Automated Multistep Lateral Flow Immunoassay Using a Smartphone for the Quantification of Foodborne Bacteria from Fresh Lettuce
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Design and Fabrication
2.3. Application Development
2.4. Principle of Performing Automated Multistep LFIA
2.5. Detection of Bacteria from Contaminated Lettuce
3. Results and Discussion
3.1. Smartphone Application and Calibration Curve
3.2. Detection Specificity
3.3. Sensor Stability
3.4. Detection of Bacteria from Contaminated Lettuce
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singha, S.; Thomas, R.; Viswakarma, J.N.; Gupta, V.K. Foodborne illnesses of Escherichia coli O157origin and its control measures. J. Food Sci. Technol. 2022, 1–10. [Google Scholar] [CrossRef]
- Fahey, J.W.; Smilovitz Burak, J.; Evans, D. Sprout microbial safety: A reappraisal after a quarter-century. Food Front. 2022. [Google Scholar] [CrossRef]
- WHO. Estimating the Burden of Foodborne Diseases. Available online: https://www.who.int/activities/estimating-the-burden-of-foodborne-diseases (accessed on 23 December 2022).
- WHO. Food Safety. Available online: https://www.who.int/news-room/fact-sheets/detail/food-safety (accessed on 26 October 2022).
- Callejón, R.M.; Rodríguez-Naranjo, M.I.; Ubeda, C.; Hornedo-Ortega, R.; Garcia-Parrilla, M.C.; Troncoso, A.M. Reported foodborne outbreaks due to fresh produce in the United States and European Union: Trends and causes. Foodborne Pathog. Dis. 2015, 12, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Carstens, C.K.; Salazar, J.K.; Darkoh, C. Multistate Outbreaks of Foodborne Illness in the United States Associated With Fresh Produce From 2010 to 2017. Front. Microbiol. 2019, 10, 2667. [Google Scholar] [CrossRef] [Green Version]
- White, A.E.; Tillman, A.R.; Hedberg, C.; Bruce, B.B.; Batz, M.; Seys, S.A.; Dewey-Mattia, D.; Bazaco, M.C.; Walter, E.S. Foodborne Illness Outbreaks Reported to National Surveillance, United States, 2009–2018. Emerg. Infect. Dis. 2022, 28, 1117–1127. [Google Scholar] [CrossRef] [PubMed]
- García-Cañas, V.; Simó, C.; Herrero, M.; Ibáñez, E.; Cifuentes, A. Present and future challenges in food analysis: Foodomics. Anal. Chem. 2012, 84, 10150–10159. [Google Scholar] [CrossRef] [Green Version]
- Priyanka, B.; Patil, R.K.; Dwarakanath, S. A review on detection methods used for foodborne pathogens. Indian J. Med. Res. 2016, 144, 327–338. [Google Scholar] [CrossRef]
- Shin, J.H.; Hong, J.; Go, H.; Park, J.; Kong, M.; Ryu, S.; Kim, K.P.; Roh, E.; Park, J.K. Multiplexed Detection of Foodborne Pathogens from Contaminated Lettuces Using a Handheld Multistep Lateral Flow Assay Device. J. Agric. Food Chem. 2018, 66, 290–297. [Google Scholar] [CrossRef]
- Foddai, A.C.G.; Grant, I.R. Methods for detection of viable foodborne pathogens: Current state-of-art and future prospects. Appl. Microbiol. Biotechnol. 2020, 104, 4281–4288. [Google Scholar] [CrossRef] [Green Version]
- Hill, W.E. The polymerase chain reaction: Applications for the detection of foodborne pathogens. Crit. Rev. Food Sci. Nutr. 1996, 36, 123–173. [Google Scholar] [CrossRef]
- Strohmeier, O.; Marquart, N.; Mark, D.; Roth, G.; Zengerle, R.; von Stetten, F. Real-time PCR based detection of a panel of food-borne pathogens on a centrifugal microfluidic “LabDisk” with on-disk quality controls and standards for quantification. Anal. Methods 2014, 6, 2038–2046. [Google Scholar] [CrossRef]
- Lalonde, L.F.; Xie, V.; Oakley, J.R.; Lobanov, V.A. Optimization and validation of a loop-mediated isothermal amplification (LAMP) assay for detection of Giardia duodenalis in leafy greens. Food Waterborne Parasitol. 2021, 23, e00123. [Google Scholar] [CrossRef]
- Lee, J.W.; Nguyen, V.D.; Seo, T.S. Paper-based Molecular Diagnostics for the Amplification and Detection of Pathogenic Bacteria from Human Whole Blood and Milk Without a Sample Preparation Step. BioChip J. 2019, 13, 243–250. [Google Scholar] [CrossRef]
- Zhao, X.; Lin, C.W.; Wang, J.; Oh, D.H. Advances in rapid detection methods for foodborne pathogens. J. Microbiol. Biotechnol. 2014, 24, 297–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.-Y.; Hulme, J.; An, S.S.A. Recent trends in the detection of pathogenic Escherichia coli O157: H7. BioChip J. 2015, 9, 173–181. [Google Scholar] [CrossRef]
- Pang, B.; Zhao, C.; Li, L.; Song, X.; Xu, K.; Wang, J.; Liu, Y.; Fu, K.; Bao, H.; Song, D.; et al. Development of a low-cost paper-based ELISA method for rapid Escherichia coli O157:H7 detection. Anal. Biochem. 2018, 542, 58–62. [Google Scholar] [CrossRef]
- Sakamoto, S.; Putalun, W.; Vimolmangkang, S.; Phoolcharoen, W.; Shoyama, Y.; Tanaka, H.; Morimoto, S. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J. Nat. Med. 2018, 72, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Pan, R.; Jiang, Y.; Sun, L.; Wang, R.; Zhuang, K.; Zhao, Y.; Wang, H.; Ali, M.A.; Xu, H.; Man, C. Gold nanoparticle-based enhanced lateral flow immunoassay for detection of Cronobacter sakazakii in powdered infant formula. J. Dairy Sci. 2018, 101, 3835–3843. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-S.; Ko, H.; Kang, M.-J.; Pyun, J.-C. Highly sensitive rapid test with chemiluminescent signal bands. BioChip J. 2010, 4, 155–160. [Google Scholar] [CrossRef]
- Park, S.; Kim, H.; Paek, S.H.; Hong, J.W.; Kim, Y.K. Enzyme-linked immuno-strip biosensor to detect Escherichia coli O157:H7. Ultramicroscopy 2008, 108, 1348–1351. [Google Scholar] [CrossRef]
- Shin, J.H.; Park, J.K. Functional Packaging of Lateral Flow Strip Allows Simple Delivery of Multiple Reagents for Multistep Assays. Anal. Chem. 2016, 88, 10374–10378. [Google Scholar] [CrossRef] [PubMed]
Trial | Target Samples (CFU/mL) | Number of Bacteria Inoculated to the Lettuce, Calculated via Colony Counting (CFU/10 g) | Number of Bacteria from the Contaminated Lettuce Detected Using LFIA (CFU/10 g) |
---|---|---|---|
1 | 5 × 104 | 2.37 × 103 | 3.33 × 103 |
5 × 105 | 2.66 × 104 | 2.51 × 104 | |
5 × 106 | 3.16 × 105 | 1.85 × 105 | |
2 | 5 × 104 | 1.31 × 103 | 1.22 × 103 |
5 × 105 | 1.73 × 104 | 19.8 × 104 | |
5 × 106 | 2.13 × 105 | 2.23 × 105 | |
3 | 5 × 104 | 1.85 × 103 | 1.70 × 103 |
5 × 105 | 2.92 × 104 | 1.33 × 104 | |
5 × 106 | 3.49 × 105 | 3.43 × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phangwipas, P.; Thangavel, B.; Shin, J.H. Automated Multistep Lateral Flow Immunoassay Using a Smartphone for the Quantification of Foodborne Bacteria from Fresh Lettuce. Chemosensors 2023, 11, 36. https://doi.org/10.3390/chemosensors11010036
Phangwipas P, Thangavel B, Shin JH. Automated Multistep Lateral Flow Immunoassay Using a Smartphone for the Quantification of Foodborne Bacteria from Fresh Lettuce. Chemosensors. 2023; 11(1):36. https://doi.org/10.3390/chemosensors11010036
Chicago/Turabian StylePhangwipas, Pattarapon, Balamurugan Thangavel, and Joong Ho Shin. 2023. "Automated Multistep Lateral Flow Immunoassay Using a Smartphone for the Quantification of Foodborne Bacteria from Fresh Lettuce" Chemosensors 11, no. 1: 36. https://doi.org/10.3390/chemosensors11010036
APA StylePhangwipas, P., Thangavel, B., & Shin, J. H. (2023). Automated Multistep Lateral Flow Immunoassay Using a Smartphone for the Quantification of Foodborne Bacteria from Fresh Lettuce. Chemosensors, 11(1), 36. https://doi.org/10.3390/chemosensors11010036