Advanced Mapping of Optically-Blind and Optically-Active Nitrogen Chemical Impurities in Natural Diamonds
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Surface Concentration Measurements for Optically Blind and Optically Active Nirogen Impurity Defects via XPS Probing of Their Chemical States
3.2. Raman Correction of Depth-Dependent PL-Active Nitrogen Impurity Abundance in Bulk Diamond
3.3. Correlation between Local Plastic Deformations and Distribution of PL-Active Nitrogen Impurity Defects
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaitsev, A.M. Optical Properties of Diamond: A Data Handbook; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Orlov, Y.L. Mineralogy of Diamond; Moscow: Moscow, Russian, 1984. [Google Scholar]
- Ashfold, M.N.; Goss, J.P.; Green, B.L.; May, P.W.; Newton, M.E.; Peaker, C.V. Nitrogen in diamond. Chem. Rev. 2020, 120, 5745–5794. [Google Scholar] [CrossRef] [PubMed]
- Nadolinny, V.; Komarovskikh, A.; Palyanov, Y. Incorporation of Large Impurity Atoms into the Diamond Crystal Lattice: EPR of Split-Vacancy Defects in Diamond. Crystals 2017, 7, 237. [Google Scholar] [CrossRef] [Green Version]
- Bokii, G.B.; Bezrukov, G.N.; Klyuev, Y.A.; Naletov, A.M.; Nepsha, V.I. Natural and Synthetic Diamonds; Nauka: Moscow, Russian, 1986. [Google Scholar]
- Garanin, V.; Garanin, K.; Kriulina, G.; Samosorov, G. Diamonds from the Arkhangelsk Province, NW Russia; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Dobrinets, I.A.; Vins, V.G.; Zaitsev, A.M. HPHT-Treated Diamond; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Vasilev, E.; Petrovsky, V.; Kozlov, A.; Antonov, A.; Kudryavtsev, A.; Orekhova, K. The story of one diamond: The heterogeneous distribution of the optical centres within a diamond crystal from the Ichetju placer, northern Urals. Mineral. Mag. 2003, 83, 515–522. [Google Scholar] [CrossRef]
- Klepikov, I.V.; Vasilev, E.A.; Antonov, A.V. Regeneration Growth as One of the Principal Stages of Diamond Crystallogenesis. Minerals 2022, 12, 327. [Google Scholar] [CrossRef]
- Vasilev, E.A.; Zedgenizov, D.A.; Klepikov, I.V. The enigma of cuboid diamonds: The causes of inverse distribution of optical centers within the growth zones. J. Geosci. 2020, 65, 59–70. [Google Scholar] [CrossRef]
- Collins, A.T.; Kanda, H.; Kitawaki, H. Colour changes produced in natural brown diamonds by high-pressure, high-temperature treatment. Diam. Relat. Mater. 2000, 9, 113–122. [Google Scholar] [CrossRef]
- Vasilev, E.; Zedgenizov, D.; Zamyatin, D.; Klepikov, I.; Antonov, A. Cathodoluminescence of Diamond: Features of Visualization. Crystals 2021, 11, 1522. [Google Scholar] [CrossRef]
- Calderón-Martínez, M.C.; Gil-Tolano, M.I.; Navarro-Espinoza, S.; Meléndrez, R.; Chernov, V.; Barboza-Flores, M. Optical properties and functional groups characterization of commercial HPHT micro-diamond samples. Opt. Mat. 2022, 131, 112592. [Google Scholar] [CrossRef]
- Araujo, D.; Suzuki, M.; Lloret, F.; Alba, G.; Villar, P. Diamond for Electronics: Materials, processing and devices. Materials 2021, 14, 7081. [Google Scholar] [CrossRef]
- Xu, H.; Zang, J.; Yuan, Y.; Yan, S.; Tian, P.; Wang, Y.; Xu, X. Fabrication and microstructural characterization of the diamond@ amorphous carbon nanocomposite core/shell structure via in-situ polymerization. Ceram. Int. 2019, 45, 18430–18438. [Google Scholar] [CrossRef]
- Avalos, V.; Dannefaer, S. Vacancy-type defects in brown diamonds investigated by positron annihilation. Phys. B Condens. 2003, 340, 76–79. [Google Scholar] [CrossRef]
- Hounsome, L.S.; Jones, R.; Martineau, P.M.; Fisher, D.; Shaw, M.J.; Briddon, P.R.; Öberg, S. Origin of brown coloration in diamond. Phys. Rev. B 2006, 73, 125203. [Google Scholar] [CrossRef]
- Dishler, B. Handbook of Spectral Lines in Diamond; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Gaillou, E.; Post, J.E.; Bassim, N.; Fries, M.; Rose, T.; Stroud, R.; Butler, J.E. Spectroscopic and microscopic characterization of color lamellae in natural pink diamonds. Diam. Relat. Mater. 2010, 19, 1207–1220. [Google Scholar] [CrossRef]
- Kriulina, G.; Vasilev, E.; Garanin, V. Structural and mineralogical features of diamonds from the Lomonosov deposit (Arkhangelsk province): New data and interpretation. Dokl. Earth Sci. 2019, 2, 627–629. [Google Scholar] [CrossRef]
- Yuryeva, O.P.; Rakhmanova, M.I.; Zedgenizov, D.A.; Kalinina, V.V. Spectroscopic evidence of the origin of brown and pink diamonds family from Internatsionalnaya kimberlite pipe (Siberian craton). Phys. Chem. Miner. 2020, 47, 20. [Google Scholar] [CrossRef]
- Iakoubovskii, K. Characterization of platelet-related infrared luminescence in diamond. Philos. Mag. Lett. 2020, 6, 441–444. [Google Scholar] [CrossRef]
- Vasilev, E. Luminescence of plastically deformed diamond in the range 800–1050 nm. J. Appl. Spectrosc. 2019, 3, 512–515. [Google Scholar] [CrossRef]
- Hu, M.; Bi, N.; Li, S.; Su, T.; Hu, Q.; Ma, H.; Jia, X. Synthesis and characterization of boron and nitrogen co-doped diamond crystals under high pressure and high temperature conditions. Cryst. Eng. Comm. 2017, 31, 4571. [Google Scholar] [CrossRef]
- Domashevskaya, E.P.; Chernyshev, A.V.; Turishchev, S.Y.; Kalinin, Y.E.; Sitnikov, A.V.; Marchenko, D.E. X-ray photoelectron spectroscopy investigations of atomic interactions in surface layers of multilayered nanostructures (Co45Fe45Zr10/a-Si)40 and (Co45Fe45Zr10/SiO2)32. Phys. Solid State 2014, 56, 2294–2306. [Google Scholar] [CrossRef]
- Peng, J.; Yang, M.; Zeng, J.; Sub, D.; Liao, J.; Yick, M.-L. Influence of nitrogen doping on the thermal stability of hydrogenated amorphous diamond coating. Thin Solid Films 2020, 709, 138188. [Google Scholar] [CrossRef]
- Howe, J.Y.; Jones, L.E.; Braski, D.N. An Auger Electron Spectroscopy (AES) and X-Ray Photoelectron Spectroscopy (XPS) Study of CVD and Natural diamonds. Mater. Res. Soc. Symp. Proc. 1999, 593, 453–458. [Google Scholar] [CrossRef]
- Sharma, S.C.; Green, M.; Hyer, R.C.; Dark, C.A.; Black, T.D.; Chourasia, A.R.; Chopra, D.R.; Mishra, K.K. Growth of diamond films and characterization by Raman, scanning electron microscopy, and X-ray photoelectron spectroscopy. J. Mater. Res. 1990, 5, 2424–2432. [Google Scholar] [CrossRef]
- Chastain, J.; King, R.C., Jr. Handbook of X-ray Photoelectron Spectroscopy; Physical Electronics: Eden Prairie, MN, USA, 1995. [Google Scholar]
- Okano, K.; Yamaguchi, H.; Kudo, Y.; Masuzawa, T.; Kudo, M.; Yamada, T.; Takakuwa, T. Electron emission mechanism of diamond characterised by combined XPS/UPS/FES. In Proceedings of the 2nd IEEE International Nanoelectronics Conference, Shanghai, China, 24–27 March 2008. [Google Scholar]
- Collins, A.T.; Connor, A.; Ly, C.-H.; Shareef, A.; Spear, P.M. High-temperature annealing of optical centers in type-I diamond. J. Appl. Phys. 2005, 97, 083517. [Google Scholar] [CrossRef]
- Luo, Y.; Breeding, C.M. Fluorescence produced by optical defects in diamond: Measurement, characterization, and challenges. Gems Gemol. 2013, 49, 82–97. [Google Scholar] [CrossRef]
- Beskrovanov, V.V. Diamond Ontogeny; Nauka: Moscow, Russian, 1992. [Google Scholar]
- Collins, A.T. Excited states of the H3 vibronic centre in diamond. J. Phys. C Solid State Phys. 1983, 16, 6691–6694. [Google Scholar] [CrossRef]
- Khmelnitsky, R.A.; Kovalchuk, O.E.; Gulina, Y.S.; Nastulyavichus, A.A.; Kriulina, G.Y.; Boldyrev, N.Y.; Kudryashov, S.I.; Levchenko, A.O.; Shiryaev, V.S. Optimal direction and propagation of mid-IR light inside rough and polished diamonds for highly-sensitive transmission measurements of nitrogen content. Diam. Relat. Mater. 2022, 128, 109278. [Google Scholar] [CrossRef]
- Danilov, P.; Kuzmin, E.; Rimskaya, E.; Chen, J.; Khmelnitskii, R.; Kirichenko, A.; Rodionov, N.; Kudryashov, S. Up/Down-Scaling Photoluminescent Micromarks Written in Diamond by Ultrashort Laser Pulses: Optical Photoluminescent and Structural Raman Imaging. Micromachines 2022, 13, 1883. [Google Scholar] [CrossRef]
Sample | Color | Shape | IR Data | ||||
---|---|---|---|---|---|---|---|
Ntotal, ppm | A, ppm | B1, ppm | Platelets, cm−1 | C, ppm | |||
1784-8-1 (IaAB) | pink | dodecahedral habit | 1085 ± 109 | 910 ± 91 | 175 ± 18 | - | 0 |
1784-31-1 (IaAB) | brown | octahedral habit | 187 ± 19 | 100 ± 10 | 87 ± 9 | 2 | 0 |
EV-8-5 (IaB) | colorless | dodecahedral habit | 33 ± 3 | - | 33 ± 3 | - | 0 |
EV-8-32 (IaAB) | colorless | dodecahedral habit | 455 ± 45 | 264 ± 26 | 191 ± 19 | 21 | 0 |
EV-8-39 (IaAB) | colorless | dodecahedral habit | 890 ± 89 | 330 ± 33 | 560 ± 56 | - | 0 |
T-210 (IaB) | colorless | plate | 62 ± 6 | - | 62 ± 6 | - | 0 |
T-284 (IaAB) | colorless | plate | 280 ± 28 | 165 ± 17 | 115 ± 12 | 8 | 0 |
Sample | 1784-8-1 (IaAB) | 1784-31-1 (IaAB) | EV-8-5 (IaB) | EV-8-32 (IaAB) | EV-8-39 (IaAB) | T-210 (IaB) | T-284 (IaAB) |
---|---|---|---|---|---|---|---|
C–N, at. % | 0.49 ± 0.02 | 0 | 0.66 ± 0.03 | 0.52 ± 0.03 | 0.56 ± 0.03 | 0 | 0.38 ± 0.02 |
N–N, at. % | 0.19 ± 0.01 | 0 | 0.44 ± 0.02 | 0.16 ± 0.01 | 0.38 ± 0.02 | 0 | 0.14 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudryashov, S.; Rimskaya, E.; Kuzmin, E.; Kriulina, G.; Pryakhina, V.; Muratov, A.; Khmelnitskii, R.; Greshnyakov, E.; Danilov, P.; Shur, V. Advanced Mapping of Optically-Blind and Optically-Active Nitrogen Chemical Impurities in Natural Diamonds. Chemosensors 2023, 11, 24. https://doi.org/10.3390/chemosensors11010024
Kudryashov S, Rimskaya E, Kuzmin E, Kriulina G, Pryakhina V, Muratov A, Khmelnitskii R, Greshnyakov E, Danilov P, Shur V. Advanced Mapping of Optically-Blind and Optically-Active Nitrogen Chemical Impurities in Natural Diamonds. Chemosensors. 2023; 11(1):24. https://doi.org/10.3390/chemosensors11010024
Chicago/Turabian StyleKudryashov, Sergey, Elena Rimskaya, Evgeny Kuzmin, Galina Kriulina, Victoria Pryakhina, Andrey Muratov, Roman Khmelnitskii, Evgeny Greshnyakov, Pavel Danilov, and Vladimir Shur. 2023. "Advanced Mapping of Optically-Blind and Optically-Active Nitrogen Chemical Impurities in Natural Diamonds" Chemosensors 11, no. 1: 24. https://doi.org/10.3390/chemosensors11010024
APA StyleKudryashov, S., Rimskaya, E., Kuzmin, E., Kriulina, G., Pryakhina, V., Muratov, A., Khmelnitskii, R., Greshnyakov, E., Danilov, P., & Shur, V. (2023). Advanced Mapping of Optically-Blind and Optically-Active Nitrogen Chemical Impurities in Natural Diamonds. Chemosensors, 11(1), 24. https://doi.org/10.3390/chemosensors11010024