- Ozkan, S.A.; Uslu, B. From mercury to nanosensors: Past, present and the future perspective of electrochemistry in pharmaceutical and biomedical analysis. J. Pharm. Biomed. Anal. 2016, 130, 126–140. [Google Scholar] [CrossRef]
- Clark, H.A.; Hoyer, M.; Philbert, M.A.; Kopelman, R. Optical Nanosensors for Chemical Analysis inside Single Living Cells. 1. Fabrication, Characterization, and Methods for Intracellular Delivery of PEBBLE Sensors. Anal. Chem. 1999, 71, 4831–4836. [Google Scholar] [CrossRef] [PubMed]
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Van Duyne, R.P. Biosensing with plasmonic nanosensors. In Nanoscience and Technology; World Scientific: Singapore, 2009; pp. 308–319. [Google Scholar] [CrossRef]
- Patolsky, F.; Lieber, C.M. Nanowire nanosensors. Mater. Today 2005, 8, 20–28. [Google Scholar] [CrossRef]
- Wang, W.U.; Chen, C.; Lin, K.-h.; Fang, Y.; Lieber, C.M. Label-free detection of small-molecule–protein interactions by using nanowire nanosensors. Proc. Natl. Acad. Sci. USA 2005, 102, 3208–3212. [Google Scholar] [CrossRef] [PubMed]
- Pison, U.; Welte, T.; Giersig, M.; Groneberg, D.A. Nanomedicine for respiratory diseases. Eur. J. Pharmacol. 2006, 533, 341–350. [Google Scholar] [CrossRef] [PubMed]
Analytes | Receptor/Chemical Recognition System | Measurement Approach | Reference |
---|---|---|---|
Ions | Permselective, ion-conductive inorganic crystals, or biological ionophores enzyme(s) | Potentiometric | [7] |
Dissolved gases, vapors | Inert metal, enzyme(s), antibody, receptor | Amperometric or potentiometric | [8] |
Antibody/antigen | Antigen/antibody oligonucleotide duplex, aptamer enzyme-labeled | Amperometric, potentiometric, or conductometric | [9] |
Various proteins and low-molecular weight substrates | Specific ligands | Amperometric or potentiometric | [10] |
Measurement Category | Transducer | Transducer Analyte | Reference |
---|---|---|---|
Potentiometric | Ion-selective electrode (ISE), glass electrode, gas electrode, metal electrode | K+, Cl−, Ca2+, F−, H+, Na+, CO2, NH3 redox species | [25] |
Amperometric | Carbon electrode, chemically modified electrodes (CMEs) | O2, sugars, alcohols, phenols, oligonucleotides | [26] |
Conductometric | Interdigitated electrodes, metal electrode | Urea, charged species, oligonucleotides | [27] |
Target | Substrate | Immobilization Process | Detection Methods | Reference |
---|---|---|---|---|
DNA | Screen-printed electrode | Au nanoparticles/TFO probe/methylene blue/target DNA (ssDNA or dsDNA) | Cyclic voltammetry (CV)/square wave voltammetry (SWV) | [56] |
DNA | Platinum electrode | MoS2-polyaniline/ssDNA/methylene blue (MB) | CV/differential pulse voltammetry (DPV) | [57] |
Thrombin | Glassy-carbon electrode | Graphene oxide/MNP-TBA1 (magnetic nanoparticle thrombin-binding aptamer)/HAP-TBA2 (hydroxyapatite-TBA2) | CV/SWV | [58] |
Thrombin | Au electrode | Thiol-group/aptamer/tetra-ferrocene | DPV/electrochemical impedance spectroscopy (EIS) | [59] |
MMP-2 | Au electrode | Selenium/peptide/Na2MoO4/ssDNA | CV/EIS | [60] |
MMP-9 | Au electrode | L-cysteine/EDC/NHS/peptide/MB | CV | [61] |
Estrogen (ER alpha) | Screen-printed electrode | 5’-thiol-modified DNA aptamer/Tris-(2-carboxyethyl) phosphine hydrochloride | DPV | [62] |
Estrogen (17-β Estradiol) | Au electrode | 6-mercapto-1-hexanol (MCH)/aptamer-graphene | DPV/EIS | [63] |
Human chorionic gonadotropin (hCG) | Glassy-carbon electrode | Carbon nano-onions (CNOs)/gold nanoparticles (AuNPs)/polyethylene glycol (PEG) | CV/SWV | [64] |
Analyte | Recognition | Recognition Element | Detection Method | Reference |
---|---|---|---|---|
Uranium | Preconcentration | Nafion | Voltammetry | [102] |
Peroxides | Biocatalysis | Peroxidase | Amperometry | [103,104] |
Pesticides | Enzyme inhibition | Acetylcholinesterase choline oxidase | Amperometry | [103,104] |
Hydrazines | Electrocatalysis | Ruthenium catalyst | Amperometry | [105] |
Lead | Ion recognition | Macrocyclic ionophore | Potentiometry | [106] |
Mercury | Preconcentration | Crown ether | Voltammetry | [107] |
Nickel | Preconcentration | Dimethylglyoxine | Voltammetry | [108] |
Cyanide | Enzyme inhibition | Tyrosinase | Amperometry | [109] |
Nitrite | Preconcentration | Aliquat 336 ion exchanger | Voltammetry | [110] |
Nitrosamines | Electrocatalysis | Ruthenium catalyst | Amperometry | [111] |
Phenol | Biocatalysis | Tyrosinase | Amperometry | [112,113] |
Sulfite | Biocatalysis | Sulfite oxidase | Amperometry | [114] |
Benzene | Modulated-microbial activity | Whole-cell | Amperometry | [115] |
Class of Sensor | Electrode(s) Type | Application | Industry | Reference |
---|---|---|---|---|
Novel Cell-Based | Tungsten Disulfide Nanosheets/Hydroxylated Carbon Nanotube Nanocomposites | Environmental Toxicity Monitoring | Environment | [120] |
Molecular Imprinted | Multiwalled Carbon Nanotubes | Determination of Trace Enrofloxacin in Marine Environment Samples | Environment | [121] |
CeO2 Nanostructured | Graphite Sensors Modified by Cerium Oxide Nanoparticles (Cpe-Ceo2 Nps) | Detecting Diethylstilbestrol (DES) and 17Β-Estradiol (E2) in Environmental Samples | Environment | [122] |
Nonenzymatic | Zinc/Zinc Oxide Core–Shell Nanostructures | Determination of Hydroquinone | Medical | [123] |
Novel Sandwich-Type Biosensor | Magnetic Covalent Organic Framework/Pillararene Heterosupramolecular Nanocomposites | Human Norovirus (HuNOV) Detection | Medical | [124] |
Disposable | PtNi Alloy Nanoparticles | Monitoring of H2S Released by Human Breast Cancer Cells | Medical | [125] |
RT-LAMP | Screen-Printed Electrodes | Detect N and Orf1Ab Genes of the SARS-CoV-2 Genome | Medical | [126] |
Dual Functional | Macroscopic Polyaniline (PANI) | Detection of pH and Lactate in Sweat of the Human Body | Medical | [127] |
Molecularly Imprinted Polymer (Mip)-Based | Nano Gold-Doped Poly O-Phenylenediamine (Poly-O-Pd) Film | Rapid and Ultrasensitive Cortisol Detection | Medical | [128] |
Implantable Tri-Anchored Methylene Blue-Based pH | Chip-Based Ag/AgCl Reference Electrode | Real-Time Intratumoral Tissue pH Detection | Medical | [129] |
Capsaicin | Bimetallic Metal–Organic Framework Nanocage | Rapid Detection of Capsaicin | Food | [130] |
Ultrasensitive | Glassy-Carbon Electrode (GCE) | Determination of Rutin Antioxidants in Mandarin and Kiwi Samples | Food | [131] |
Amplified | Graphene Oxide (RGO) Paper Electrode Composed of Silver Nanoparticles | Detection of Sudan I in Chili Powder | Food | [132] |
Laser-Enabled Flexible | Flexible Graphene Electrodes (FGEs) | Fast Food Security Detection (Real-Time On-Site Identification of Chloramphenicol, Clenbuterol, and Ractopamine in Meat) | Food | [133] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical Sensors and Their Applications: A Review. Chemosensors 2022, 10, 363. https://doi.org/10.3390/chemosensors10090363
Baranwal J, Barse B, Gatto G, Broncova G, Kumar A. Electrochemical Sensors and Their Applications: A Review. Chemosensors. 2022; 10(9):363. https://doi.org/10.3390/chemosensors10090363
Chicago/Turabian StyleBaranwal, Jaya, Brajesh Barse, Gianluca Gatto, Gabriela Broncova, and Amit Kumar. 2022. "Electrochemical Sensors and Their Applications: A Review" Chemosensors 10, no. 9: 363. https://doi.org/10.3390/chemosensors10090363
APA StyleBaranwal, J., Barse, B., Gatto, G., Broncova, G., & Kumar, A. (2022). Electrochemical Sensors and Their Applications: A Review. Chemosensors, 10(9), 363. https://doi.org/10.3390/chemosensors10090363