Potentiometric Sensor Based on Layered Pillar[6]arene—Copper Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Apparatus
2.3. Preparation of Solid-Contact Potentiometric Sensors
2.4. Potentiometric Measurements
2.5. SPR Measurements
2.6. Real Sample Analysis
3. Results
3.1. Surface-Layer Assembly
3.2. SPR Measurements of the Layer-by-Layer Deposition of P[6]A and Cu2+
3.3. Scanning Electron and Atomic Force Microscopy
3.4. Determination of Cu2+ Ions
3.4.1. Selection of Measurement Conditions
3.4.2. Selectivity of the Signal toward Cu2+ Ions
3.4.3. Measurement Precision and Storage Conditions
3.5. Real Sample Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Cuartero, M.; Crespo, G.A. All-solid-state potentiometric sensors: A new wave for in situ aquatic research. Curr. Opin. Electrochem. 2018, 10, 98–106. [Google Scholar] [CrossRef]
- Shao, Y.; Ying, Y.; Pong, J. Recent advances in solid-contact ion-selective electrodes: Functional materials, transduction mechanisms, and development trends. Chem. Soc. Rev. 2020, 49, 4405–4465. [Google Scholar] [CrossRef] [PubMed]
- Sorvin, M.; Belyakova, S.; Stoikov, I.; Shamagsumova, R.; Evtugyn, G. Solid-contact potentiometric sensors and multisensors based on polyaniline and thiacalixarene receptors for the analysis of some beverages and alcoholic drinks. Front. Chem. 2018, 6, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, X.; Liu, Y.; Jiang, X.; Waterhouse, G.I.N.; Zhang, Z.; Yu, L. Improving the stability of Pb2+ ion-selective electrodes by using 3D polyaniline nanowire arrays as the inner solid-contact transducer. Electrochim. Acta 2021, 384, 138414. [Google Scholar] [CrossRef]
- Hassan, S.S.M.; Kamel, A.H.; Amr, A.E.-G.; Fathy, M.A.; Al-Omar, M.A. Paper strip and ceramic potentiometric platforms modified with nano-sized polyaniline (PANI) for static and hydrodynamic monitoring of chromium in industrial samples. Molecules 2020, 25, 629. [Google Scholar] [CrossRef] [Green Version]
- Michalska, A.; Wojciechowski, M.; Jędral, W.; Bulska, E.; Maksymiuk, K. Silver and lead all-plastic sensors—Polyaniline vs. poly(3,4-ethyledioxythiophene) solid contact. J. Solid-State Electrochem. 2009, 13, 99–106. [Google Scholar] [CrossRef]
- Jaworska, E.; Michalska, A.; Maksymiuk, K. Polypyrrole nanospheres—Electrochemical properties and application as a solid contact in ion-selective electrodes. Electroanalysis 2017, 29, 123–130. [Google Scholar] [CrossRef]
- De Oliveira, I.A.M.; Risco, D.; Vocanson, F.; Crespo, E.; Teixidor, F.; Zine, N.; Bausells, J.; Samitier, J.; Errachid, A. Sodium ion sensitive microelectrode based on a p-tert-butylcalix[4]arene ethyl ester. Sens. Actuators B 2008, 130, 295–299. [Google Scholar] [CrossRef]
- Sun, X.X.; Aboul-Enein, H.Y. Influence of anion doped polypyrrole film as ion-to-electron transducer on the response performance of internal solid contact potentiometric sensors. Intrument. Sci. Technol. 2009, 37, 164–188. [Google Scholar] [CrossRef]
- Yu, S.; Li, F.; Qin, W. An all-solid-state Cd2+-selective electrode with a low detection limit. Sens. Actuators B 2011, 155, 919–922. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, Z.; Liu, P. An all-solid-state NO3- ion-selective electrode with gold nanoparticles solid contact layer and molecularly imprinted polymer membrane. PLoS ONE 2020, 15, e0240173. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Anthis, A.H.C.; Afshar, M.G.; Pankratova, N.; Cuartero, M.; Crespo, G.A.; Bakker, E. All-solid-state potentiometric sensors with a multiwalled carbon nanotube inner transducing layer for anion detection in environmental samples. Anal. Chem. 2015, 87, 8640–8645. [Google Scholar] [CrossRef] [PubMed]
- Draz, M.E.; Naguib, I.A.; Saad, A.S. Computational ionophore selection during optimization of a portable calixarene based sensor for direct assay of levamisole residues in livestock products. J. Electroanal. Chem. 2021, 897, 115546. [Google Scholar] [CrossRef]
- Kamel, A.H.; Amr, A.E.-G.E.; Abdalla, N.S.; El-Naggar, M.; Al-Omar, M.A.; Alkahtani, H.M.; Sayed, A.Y.A. Novel solid-state potentiometric sensors using polyaniline (PANI) as a solid-contact transducer for flucarbazone herbicide assessment. Polymers 2019, 11, 1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussein, L.A.; Magdy, N.; Yamani, H.Z. Stable glycopyrronium bromide solid contact ion selective potentiometric sensors using multi-walled carbon nanotubes, polyaniline nanoparticles and polyaniline microparticles as ion-to-electron transducers: A comparative study. Sens. Actuators B 2017, 247, 436–444. [Google Scholar] [CrossRef]
- Elghobashy, M.R.; Mahmoud, A.M.; Rezk, M.R.; El-Rahman, M.K.A. Strategy for fabrication of stable tramadol solid-contact ion-selective potentiometric sensor based on polyaniline nanoparticles. J. Electrochem. Soc. 2014, 162, H1–H5. [Google Scholar] [CrossRef]
- Hashemi, F.; Zanganeh, A.R. Electrochemically induced regioregularity of the binding sites of a polyaniline membrane as a powerful approach to produce selective recognition sites for silver ion. J. Electroanal. Chem. 2016, 767, 24–33. [Google Scholar] [CrossRef]
- Lakard, B.; Magnin, D.; Deschaume, O.; Vanlancker, G.; Glinel, K.; Demoustier-Champagne, S.; Nysten, B.; Bertrand, P.; Yunus, S.; Jonas, A.M. Optimization of the structural parameters of new potentiometric pH and urea sensors based on polyaniline and a polysaccharide coupling layer. Sens. Actuators B 2012, 166, 794–801. [Google Scholar] [CrossRef]
- Lange, U.; Roznyatovskaya, N.V.; Mirsky, V.M. Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta 2008, 614, 1–26. [Google Scholar] [CrossRef]
- Ogoshi, T.; Yamagishi, T.-A. Pillararenes: Versatile synthetic receptors for supramolecular chemistry. Eur. J. Org. Chem. 2013, 15, 2961–2975. [Google Scholar] [CrossRef]
- Sun, J.; Guo, F.; Shi, Q.; Wu, H.; Sun, Y.; Chen, M.; Diao, G. Electrochemical detection of paraquat based on silver nanoparticles/water-soluble pillar[5]arene functionalized graphene oxide modified glassy carbon electrode. J. Electroanal. Chem. 2019, 847, 113221. [Google Scholar] [CrossRef]
- Dube, L.E.; Patel, B.A.; Fagan-Murphy, A.; Kothur, R.R.; Cragg, P.J. Detection of clinically important cations by a pillar[5]arene modified electrochemical sensor. Chem. Sens. 2013, 3, 18. [Google Scholar]
- Stoikova, E.E.; Sorvin, M.I.; Shurpik, D.N.; Budnikov, H.C.; Stoikov, I.I.; Evtugyn, G.A. Solid-contact potentiometric sensor based on polyaniline and unsubstituted pillar[5]arene. Electroanalysis 2015, 27, 440–449. [Google Scholar] [CrossRef]
- Kothur, R.R.; Hall, J.; Patel, B.A.; Leong, C.L.; Boutelle, M.G.; Cragg, P.J. A low pH sensor from an esterified pillar[5]arene. Chem. Commun. 2014, 50, 852–854. [Google Scholar] [CrossRef] [PubMed]
- Dehabadi, M.; Yemisci, E.; Kursunlu, A.N.; Kirsanov, D. Novel pillar[5]arenes show high cross-sensitivity in PVC-plasticized membrane potentiometric sensors. Chemosensors 2022, 10, 420. [Google Scholar] [CrossRef]
- Acikbas, Y.; Aksoy, M.; Aksoy, M.; Karaagac, D.; Bastug, E.; Kursunlu, A.N.; Erdogan, M.; Capan, R.; Ozmen, M.; Ersoz, M. Recent progress in pillar[n]arene-based thin films on chemical sensor applications. J. Incl. Phenom. Macrocycl. Chem. 2021, 100, 39–54. [Google Scholar] [CrossRef]
- Evtyugin, G.A.; Shurpik, D.N.; Stoikov, I.I. Electrochemical sensors and biosensors on the pillar[5]arene platform. Russ. Chem. Bull. 2020, 69, 859–874. [Google Scholar] [CrossRef]
- Shamagsumova, R.V.; Shurpik, D.N.; Kuzin, Y.I.; Stoikov, I.I.; Rogov, A.M.; Evtugyn, G.A. Pillar[6]arene: Electrochemistry and application in electrochemical (bio)sensors. J. Electroanal. Chem. 2022, 913, 116281. [Google Scholar] [CrossRef]
- Cao, D.; Kou, Y.; Liang, J.; Chen, Z.; Wang, L.; Meier, H. A facile and efficient preparation of pillararenes and a pillarquinone. Angew. Chem. Int. Ed. 2009, 48, 9721–9723. [Google Scholar] [CrossRef] [PubMed]
- Umezawa, Y.; Umezawa, K.; Sato, H. Selectivity coefficients for ion-selective electrodes: Recommended methods for reporting KA,Bpot values (Technical Report). Pure Appl. Chem. 1995, 67, 507–518. [Google Scholar] [CrossRef]
- Buck, R.P.; Linder, E. Recommendations for nomenclature of ion-selective electrodes (IUPAC Recommendations 1994). Pure Appl. Chem. 1994, 66, 2527–2536. [Google Scholar] [CrossRef]
- Ivanov, A.N.; Kuzin, Y.I.; Evtugyn, G.A. SPR sensor based on polyelectrolyte complexes with DNA inclusion. Sens. Actuators B 2019, 281, 574–581. [Google Scholar] [CrossRef]
- Otero, T.F.; Martinez, J.G. Electro-chemo-biomimetics from conducting polymers: Fundamentals, materials, properties and devices. J. Mater. Chem. B 2016, 4, 2069–2085. [Google Scholar] [CrossRef] [PubMed]
- Prakash, R. Electrochemistry of polyaniline: Study of the pH effect and electrochromism. J. Appl. Polymer Sci. 2002, 83, 378–385. [Google Scholar] [CrossRef]
- Evtugyn, G.A.; Shamagsumova, R.V.; Stoikova, E.E.; Sitdikov, R.R.; Stoikov, I.I.; Budnikov, H.C.; Ivanov, A.N.; Antipin, I.S. Potentiometric sensors based on polyaniline and thiacalixarenes for green tea discrimination. Electroanalysis 2011, 23, 1081–1088. [Google Scholar] [CrossRef]
- Evtugyn, G.A.; Stoikov, I.I.; Belyakova, S.V.; Stoikova, E.E.; Shamagsumova, R.V.; Zhukov, A.Y.; Antipin, I.S.; Budnikov, H.C. Selectivity of solid-contact Ag potentiometric sensors based on thiacalix[4]arene derivatives. Talanta 2008, 76, 441–447. [Google Scholar] [CrossRef]
- Andac, M.; Coldur, F.; Bilir, S.; Birinci, A.; Demir, S.; Uzun, H. Solid-contact polyvinyl chloride membrane electrode based on the bis[2-(hydroxyethylimino)phenolato]copper(II) complex for trace level determination of copper ions in wastewater. Can. J. Chem. 2014, 92, 324–328. [Google Scholar] [CrossRef]
- Tutulea-Anastasiu, M.D.; Wilson, D.; del Valle, M.; Schreiner, C.M.; Cretescu, I. A solid-contact ion selective electrode for copper(II) using a succinimide derivative as ionophore. Sensors 2013, 13, 4367–4377. [Google Scholar] [CrossRef] [Green Version]
- Birinci, A.; Eren, H.; Coldur, F.; Coskun, E.; Andac, M. Rapid determination of trace level copper in tea infusion samples by solid contact ion selective electrode. J. Food Drug Anal. 2016, 24, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Faridbod, F.; Davarkhah, N.; Beikzadeh, M.; Yekefallah, M.; Rezapour, M. Cu2+ -selective sensors based on a new ion-carrier and their application for the analysis of copper content of water samples. Int. J. Electrochem. Sci. 2017, 12, 876–889. [Google Scholar] [CrossRef]
- Ghaedi, M.; Naderi, S.; Montazerozohori, M.; Taghizadeh, F.; Asghari, A. Chemically modified multiwalled carbon nanotube carbon paste electrode for copper determination. Arab. J. Chem. 2017, 10, S2934–S2943. [Google Scholar] [CrossRef]
- Pietrzak, K.; Wardak, C.; Cristóvão, B. Copper ion-selective electrodes based on newly synthesized salentype Schif bases and their complexes. Ionics 2022, 28, 2423–2435. [Google Scholar] [CrossRef]
- Kamel, A.H.; Amr, A.E.-G.E.; Almehizia, A.A.; Elsayedef, E.A.; Moustafa, G.O. Low-cost potentiometric paper-based analytical device based on newly synthesized macrocyclic pyrido-pentapeptide derivatives as novel ionophores for point-of-care copper(II) determination. RSC Adv. 2021, 11, 27174. [Google Scholar] [CrossRef] [PubMed]
- El Badry, M.M.; Frag, E.Y.; El Brawy, M.H. Rapid potentiometric sensor for determination of Cu(II) ions in food samples. Microchem. J. 2021, 164, 106065. [Google Scholar] [CrossRef]
- Smolko, V.A.; Shurpik, D.N.; Shamagsumova, R.V.; Porfireva, A.V.; Evtugyn, V.G.; Yakomova, L.S.; Stoikov, I.I.; Evtugyn, G.A. Electrochemical behavior of pillar[5]arene on glassy carbon electrode and its interaction with Cu2+ and Ag+ ions. Electrochim. Acta 2014, 147, 726–734. [Google Scholar] [CrossRef]
- Porfireva, A.V.; Gorbatchuk, V.V.; Evtugyn, V.G.; Stoikov, I.I.; Evtugyn, G.A. Glassy carbon electrode modified with silver nanodendrites implemented in polylactide-thiacalix[4]arene copolymer for the electrochemical determination of tryptophan. Electroanalysis 2018, 30, 641–649. [Google Scholar] [CrossRef]
Number of Layers | E, mV = a + b × pC, M | Concentration Range, M | LOD, M | |||
---|---|---|---|---|---|---|
a ± ∆a | b ± ∆b | n | R2 | |||
3 | 344 ± 5 | −20.0 ± 1.5 | 10 | 0.9538 | 1 × 10−5–1 × 10−2 | 7 × 10−6 |
5 | 376 ± 4 | −30.7 ± 1.1 | 11 | 0.9870 | 3 × 10−6–1 × 10−2 | 2 × 10−6 |
7 | 377 ± 6 | −29.4 ± 7.7 | 8 | 0.9759 | 2 × 10−4–1 × 10−2 | 1 × 10−4 |
9 | 293 ± 3 | −11.5 ± 0.7 | 11 | 0.90667 | 1 × 10−6–2 × 10−3 | 8 × 10−7 |
Nature of Upper Layer a | E, mV = a + b × pC, M | Concentration Range, M | LOD, M | |||
---|---|---|---|---|---|---|
a ± ∆a | b ± ∆b | n | R2 | |||
1 | 376 ± 4 | −30.7 ± 1.1 | 11 | 0.9870 | 5 × 10−6–1 × 10−2 | 3 × 10−6 |
2 | 392 ± 7 | −30.4 ± 2.2 | 7 | 0.9685 | 1 × 10−4–1 × 10−2 | 5 × 10−3 |
3 | 388 ± 7 | −31.3 ± 2.8 | 5 | 0.9698 | 5 × 10−4–1 × 10−2 | 2 × 10−4 |
4 | 329 ± 5 | −18.1 ± 1.2 | 11 | 0.9555 | 5 × 10−6–1 × 10−2 | 2 × 10−6 |
5 | 383 ± 6 | −29.7 ± 1.8 | 9 | 0.9718 | 2 × 10−5–1 × 10−2 | 1 × 10−5 |
Ionophore/Carrier | Conc. Range, M | LOD, M | Ref. |
---|---|---|---|
Bis[(2-(hydroxyethylimino)phenolato)] Cu(II)/PVC | 1.0 × 10−6–1.0 ×10−1 | 8.3 × 10−7 | [37] |
N-hydroxysuccinimide/PVC | 1.0 × 10−4–1.0 × 10−2 | 4.4 × 10−6 | [38] |
o-Xylylenebis(N,N-diisobutyldithiocarbamate)/PVC | 1.0 × 10−6–1.0 × 10−1 | 4.9 × 10−7 | [39] |
4-(2-hydroxy-benzylideneamino)-5-phenyl-4H-1,2,4-triazole-3-thiol/PVC | 1.0 × 10−6–1.0 × 10−2 | - | [40] |
Carbon nanotubes, Ag nanoparticles/graphite/Nujol | 5.0 × 10−7–1.0 × 10−1 | 2.5 × 10−7 | [41] |
N,N′-bis(5-bromo-2-hydroxy-3-methoxybenzylidene)2-hydroxypropylene-1,3-diamine/PVC on Ag/AgCl | 1.0 × 10−6–1.0 × 10−2 | 6.2 × 10−7 | [42] |
Macrocyclic pyrido-pentapeptide derivatives/carbon ink/paper | 5.0 × 10−7–1.0 × 10−3 | 8 × 10−8 | [43] |
2-(3-Phenoxy phenyl) propanoic acid/carbon paste | 1.0 × 10−6–1.0 × 10−2 | 6.2 × 10−7 | [44] |
P[6]A–Cu2+ alternating layers/polyaniline/GCE | 3 × 10−6–1 × 10−2 | 2 × 10−6 | This work |
Interfering Ion | H2O | HNO3 | Interfering Ion | H2O | HNO3 |
---|---|---|---|---|---|
Na+ | −1.03 | −2.30 (−0.30) | Co2+ | −2.76 | −3.53 (−2.53) |
K+ | −1.64 | −1.64 (−0.05) | Ni2+ | −1.72 | −2.69 (−2.24) |
Mg2+ | −2.15 | −2.65 (−0.45) | Zn2+ | −1.75 | −2.70 (−1.35) |
Ca2+ | −1.91 | −2.58 (−0.52) | Cd2+ | −2.35 | −2.63 (−1.50) |
Ba2+ | −1.98 | −2.63 (−0.30) | Fe3+ | 7.56 | 6.54 (3.54) |
NH4+ | −2.18 | −3.77 (−3.02) | Ag+ | 8.57 | 7.72 (4.25) |
Sample | Cu2+ Concentration, mM | |
---|---|---|
Potentiometric Sensor | AES | |
Copper vitriol | 0.72 ± 0.05 | 0.75 ± 0.01 |
Bordeaux mixture | 0.67 ± 0.04 | 0.70 ± 0.02 |
“Complivit” | 0.95 ± 0.04 | 0.94 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorvin, M.; Galimzyanova, G.; Evtugyn, V.; Ivanov, A.; Shurpik, D.; Stoikov, I.; Evtugyn, G. Potentiometric Sensor Based on Layered Pillar[6]arene—Copper Composite. Chemosensors 2023, 11, 12. https://doi.org/10.3390/chemosensors11010012
Sorvin M, Galimzyanova G, Evtugyn V, Ivanov A, Shurpik D, Stoikov I, Evtugyn G. Potentiometric Sensor Based on Layered Pillar[6]arene—Copper Composite. Chemosensors. 2023; 11(1):12. https://doi.org/10.3390/chemosensors11010012
Chicago/Turabian StyleSorvin, Michail, Guzeliya Galimzyanova, Vladimir Evtugyn, Alexey Ivanov, Dmitry Shurpik, Ivan Stoikov, and Gennady Evtugyn. 2023. "Potentiometric Sensor Based on Layered Pillar[6]arene—Copper Composite" Chemosensors 11, no. 1: 12. https://doi.org/10.3390/chemosensors11010012
APA StyleSorvin, M., Galimzyanova, G., Evtugyn, V., Ivanov, A., Shurpik, D., Stoikov, I., & Evtugyn, G. (2023). Potentiometric Sensor Based on Layered Pillar[6]arene—Copper Composite. Chemosensors, 11(1), 12. https://doi.org/10.3390/chemosensors11010012