Rapid Gas-Sensing Detection of Carbon Disulfide by a CdS/SnS Nanocomposite-Based Cataluminescence Sensor
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Test Reagents
2.2. Main Analytical Instruments
2.3. Preparation of Nanocomposites
2.4. CTL Device and Detection Method
3. Results and Discussion
3.1. Material Characterization
3.2. Effect of CdS Modification on SnS CTL Performance
3.3. Effect of Working Temperature on CTL Intensity
3.4. Effect of Carrier Air Velocity on CTL Intensity
3.5. The Correspondence between the CTL Intensity and the Concentration of the Analyte
3.6. Selectivity and Lifetime of the Sensor
3.7. Mechanism Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colin, R.; Stewart, A.R.; West, J.; Williams, B.P.; Graham, J.H. The Low-temperature Hydrolysis of Carbonyl Sulfide and Carbon Disulfide: A Review. Catal. Today 2000, 59, 443–464. [Google Scholar]
- Wrońska-Nofer, T.; Nofer, J.-R.; Stetkiewicz, J.; Wierzbicka, M.; Bolinska, H.; Fobker, M.; Schulte, H.; Assmann, G.; von Eckardstein, A. Evidence for Oxidative Stress at Elevated Plasma Thiol Levels in Chronic Exposure to Carbon Disulfide (CS2) and Coronary Heart Disease. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 546–553. [Google Scholar] [CrossRef]
- Xia, G.; Zhou, X.; Hu, J.; Sun, Z.; Yao, J.; Chen, D.; Wang, J. Study on Carbon Disulfide in Waste Gas from Viscose Fiber Production by Liquid Absorption Method. Text. Res. 2021, 5, 52–54. [Google Scholar]
- Beauchamp, R.O.; James, S.B.; James, A.P.; Craig, J.B.; Leon, G.; Michael, J.M. A Critical Review of the Literature on Carbon Disulfide Toxicity. Crit. Rev. Toxicol. 1983, 11, 169–278. [Google Scholar] [PubMed]
- Graham, D.G.; Amarnath, V.; Valentine, W.M.; Pyle, S.J.; Anthony, D.C. Pathogenetic Studies of Hexane and Carbon Disulfide Neurotoxicity. Crit. Rev. Toxicol. 1995, 25, 91–112. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.; Youn, K.; Kim, K.; Park, K. Carbon Disulfide Exposure Estimate and Prevalence of Chronic Diseases after Carbon Disulfide Poisoning-related Occupational Diseases. Ann. Occup. Environ. Med. 2017, 29, 52. [Google Scholar] [CrossRef] [Green Version]
- Clark, P.; Dowling, N.I.; Huang, M. Conversion of CS2 and COS over Alumina and Titania Under Claus Process Conditions: Reaction with H2O and SO2. Appl. Catal. B Environ. 2001, 31, 107–112. [Google Scholar] [CrossRef]
- Kataoka, H.; Imamura, Y.; Tanaka, H.; Makit, M. Determination of Trace Thiophene and Carbon Disulfide in Benzene by Flame Photometric Gas Chromatography. Chin. J. Anal. Chem. 1975, 6, 31–35. [Google Scholar]
- Tang, Y.; Chen, J.; Wu, H.; Yu, J.; Jia, J.; Xu, W.; Fu, Y.; He, Q.; Cao, H.; Cheng, J. Fluorescent Detection of Carbon Disulfide by a Highly Emissive and Robust Isoreticular Series of Zr-Based Luminescent Metal Organic Frameworks (LMOFs). Chemistry 2021, 3, 327–337. [Google Scholar]
- Du, Z.; Li, J.; Cao, X.; Gao, H.; Ma, Y. High-sensitive Carbon Disulfide Sensor using Wavelength Modulation Spectroscopy in the Mid-infrared Fingerprint Region. Sens. Actuators B Chem. 2017, 247, 384–391. [Google Scholar] [CrossRef]
- Johannes, P.W.; Moser, H.; Lendl, B. Compact Quantum Cascade Laser Based Quartz-enhanced Photoacoustic Spectroscopy Sensor System for Detection of Carbon Disulfide. Opt. Express 2016, 24, 6559–6571. [Google Scholar]
- Wang, L. Study on the Detection Method of Carbon Disulfide Based on Ultraviolet Absorption Spectroscopy. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2019. [Google Scholar]
- Tan, W.; Tan, J.; Fan, L.; Yu, Z.; Qian, J.; Huang, X. Fe2O3-loaded NiO Nanosheets for Fast Response/recovery and High Response Gas Sensor. Sens. Actuators B Chem. 2018, 256, 282–293. [Google Scholar] [CrossRef]
- Ali, F.I.M.; Awwad, F.; Greish, Y.E.; Abu-Hani, A.F.S.; Mahmoud, S.T. Fabrication of Low Temperature and Fast Response H2S Gas Sensor Based on Organic-metal Oxide Hybrid Nanocomposite Membrane. Org. Electron. 2020, 76, 105486–105494. [Google Scholar] [CrossRef]
- Sajin, K.; Cui, L.; Murray, E.; Mainardi, D. Kinetics of Nitric Oxide and Oxygen Gases on Porous Y-Stabilized ZrO2-Based Sensors. Molecules 2013, 18, 9901–9918. [Google Scholar]
- Zhang, R.; Wang, D.; Wu, Y.; Hu, Y.; Chen, J.; He, J.; Wang, J. A Cataluminescence Sensor Based on NiO Nanoparticles for Sensitive Detection of Acetaldehyde. Molecules 2020, 25, 1097. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Shi, J.; Zhang, Z.; Zhang, C.; Zhang, X. Development of a Gas Sensor Utilizing Chemiluminescence on Nanosized Titanium Dioxide. Anal. Chem. 2002, 74, 120–124. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, L.; Lv, Y. Recent Advances in Cataluminescence Gas Sensor: Materials and Methodologies. Appl. Spectrosc. Rev. 2019, 54, 306–324. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, Z.; Zhang, L.; Lin, Y.; Lu, C. Recent Advances in Cataluminescence-based Optical Sensing Systems. Analyst 2017, 142, 1415–1428. [Google Scholar] [CrossRef]
- Gupta, Y.; Chhaya, R.; Arun, P. Mitigating Reasons for the Poor Performance of n-CdS/p-SnS Solar Cells. Glob. Chall. 2018, 2, 1800017. [Google Scholar] [CrossRef]
- Gedi, S.; Reddy, V.R.M.; Pejjai, B.; Jeon, C.W.; Park, C.; Reddy, R.K.T. SnS Thin Film Solar Cells With Zn[1−x]MgxO Buffer Layers. Appl. Phys. Lett. 2013, 102, 193901. [Google Scholar]
- Vera, S.; Jaramillo, R.; Katy, H.; Rupak, C.; Riley, E.B.; Jeremy, R.P.; Lee, Y.S.; Sun, L.; Alexander, P.; Park, H.H.; et al. 3.88% Efficient Tin Sulfide Solar Cells using Congruent Thermal Evaporation. Adv. Mater. 2014, 26, 7488–7492. [Google Scholar]
- Prasert, S.; Sun, L.; Lee, S.W.; Park, H.H.; Kim, S.B.; Yang, C.; Roy, G.G. Overcoming Efficiency Limitations of SnS-Based Solar Cells. Adv. Energy Mater. 2014, 4, 1400496. [Google Scholar]
- Reddy, K.T.R.; Reddy, N.K.; Miles, R.W. Photovoltaic Properties of SnS Based Solar Cells. Sol. Energy 2006, 90, 3041–3046. [Google Scholar]
- Feng, J.; Li, X.; Zhu, G.; Wang, Q. Emerging High-Performance SnS/CdS Nanoflowers Heterojunction for Ultrafast Photonics. ACS Appl. Mater. 2020, 12, 43098–43105. [Google Scholar] [CrossRef] [PubMed]
- Arulanantham, A.M.S.; Valanarasu, S.; Kathalingam, A.; Shkir, M.; Kim, H.S. Influence of Substrate Temperature on the SnS Absorber Thin Films and SnS/CdS Heterostructure Prepared Through Aerosol Assisted Nebulizer Spray Pyrolysis. Mater. Res. Express 2019, 6, 026412. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, J.; Wu, F.; Tian, W.; Zhai, W. Structural Design and Pyroelectric Property of SnS/CdS Heterojunctions Contrived for Low-Temperature Visible Photodetectors. Adv. Funct. Mater. 2020, 30, 2001450. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Wang, X.; Wang, X.; Flahaut, E.; Liu, X.; Li, Y.; Wang, X.; Xu, Y.; Shi, Y.; et al. Planar Carbon Nanotube-graphene Hybrid Films for High-performance Broadband Photodetectors. Nat. Commun. 2015, 6, 8589–8596. [Google Scholar] [CrossRef] [Green Version]
- Lim, D.; Suh, H.; Mahesh, S.; Song, G.Y.; Cho, J.Y.; Kim, J.H.; Jang, J.H.; Jeon, C.W.; Cho, A.; Ahn, S.; et al. Kinetically Controlled Growth of Phase-Pure SnS Absorbers for Thin Film Solar Cells: Achieving Efficiency Near 3% with Long-Term Stability Using an SnS/CdS Heterojunction. Adv. Energy Mater. 2018, 8, 1702605. [Google Scholar] [CrossRef]
- Ai, J.; Lei, Y.; Yang, S.; Lai, C.; Xu, Q. SnS Nanoparticles Anchored on Ti3C2 Nanosheets Matrix via Electrostatic Attraction Method as Novel Anode for Lithium Ion Batteries. Chem. Eng. 2019, 357, 150–158. [Google Scholar] [CrossRef]
- Wang, H.; Shi, X.; Liu, F.; Duan, T.; Sun, B. Non-Invasive Rapid Detection of Lung Cancer Biomarker Toluene with a Cataluminescence Sensor Based on the Two-Dimensional Nanocomposite Pt/Ti3C2Tx-CNT. Chemosensors 2022, 10, 333. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, B.; Hu, L.; Xu, Q.; Li, Y.; Liu, D.; Xu, M. Synthesis of SnS Nanoparticle-Modified MXene (Ti3C2Tx) Composites for Enhanced Sodium Storage. J. Alloy. Compd. 2018, 732, 448–453. [Google Scholar] [CrossRef]
- Fan, S.; Yang, H.; Qian, J.; Rahman, M.M.; Ajayan, P.M.; Sun, D. Free-standing SnS/carbonized Cellulose Film as Durable Anode for Lithium-ion Batteries. Carbohydr. Polym. 2020, 255, 117–400. [Google Scholar]
- Faruk, B. Tin Sulfide (SnS) Thin-film Solar Cells Deposited by Organic Chemical Vapor Sulfurization Based on CdS and High Transmittance Cd (S,O) n-type Layers with the Superstrate Device Structure. MRS Commun. 2020, 10, 660–666. [Google Scholar]
- Qin, W.; Yuan, Z.; Shen, Y.; Zhang, R.; Meng, F. Phosphorus-doped Porous Perovskite LaFe1−xPxO3−δ Nanosheets with Rich Surface Oxygen Vacancies for ppb Level Acetone Sensing at Low Temperature. Chem. Eng. J. 2022, 431, 134–280. [Google Scholar] [CrossRef]
- Anfimov, N.; Fedoseev, D.; Rybnikov, A.; Selyunin, A.; Sokolov, S.; Sotnikov, A. Study of Silicon Photomultiplier Performance at Different Temperatures. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2021, 997, 165162. [Google Scholar] [CrossRef]
- Meng, F.; Zhang, J.; Zhu, H.; Yuan, Z.; Liu, C.; Qin, W.; Ding, M. MoS2 -Templated Porous Hollow MoO3 Microspheres for Highly Selective Ammonia Sensing via a Lewis Acid-Base Interaction. IEEE Trans. Ind. Electron. 2022, 69, 960–970. [Google Scholar] [CrossRef]
- Zheng, H.; Chang, Y.; Zhao, Y.; Li, M.; Wang, C.; Sun, Y.; Liu, J. One-Step Synthesis of Au/SnO2/RGO Nanocomposites and Their VOC Sensing Properties. IEEE Trans. Nanotechnol. 2018, 17, 212–219. [Google Scholar]
- Zhou, K.; Ji, X.; Zhang, N.; Zhang, X. On-line Monitoring of Formaldehyde in Air by Cataluminescence-based Gas Sensor. Sens. Actuators B Chem. 2006, 119, 392–397. [Google Scholar] [CrossRef]
- Meng, F.; Li, X.; Yuan, Z.; Lei, Y.; Qi, T.; Li, J. Ppb-Level Xylene Gas Sensors Based on Co3O4 Nanoparticle-Coated Reduced Graphene Oxide (rGO) Nanosheets Operating at Low Temperature. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Qin, W.; Yuan, Z.; Shen, Y.; Zhang, R.; Meng, F. Perovskite-structured LaCoO3 Modified ZnO Gas Sensor and Investigation on its Gas Sensing Mechanism by First Principle. Sens. Actuators B Chem. 2021, 341, 130–150. [Google Scholar] [CrossRef]
- Ji, H.; Qin, W.; Yuan, Z.; Meng, F. Qualitative and Quantitative Recognition Method of Drug-producing Chemicals Based on SnO2 Gas Sensor with Dynamic Measurement and PCA Weak Separation. Sens. Actuators B Chem. 2021, 348, 130–698. [Google Scholar] [CrossRef]
- Li, J.; Hu, J.; Yan, S.; Xue, Y.; Tang, S.; Zhang, L.; Lv, Y. A Novel H2S Cataluminescence Sensor Based on ZnMn2O4 Nanoparticles. Microchem. J. 2022, 172, 106990. [Google Scholar]
Element | Weight % | Atomic % |
---|---|---|
C | 0.34 | 16.95 |
O | 0.74 | 28.73 |
S | 0.70 | 29.75 |
Cd | 0.67 | 7.23 |
Sn | 2.57 | 17.34 |
Total | — | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, B.; Shi, G.; Tang, Z.; Zhang, P.; Guo, Y.; Zhu, S.; Liu, J. Rapid Gas-Sensing Detection of Carbon Disulfide by a CdS/SnS Nanocomposite-Based Cataluminescence Sensor. Chemosensors 2023, 11, 10. https://doi.org/10.3390/chemosensors11010010
Sun B, Shi G, Tang Z, Zhang P, Guo Y, Zhu S, Liu J. Rapid Gas-Sensing Detection of Carbon Disulfide by a CdS/SnS Nanocomposite-Based Cataluminescence Sensor. Chemosensors. 2023; 11(1):10. https://doi.org/10.3390/chemosensors11010010
Chicago/Turabian StyleSun, Bai, Guoji Shi, Zhuo Tang, Pengyu Zhang, Yuxian Guo, Shuguang Zhu, and Jinyun Liu. 2023. "Rapid Gas-Sensing Detection of Carbon Disulfide by a CdS/SnS Nanocomposite-Based Cataluminescence Sensor" Chemosensors 11, no. 1: 10. https://doi.org/10.3390/chemosensors11010010
APA StyleSun, B., Shi, G., Tang, Z., Zhang, P., Guo, Y., Zhu, S., & Liu, J. (2023). Rapid Gas-Sensing Detection of Carbon Disulfide by a CdS/SnS Nanocomposite-Based Cataluminescence Sensor. Chemosensors, 11(1), 10. https://doi.org/10.3390/chemosensors11010010