Solvent Effect on the Synthesis of Oleylamine Modified Au Nanoparticles and Their Self-Assembled Film for SERS Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Au Nanoparticles
2.3. Self-Assembly Au Nanoparticle Film for SERS Substrate
2.4. Instrumentation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dos Santos, D.P.; Temperini, M.L.A.; Brolo, A.G. Intensity fluctuations in single-molecule surface-enhanced Raman scattering. Acc. Chem. Res. 2019, 52, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Jing, Z.-Y.; Zhang, L.; Xu, X.-F.; Zhu, S.-L.; Zeng, H.-P. Carbon-assistant nanoporous gold for surface-enhanced Raman scattering. Nanomaterials 2022, 12, 1455. [Google Scholar] [CrossRef] [PubMed]
- Guhlke, M.; Heiner, Z.; Kneipp, J. Surface-enhanced Raman and surface-enhanced hyper-Raman scattering of thiol-functionalized carotene. J. Phys. Chem. C 2016, 120, 20702–20709. [Google Scholar] [CrossRef] [PubMed]
- Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A review on surface-enhanced Raman scattering. Biosensors 2019, 9, 57. [Google Scholar] [CrossRef]
- Lussier, F.; Thibault, V.; Charron, B.; Wallace, G.Q.; Masson, J.F. Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering. Trends Anal. Chem. 2020, 124, 115796. [Google Scholar] [CrossRef]
- Li, H.-N.; Yang, B.; Yu, B.; Huang, N.; Liu, L.-S.; Lu, J.-Q.; Jiang, X. Graphene-coated Si nanowires as substrates for surface-enhanced Raman scattering. Appl. Surf. Sci. 2021, 541, 148486. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Huang, B.-H.; Lin, T.-H. Surface-enhanced Raman scattering and fluorescence on gold nanogratings. Nanomaterials 2020, 10, 776. [Google Scholar] [CrossRef]
- Guo, X.-T.; Li, J.-H.; Arabi, M.; Wang, X.-Y.; Wang, Y.-Q.; Chen, L.-X. Molecular imprinting-based Surface-enhanced Raman scattering sensors. ACS Sen. 2020, 5, 601–619. [Google Scholar] [CrossRef]
- Li, M.; Cushing, S.K.; Zhou, G.-W.; Wu, N.-Q. Molecular hot spots in surface-enhanced Raman scattering. Nanoscale 2020, 12, 22036–22041. [Google Scholar] [CrossRef]
- Subhan, F.; Aslam, S.; Yan, Z.-F.; Ahmad, A.; Etim, U.J. Fabrication of 3-D confined spaces with Au NPs: Superior dispersion and catalytic activity. J. Colloid Interface Sci. 2019, 540, 371–381. [Google Scholar] [CrossRef]
- Daniel, M.C.; Astruc, D. Gold nanoparticles assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef] [PubMed]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.-N.; Rotello, V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Lee, Y.M.; Wang, C.; Yin, H.-F.; Dai, S.-H.; Sun, S.-H. A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation. Nano Res. 2008, 1, 229–234. [Google Scholar] [CrossRef]
- Zhang, M.-W.; Shao, S.-X.; Yue, H.-T.; Wang, X.; Zhang, W.-R.; Chen, F.; Zheng, L.; Xing, J.; Qin, Y.-N. High stability Au NPs: From design to application in nanomedicine. Int. J. Nanomedicine 2021, 16, 6067–6094. [Google Scholar] [CrossRef]
- Di Mauro, A.E.; Villone, V.; Ingrosso, C.; Corricelli, M.; Oria, L.; Pérez-Murano, F.; Agostiano, A.; Striccoli, M.L.; Curri, M.L. H-bonding driven assembly of colloidal Au nanoparticles on nanostructured poly (styrene-b-ethylene oxide) block copolymer templates. J. Mater. Sci. 2014, 49, 5246–5255. [Google Scholar] [CrossRef]
- Geng, X.-M.; Zhang, D.-D.; Zheng, Z.-M.; Ye, G.-M.; Li, S.-M.; Tu, H.-Y.; Wan, Y.-F.; Yang, P. Integrated multifunctional device based on Bi2S3/Pd: Localized heat channeling for efficient photothermic vaporization and real-time health monitoring. Nano Energy 2021, 82, 105700. [Google Scholar] [CrossRef]
- Hao, J.-J.; Yang, Y.-Z.; Zhang, F.-H.; Yang, Z.-J.; Wei, J.-J. Faceted colloidal Au/Fe3O4 binary supracrystals dictated by intrinsic lattice structures and their collective optical properties. J. Phys. Chem. C 2020, 124, 14775–14786. [Google Scholar] [CrossRef]
- Chen, S.; Yang, Z.-L.; Meng, L.-Y.; Li, J.-F.; Williams, C.T.; Tian, Z.-Q. Electromagnetic enhancement in shell-isolated nanoparticle-enhanced raman scattering from gold flat surfaces. J. Phys. Chem. C 2015, 119, 5246–5251. [Google Scholar] [CrossRef]
- Zalduendo, M.M.; Langer, J.; Giner-Casares, J.J.; Halac, E.B.; Soler-Illia, G.J.A.A.; Liz-Marzán, L.M.; Angelomé, P.C. Au nanoparticles–mesoporous TiO2 thin films composites as SERS sensors: A systematic performance analysis. J. Phys. Chem. C 2018, 122, 13095–13105. [Google Scholar] [CrossRef]
- Ananthoju, B.; Biroju, R.K.; Theis, W.; Dryfe, R.A.W. Controlled electrodeposition of gold on graphene: Maximization of the defect-enhanced Raman scattering response. Small 2019, 15, 1901555. [Google Scholar] [CrossRef]
- Ameer, F.S.; Pittman, C.U.; Zhang, D.-M. Quantification of resonance Raman enhancement factors for rhodamine 6G (R6G) in water and on gold and silver nanoparticles: Implications for single-molecule R6G SERS. J. Phys. Chem. C 2013, 117, 27096–27104. [Google Scholar] [CrossRef]
- Yang, G.; Nanda, J.; Wang, B.-Y.; Chen, G.; Hallinan, D.T., Jr. Self-assembly of large gold nanoparticles for surface-enhanced Raman spectroscopy. ACS Appl. Mater. Interfaces 2017, 9, 13457–13470. [Google Scholar] [CrossRef] [PubMed]
- Mathias Brust, M.W.; Bethell, D.; Schiffrin, D.J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. J. Chem. Soc. Chem. Commun. 1994, 7, 801–802. [Google Scholar] [CrossRef]
- Jana, N.R.; Peng, X.-G. Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. J. Am. Chem. Soc. 2003, 125, 14280–14281. [Google Scholar] [CrossRef]
- Shen, C.-M.; Chao, H.; Yang, T.-Z.; Xiao, C.-W.; Tian, J.-F.; Bao, L.H.; Chen, S.-T.; Ding, H.; Gao, H.-J. Monodisperse noble-metal nanoparticles and their surface enhanced Raman scattering properties. Chem. Mater. 2008, 20, 6939–6944. [Google Scholar] [CrossRef]
- Bi, C.-X.; Song, Y.-H.; Zhao, H.-Y.; Liu, G.-Q. Hexoctahedral gold nanoparticles enclosed by high-index {651} facets as electrocatalysts for methanol oxidation and surface-enhanced Raman spectroscopy substrates. ACS Appl. Nano Mater. 2021, 4, 4584–4592. [Google Scholar] [CrossRef]
- Lee, J.E.; Bera, S.; Choi, Y.S.; Lee, W.I. Size-dependent plasmonic effects of M and M@SiO2 (M = Au or Ag) deposited on TiO2 in photocatalytic oxidation reactions. Appl. Catal. B 2017, 214, 15–22. [Google Scholar] [CrossRef]
- Lee, Y.; Loew, A.; Sun, S.-H. Surface- and structure-dependent catalytic activity of Au nanoparticles for oxygen reduction reaction. Chem. Mater. 2009, 22, 755–761. [Google Scholar] [CrossRef]
- Qin, Y.-Z.; Wu, Y.-Z.; Wang, B.-J.; Wang, J.-Y.; Zong, X.-S.; Yao, W.-S. Controllable preparation of sea urchin-like Au NPs as a SERS substrate for highly sensitive detection of the toxic atropine. RSC Adv. 2021, 11, 19813–19818. [Google Scholar] [CrossRef]
- He, M.; Liu, X.-F.; Liu, B.; Yang, J.-H. Investigation of antisolvent effect on gold nanoparticles during postsynthesis purification. J. Colloid Interface Sci. 2019, 537, 414–421. [Google Scholar] [CrossRef]
- Liu, X.-F.; Kang, J.-M.; Liu, B.; Yang, J.-H. Separation of gold nanowires and nanoparticles through a facile process of centrifugation. Sep. Purif. Technol. 2018, 192, 1–4. [Google Scholar] [CrossRef]
- Huo, Z.-Y.; Tsung, C.K.; Huang, W.-Y.; Zhang, X.-F.; Yang, P.-D. Sub-two nanometer single crystal Au nanowires. Nano Lett. 2008, 8, 2041–2044. [Google Scholar] [CrossRef] [PubMed]
- Kura, H.; Ogawa, T. Synthesis and growth mechanism of long ultrafine gold nanowires with uniform diameter. J. Appl. Phys. 2010, 107, 074310. [Google Scholar] [CrossRef]
- Pazos-Perez, N.; Baranov, D.; Irsen, S.; Hilgendorff, M.; Liz-Marzan, L.M.; Giersig, M. Synthesis of flexible, ultrathin gold nanowires in organic media. Langmuir 2008, 24, 9855–9860. [Google Scholar] [CrossRef] [PubMed]
- Halder, A.; Ravishankar, N. Gold nanostructures from cube-shaped crystalline intermediates. J. Phys. Chem. B 2006, 110, 6595–6600. [Google Scholar] [CrossRef]
- Wu, B.-H.; Yang, H.-Y.; Huang, H.-Q.; Chen, G.-X.; Zheng, N.-F. Solvent effect on the synthesis of monodisperse amine-capped Au nanoparticles. Chin. Chem. Lett. 2013, 24, 457–462. [Google Scholar] [CrossRef]
- Lu, R.-T.; Konzelmann, A.; Xu, F.; Gong, Y.-P.; Liu, J.-W.; Liu, Q.-F.; Xin, M.-L.; Hui, R.-Q.; Wu, J.-Z. High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates. Carbon 2015, 86, 78–85. [Google Scholar] [CrossRef]
- Yu, M.-N.; Liu, S.-S.; Su, D.; Jiang, S.-L.; Zhang, G.-Z.; Qin, Y.-F.; Li, M.-Y. Controllable MXene nano-sheet/Au nanostructure architectures for the ultra-sensitive molecule Raman detection. Nanoscale 2019, 11, 22230–22236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.-B.; Zeng, T.-X.; Tan, X.-L.; Wu, W.-D.; Tang, Y.-J.; Zhang, H.B. A facile surface-enhanced Raman scattering (SERS) detection of rhodamine 6G and crystal violet using Au nanoparticle substrates. Appl. Surf. Sci. 2015, 347, 569–573. [Google Scholar] [CrossRef]
- Zheng, N.-F.; Fan, J.; Stucky, G.D. One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. J. Am. Chem. Soc. 2006, 128, 6550–6551. [Google Scholar] [CrossRef]
- Dong, A.G.; Chen, J.; Vora, P.M.; Kikkawa, J.M.; Murray, C.B. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 2010, 466, 474–477. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrovic, V.; Greshnykh, D.; Randjelovic, I.; Fromsdorf, A.; Kornowski, A.; Roth, S.K.; Klinke, C.; Weller, H. Preparation and electrical properties of cobalt-platinum nanoparticle monolayers deposited by the Langmuir-Blodgett technique. ACS Nano 2008, 2, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.-J.; Schaeffer, N.; Pileni, M.P. Ag nanocrystals: 1. Effect of ligands on plasmonic properties. J. Phys. Chem. B 2014, 118, 14070–14075. [Google Scholar] [CrossRef]
- Wang, C.; Yin, H.-F.; Chan, R.; Peng, S.; Dai, S.; Sun, S.-H. One-pot synthesis of oleylamine coated AuAg alloy NPs and their catalysis for CO oxidation. Chem. Mater. 2009, 21, 433–435. [Google Scholar] [CrossRef]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 2011, 6, 534. [Google Scholar] [CrossRef] [PubMed]
- Borchert, H.; Shevchenko, E.V.; Robert, A.; Mekis, I.; Kornowski, A.; Grubel, G.; Weller, H. Determination of nanocrystal sizes a comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles. Langmuir 2005, 21, 1931–1936. [Google Scholar] [CrossRef] [PubMed]
- Goubet, N.; Tempra, I.; Yang, J.; Soavi, G.; Polli, D.; Cerullo, G.; Pileni, M.P. Size and nanocrystallinity controlled gold nanocrystals: Synthesis, electronic and mechanical properties. Nanoscale 2015, 7, 3237–3246. [Google Scholar] [CrossRef]
- Whitehead, C.B.; Ozkar, S.; Finke, R.G. LaMer’s 1950 Model for particle formation of instantaneous nucleation and diffusion-controlled growth: A historical look at the model’s origins, assumptions, equations, and underlying sulfur sol formation kinetics data. Chem. Mater. 2019, 31, 7116–7132. [Google Scholar] [CrossRef]
- Hou, X.-M.; Zhang, X.-L.; Fang, Y.; Chen, S.-T.; Li, N.; Zhou, Q. Synthesis of SERS active Au nanowires in different noncoordinating solvents. J. Nanopart. Res. 2010, 13, 2625–2632. [Google Scholar] [CrossRef]
- Wang, P.; Qi, X.; Zhang, X.-M.; Wang, T.-Q.; Li, Y.-N.; Zhang, K.; Zhao, S.; Zhou, J.; Fu, Y. Solvent: A key in digestive ripening for monodisperse Au nanoparticles. Nanoscale Res. Lett. 2017, 12, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Prasad, B.L.V.; Sorensen, C.M.; Klabunde, K.J. Gold nanoparticle superlattices. Chem. Soc. Rev. 2008, 37, 1871–1883. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.-J.; Schaeffer, N.; Albouy, P.A.; Pileni, M.P. Surface plasmon resonance properties of silver nanocrystals differing in size and coating agent ordered in 3D supracrystals. Chem. Mater. 2015, 27, 5614–5621. [Google Scholar] [CrossRef]
- Wei, J.-J.; Schaeffer, N.; Pileni, M.P. Ligand exchange governs the crystal structures in binary nanocrystal superlattices. J. Am. Chem. Soc. 2015, 137, 14773–14784. [Google Scholar] [CrossRef] [PubMed]
- Dyck, C.V.; Fu, B.; Van Duyne, R.P.; Schatz, G.C.; Ratner, M.A. Deducing the adsorption geometry of rhodamine 6G from the surface-induced mode renormalization in surface-enhanced Raman spectroscopy. J. Phys. Chem. C 2017, 122, 465–473. [Google Scholar] [CrossRef]
- Klingsporn, J.M.; Jiang, N.; Pozzi, E.A.; Sonntag, M.D.; Chulhai, D.; Seideman, T.; Jensen, L.; Hersam, M.C.; Van Duyne, R.P. Intramolecular insight into adsorbate-substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2014, 136, 3881–3887. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, J.; He, M.; Liu, B.; Yang, J. Solvent Effect on the Synthesis of Oleylamine Modified Au Nanoparticles and Their Self-Assembled Film for SERS Substrate. Chemosensors 2022, 10, 373. https://doi.org/10.3390/chemosensors10090373
Hao J, He M, Liu B, Yang J. Solvent Effect on the Synthesis of Oleylamine Modified Au Nanoparticles and Their Self-Assembled Film for SERS Substrate. Chemosensors. 2022; 10(9):373. https://doi.org/10.3390/chemosensors10090373
Chicago/Turabian StyleHao, Junfang, Min He, Bin Liu, and Jianhui Yang. 2022. "Solvent Effect on the Synthesis of Oleylamine Modified Au Nanoparticles and Their Self-Assembled Film for SERS Substrate" Chemosensors 10, no. 9: 373. https://doi.org/10.3390/chemosensors10090373
APA StyleHao, J., He, M., Liu, B., & Yang, J. (2022). Solvent Effect on the Synthesis of Oleylamine Modified Au Nanoparticles and Their Self-Assembled Film for SERS Substrate. Chemosensors, 10(9), 373. https://doi.org/10.3390/chemosensors10090373