Wavelet Transform Makes Water an Outstanding Near-Infrared Spectroscopic Probe
Abstract
:1. Introduction
2. Wavelet Transform (WT)
3. Complexity of Water Structures
4. Understanding Water Structures by Near-Infrared Spectroscopy
5. Water as a Spectroscopic Probe for Quantitative and Structure Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, J.; Cao, Z.X. Water science on the molecular scale: New insights into the characteristics of water. Natl. Sci. Rev. 2014, 1, 179–181. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Dettori, R.; Nunes, J.P.F.; List, N.H.; Biasin, E.; Centurion, M.; Chen, Z.J.; Cordones, A.A.; Deponte, D.P.; Heinz, T.F.; et al. Direct observation of ultrafast hydrogen bond strengthening in liquid water. Nature 2021, 596, 531–535. [Google Scholar]
- Hunger, J.; Parekh, S.H. A water window on surface chemistry. Science 2017, 357, 755–756. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zeng, L.; Jiang, X.E. Revealing the nature of interaction between graphene oxide and lipid membrane by surface-enhanced infrared absorption spectroscopy. J. Am. Chem. Soc. 2015, 137, 10052–10055. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.H.; Pu, K.Y. Molecular imaging and disease theranostics with renal-clearable optical agents. Nat. Rev. Mater. 2021, 6, 1095–1113. [Google Scholar] [CrossRef]
- Zhuang, Y.T.; Chen, S.; Jiang, R.; Yu, Y.L.; Wang, J.H. An ultrasensitive colorimetric chromium chemosensor based on dye color switching under the Cr(VI)-stimulated Au NPs catalytic activity. Anal. Chem. 2019, 91, 5346–5353. [Google Scholar] [CrossRef]
- Wang, F.; Wang, L.; Chen, X.Q.; Yoon, J.Y. Recent progress in the development of fluorometric and colorimetric chemosensors for detection of cyanide ions. Chem. Soc. Rev. 2014, 43, 4312–4324. [Google Scholar] [CrossRef]
- Wu, L.L.; Wang, Q.H.; Wang, Y.L.; Zhang, N.; Zhang, Q.Y.; Hu, H.Y. Rapid differentiation between bacterial infections and cancer using a near-infrared fluorogenic probe. Chem. Sci. 2020, 11, 3141–3145. [Google Scholar] [CrossRef] [Green Version]
- Park, S.H.; Kwon, N.; Lee, J.H.; Yoon, J.; Shin, I. Synthetic ratiometric fluorescent probes for detection of ions. Chem. Soc. Rev. 2020, 49, 143–179. [Google Scholar] [CrossRef]
- Choi, Y.K.; Kim, J.J.; Chang, Y.T. Holding-oriented versus gating-oriented live-cell distinction: Highlighting the role of transporters in cell imaging probe development. Acc. Chem. Res. 2019, 52, 3097–3107. [Google Scholar] [CrossRef]
- Ren, H.; Zeng, X.Z.; Zhao, X.Z.; Hou, D.Y.; Yao, H.D.; Yaseen, M.; Zhao, L.N.; Xu, W.H.; Wang, H.; Li, L.L. A bioactivated in vivo assembly nanotechnology fabricated NIR probe for small pancreatic tumor intraoperative imaging. Nat. Commun. 2022, 13, 418. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.L.; Li, P.; Zhang, W.; Wang, H.; Tang, B. Cellular fluorescence imaging based on resonance energy transfer. TrAC-Trends Anal. Chem. 2020, 123, 115742. [Google Scholar] [CrossRef]
- Li, X.M.; Zhang, B.X.; Yan, C.X.; Li, J.; Wang, S.; Wei, X.X.; Jiang, X.Y.; Zhou, P.P.; Fang, J.G. A fast and specific fluorescent probe for thioredoxin reductase that works via disulphide bond cleavage. Nat. Commun. 2019, 10, 2745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.B.; Yang, J.H.; Wu, X.; Li, L.; Sun, S.; Su, B.Y.; Zhao, Z.S. Progress of spectral probes for nucleic acids. Anal. Lett. 2003, 36, 2063–2094. [Google Scholar] [CrossRef]
- Chen, H.H.; Khatun, Z.; Wei, L.; Mekkaoui, C.; Patel, D.; Kim, S.J.W.; Boukhalfa, A.; Enoma, E.; Meng, L.; Chen, Y.C.I.; et al. A nanoparticle probe for the imaging of autophagic flux in live mice via magnetic resonance and near-infrared fluorescence. Nat. Biomed. Eng. 2022, 6, 1045–1056. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, R.S.; Vinayaka, A.C.; Thakur, M.S. Thiol-stabilized luminescent CdTe quantum dot as biological fluorescent probe for sensitive detection of methyl parathion by a fluoroimmunochromatographic technique. Anal. Bioanal. Chem. 2010, 397, 1467–1475. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.X.; Xing, H.; Wang, H.F.; Zhang, Y.L.; Wang, J.N.; Shen, J.; Dai, Z.H. Bovine serum albumin encapsulation of near infrared fluorescent nano-probe with low nonspecificity and cytotoxicity for imaging of HER2-positive breast cancer cells. Talanta 2020, 210, 120625. [Google Scholar] [CrossRef]
- Sun, Y.; Cai, W.S.; Shao, X.G. Chemometrics: An excavator in temperature-dependent near-infrared spectroscopy. Molecules 2022, 27, 452. [Google Scholar] [CrossRef]
- An, H.L.; Li, J.N.; Cai, W.S.; Shao, X.G. Water structures revealed by near-infrared spectroscopy. Chin. J. Anal. Chem. 2022, 50, 100094. [Google Scholar] [CrossRef]
- Han, L.; Sun, Y.; Wang, S.Y.; Su, T.; Cai, W.S.; Shao, X.G. Understanding the water structures by near-infrared and Raman spectroscopy. J. Raman Spectrosc. 2022, 53, 1686–1693. [Google Scholar] [CrossRef]
- Gao, L.L.; Zhong, L.; Zhang, J.; Zhang, M.Q.; Zeng, Y.Z.; Li, L.; Zang, H.C. Water as a probe to understand the traditional Chinese medicine extraction process with near infrared spectroscopy: A case of Danshen (Salvia miltiorrhiza Bge) extraction process. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 244, 118854. [Google Scholar] [CrossRef]
- Cui, X.Y.; Liu, X.W.; Yu, X.M.; Cai, W.S.; Shao, X.G. Water can be a probe for sensing glucose in aqueous solutions by temperature dependent near infrared spectra. Anal. Chim. Acta 2017, 957, 47–54. [Google Scholar] [CrossRef]
- Bec, K.B.; Grabska, J.; Huck, C.W. In silico NIR spectroscopy–A review. Molecular fingerprint, interpretation of calibration models, understanding of matrix effects and instrumental difference. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 279, 121438. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.Y.; Sun, Y.; Cai, W.S.; Shao, X.G. Chemometric methods for extracting information from temperature-dependent near-infrared spectra. Sci. China-Chem. 2019, 62, 583–591. [Google Scholar] [CrossRef]
- Segtnan, V.H.; Sasic, S.; Isaksson, T. Studies on the structure of water using two–dimensional near–infrared correlation spectroscopy and principal component analysis. Anal. Chem. 2001, 73, 3153–3161. [Google Scholar] [CrossRef] [PubMed]
- Czarnik-Matusewicz, B.; Pilorz, S.; Hawranek, J.P. Temperature-dependent water structural transitions examined by near-IR and mid-IR spectra analyzed by multivariate curve resolution and two-dimensional correlation spectroscopy. Anal. Chim. Acta 2005, 544, 15–25. [Google Scholar] [CrossRef]
- Mallat, S.G. A theory of multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef] [Green Version]
- Mallat, S.G. Multiresolution approximations and wavelet orthonormal bases of L2(R). Trans. Am. Math. Soc. 1989, 315, 69–87. [Google Scholar]
- Shao, X.G.; Leung, A.K.; Chau, F. Wavelet: A new trend in chemistry. Acc. Chem. Res. 2003, 36, 276–283. [Google Scholar] [CrossRef]
- Shao, X.G.; Cai, W.S. Wavelet analysis in analytical chemistry. Rev. Anal. Chem. 1998, 17, 235–285. [Google Scholar] [CrossRef]
- Shao, X.G.; Cai, W.S.; Sun, P.Y. Determination of the component number in overlapping multicomponent chromatogram using wavelet transform. Chemom. Intell. Lab. Syst. 1998, 43, 147–155. [Google Scholar] [CrossRef]
- Shao, X.G.; Cai, W.S.; Pan, Z.X. Wavelet transform and its applications in high performance liquid chromatography (HPLC) analysis. Chemom. Intell. Lab. Syst. 1999, 45, 249–256. [Google Scholar] [CrossRef]
- Shao, X.G.; Gu, H.; Wu, J.H.; Shi, Y.Y. Resolution of the NMR spectrum using wavelet transform. Appl. Spectrosc. 2000, 54, 731–738. [Google Scholar] [CrossRef]
- Shao, X.G.; Shao, L.M.; Zhao, G.W. Extraction of extended X-ray absorption fine structure information from the experimental data using the wavelet transform. Anal. Commun. 1998, 35, 135–137. [Google Scholar] [CrossRef]
- Shao, X.G.; Cai, W.S. A novel algorithm of the wavelet packets transform and its application to denoising of analytical signals. Anal. Lett. 1999, 32, 734–760. [Google Scholar] [CrossRef]
- Shao, X.G.; Cai, W.S.; Sun, P.Y.; Zhang, M.S.; Zhao, G.W. Quantitative determination of the components in overlapping chromatographic peaks using wavelet transform. Anal. Chem. 1997, 69, 1722–1725. [Google Scholar] [CrossRef]
- Shao, X.G.; Sun, L. An application of the continuous wavelet transform to resolution of multicomponent overlapping analytical signals. Anal. Lett. 2001, 34, 267–280. [Google Scholar] [CrossRef]
- Ma, C.X.; Shao, X.G. Continuous wavelet transform applied to removing the fluctuating background in near-infrared spectra. J. Chem. Inf. Comput. Sci. 2004, 44, 907–911. [Google Scholar] [CrossRef]
- Shao, X.G.; Ma, C.X. A general approach to derivative calculation using wavelet transform. Chemom. Intell. Lab. Syst. 2003, 69, 157–165. [Google Scholar] [CrossRef]
- Shao, X.G.; Cui, X.Y.; Wang, M.; Cai, W.S. High order derivative to investigate the complexity of the near infrared spectra of aqueous solutions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 213, 83–89. [Google Scholar] [CrossRef]
- Bajaj, P.; Richardson, J.O.; Paesani, F. Ion-mediated hydrogen-bond rearrangement through tunnelling in the iodide-dihydrate complex. Nat. Chem. 2019, 11, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Heugen, U.; Schwaab, G.; Brundermann, E.; Heyden, M.; Yu, X.; Leitner, D.M.; Havenith, M. Solute-induced retardation of water dynamics probed directly by terahertz spectroscopy. Proc. Natl. Acad. Sci. USA 2006, 103, 12301–12306. [Google Scholar] [CrossRef]
- Fogarty, A.C.; Duboue-Dijon, E.; Sterpone, F.; Hynes, J.T.; Laage, D. Biomolecular hydration dynamics: A jump model perspective. Chem. Soc. Rev. 2013, 42, 5672–5683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fayer, M.D. Dynamics of water interacting with interfaces, molecules, and ions. Acc. Chem. Res. 2012, 45, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philip, B. Water—An enduring mystery. Nature 2008, 452, 291–292. [Google Scholar]
- Benson, S.W.; Siebert, E.D. A simple two-structure model for liquid water. J. Am. Chem. Soc. 1992, 114, 4269–4276. [Google Scholar] [CrossRef]
- Eaves, J.D.; Loparo, J.J.; Fecko, C.J.; Roberts, S.T.; Tokmakoff, A.; Geissler, P.L. Hydrogen bonds in liquid water are broken only fleetingly. Proc. Natl. Acad. Sci. USA 2005, 102, 13019–13022. [Google Scholar] [CrossRef] [Green Version]
- Czarnecki, M.A.; Morisawa, Y.; Futami, Y.; Ozaki, Y. Advances in molecular structure and interaction studies using nearinfrared spectroscopy. Chem. Rev. 2015, 115, 9707–9744. [Google Scholar] [CrossRef]
- Ohno, K.; Shimoaka, T.; Akai, N.; Katsumoto, Y. Relationship between the broad OH stretching band of methanol and hydrogen-bonding patterns in the liquid phase. J. Phys. Chem. A 2008, 112, 7342–7348. [Google Scholar] [CrossRef]
- Wall, T.T.; Hornig, D.F. Raman intensities of HDO and structure in liquid water. J. Chem. Phys. 1965, 43, 2079–2087. [Google Scholar] [CrossRef]
- Roth, K.; Franck, E.U. Infra-red absorption of HDO in water at high pressures and temperatures. Discuss. Faraday Soc. 1967, 43, 108–114. [Google Scholar]
- Smith, J.D.; Cappa, C.D.; Wilson, K.R.; Cohent, R.C.; Geissler, P.L.; Saykall, R.J. Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water. Proc. Natl. Acad. Sci. USA 2005, 102, 14171–14174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luck, W.A.P. The importance of cooperativity for the properties of liquid water. J. Mol. Struct. 1998, 448, 131–142. [Google Scholar] [CrossRef]
- Maeda, H.; Ozaki, Y.; Tanaka, M.; Hayashi, N.; Kojima, T. Near infrared spectroscopy and chemometrics studies of temperature-dependent spectral variations of water: Relationship between spectral changes and hydrogen bonds. J. Near Infrared Spectrosc. 1995, 3, 191–201. [Google Scholar] [CrossRef]
- Cui, X.Y.; Cai, W.S.; Shao, X.G. Glucose induced variation of water structure from temperature dependent near infrared spectra. RSC Adv. 2016, 6, 105729–105736. [Google Scholar] [CrossRef]
- Ma, L.; Cui, X.Y.; Cai, W.S.; Shao, X.G. Understanding the function of water during the gelation of globular proteins by temperature-dependent near infrared spectroscopy. Phys. Chem. Chem. Phys. 2018, 20, 20132–20140. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.H.; Sun, Y.; Ma, L.; Feng, H.Y.; Guo, Y.C.; Cai, W.S.; Shao, X.G. Knowledge-based genetic algorithm for resolving the near-infrared spectrum and understanding the water structures in aqueous solution. Chemom. Intell. Lab. Syst. 2020, 206, 104150. [Google Scholar] [CrossRef]
- Sun, Q. Local statistical interpretation for water structure. Chem. Phys. Lett. 2013, 568, 90–94. [Google Scholar] [CrossRef]
- Renati, P.; Kovacs, Z.; Ninno, A.; Tsenkova, R. Temperature dependence analysis of the NIR spectra of liquid water confirms the existence of two phases, one of which is in a coherent state. J. Mol. Liq. 2019, 292, 111449. [Google Scholar] [CrossRef]
- Tsenkova, R. AquaPhotomics: Water absorbance pattern as a biological marker for disease diagnosis and disease understanding. NIR News 2007, 18, 14–16. [Google Scholar] [CrossRef]
- Tsenkova, R. Aquaphotomics: Water in the biological and aqueous world scrutinized with invisible light. Spectrosc. Eur. 2010, 22, 6–10. [Google Scholar]
- Tsenkova, R.; Muncan, J.; Pollner, B.; Kovacs, Z. Essentials of aquaphotomics and its chemometrics approaches. Front. Chem. 2018, 6, 363. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhu, X.W.; Cai, W.S.; Shao, X.G. Understanding the role of water in the aggregation of poly(N,N-dimethylaminoethyl methacrylate) in aqueous solution using temperature-dependent near-infrared spectroscopy. Phys. Chem. Chem. Phys. 2019, 21, 5780–5789. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Cai, W.S.; Shao, X.G. Understanding the interaction between oligopeptide and water in aqueous solution using temperature-dependent near-infrared spectroscopy. Appl. Spectrosc. 2018, 72, 1354–1361. [Google Scholar] [CrossRef]
- Shao, X.G.; Cui, X.Y.; Liu, Y.; Xia, Z.Z.; Cai, W.S. Understanding the molecular interaction in solutions by chemometric resolution of near-infrared Spectra. ChemistrySelect 2017, 2, 10027–10032. [Google Scholar] [CrossRef]
- Cui, X.Y.; Zhang, J.; Cai, W.S.; Shao, X.G. Selecting temperature-dependent variables in near-infrared spectra for aquaphotomics. Chemom. Intell. Lab. Syst. 2018, 183, 23–28. [Google Scholar] [CrossRef]
- Cai, W.S.; Li, Y.K.; Shao, X.G. A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra. Chemom. Intell. Lab. Syst. 2008, 90, 188–194. [Google Scholar] [CrossRef]
- Shao, X.G.; Cai, W.S. An application of the wavelet packets analysis to resolution of multicomponent overlapping analytical signals. Chem. Res. Chin. Univ. 1999, 20, 42–46. [Google Scholar]
- Han, L.; Sun, Y.; Wang, Y.; Fu, H.H.; Duan, C.S.; Wang, M.; Cai, W.S.; Shao, X.G. Ultra-high resolution near-infrared spectrum by wavelet packet transform revealing the hydrogen bond interactions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 289, 122233. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.G.; Kang, J.; Cai, W.S. Quantitative determination by temperature dependent near-infrared spectra. Talanta 2010, 82, 1017–1021. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Cai, W.S.; Shao, X.G. Quantitative determination by temperature dependent near-infrared spectra: A further study. Talanta 2011, 85, 420–424. [Google Scholar] [CrossRef]
- Cui, X.Y.; Zhang, J.; Cai, W.S.; Shao, X.G. Chemometric algorithms for analyzing high dimensional temperature dependent near infrared spectra. Chemom. Intell. Lab. Syst. 2017, 170, 109–117. [Google Scholar] [CrossRef]
- Shao, X.G.; Cui, X.Y.; Yu, X.M.; Cai, W.S. Mutual factor analysis for quantitative analysis by temperature dependent near infrared spectra. Talanta 2018, 183, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.T.; Sun, Y.; Guo, Y.C.; Cai, W.S.; Shao, X.G. Near infrared spectroscopy for low-temperature water structure analysis. Chem. Res. Chin. Univ. 2020, 41, 1968–1974. [Google Scholar]
- Su, T.; Sun, Y.; Han, L.; Cai, W.S.; Shao, X.G. Revealing the interactions of water with cryoprotectant and protein by near–infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 266, 120417. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Cai, W.S.; Shao, X.G. Analyzing the water confined in hydrogel using near-infrared spectroscopy. Appl. Spectrosc. 2022, 76, 773–782. [Google Scholar] [CrossRef]
- Wang, S.Y.; Wang, M.; Han, L.; Sun, Y.; Cai, W.S.; Shao, X.G. Insight into the stability of protein in confined environment through analyzing the structure of water by temperature-dependent nearinfrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 267, 120581. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; An, H.; Cai, W.; Shao, X. Wavelet Transform Makes Water an Outstanding Near-Infrared Spectroscopic Probe. Chemosensors 2023, 11, 37. https://doi.org/10.3390/chemosensors11010037
Wang M, An H, Cai W, Shao X. Wavelet Transform Makes Water an Outstanding Near-Infrared Spectroscopic Probe. Chemosensors. 2023; 11(1):37. https://doi.org/10.3390/chemosensors11010037
Chicago/Turabian StyleWang, Mian, Hongle An, Wensheng Cai, and Xueguang Shao. 2023. "Wavelet Transform Makes Water an Outstanding Near-Infrared Spectroscopic Probe" Chemosensors 11, no. 1: 37. https://doi.org/10.3390/chemosensors11010037
APA StyleWang, M., An, H., Cai, W., & Shao, X. (2023). Wavelet Transform Makes Water an Outstanding Near-Infrared Spectroscopic Probe. Chemosensors, 11(1), 37. https://doi.org/10.3390/chemosensors11010037