Potentiometric Sensor System with Self-Calibration for Long-Term, In Situ Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sensor System
2.3. Sensor Fabrication
2.4. Microchannel Fabrication
2.5. Sensor Characterization
2.6. Plant Sap Test
3. Results and Discussion
3.1. System Design
3.2. Sensor Fabrication and Microfluidic Enclosure
3.3. Sensor Performance
3.4. Self-Calibration and Plant Sap Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nemiroski, A.; Christodouleas, D.; Hennek, J.W.; Kumar, A.; Maxwell, E.J.; Fernández-Abedul, M.; Whitesides, G.M. Universal mobile electrochemical detector designed for use in resource-limited applications. Proc. Natl. Acad. Sci. USA 2014, 111, 11984–11989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauks, I.R. Microfabricated Biosensors and Microanalytical Systems for Blood Analysis. Acc. Chem. Res. 1998, 31, 317–324. [Google Scholar] [CrossRef]
- Sheikh, M.; Qassem, M.; Triantis, I.F.; Kyriacou, P.A. Advances in Therapeutic Monitoring of Lithium in the Management of Bipolar Disorder. Sensors 2022, 22, 736. [Google Scholar] [CrossRef] [PubMed]
- Lynch, A.; Diamond, D.; Leader, M. Point-of-need diagnosis of cystic fibrosis using a potentiometric ion-selective electrode array. Analyst 2000, 125, 2264–2267. [Google Scholar] [CrossRef]
- Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, A.; Burns, A.; Lenigk, R.; Gettings, R.; Ashe, J.; Porter, A.; McCaul, M.; Barrett, R.; Diamond, D.; White, P.; et al. A wearable patch for continuous monitoring of sweat electrolytes during exertion. Lab Chip 2018, 18, 2632–2641. [Google Scholar] [CrossRef]
- Huang, S.; Shih, W.; Chen, Y.; Wu, Y.; Chen, L. Ion composition profiling and pattern recognition of vegetable sap using a sol-id-contact ion-selective electrode array. Biosens. Bioelectron. 2021, 9, 100088. [Google Scholar]
- Cuartero, M.; Crespo, G.A.; Cherubini, T.; Pankratova, N.; Confalonieri, F.; Massa, F.; Tercier-Waeber, M.-L.; Abdou, M.; Schaefer, J.; Bakker, E. In Situ Detection of Macronutrients and Chloride in Seawater by Submersible Electrochemical Sensors. Anal. Chem. 2018, 90, 4702–4710. [Google Scholar] [CrossRef] [Green Version]
- Cuartero, M.; Pankratova, N.; Cherubini, T.; Crespo, G.A.; Massa, F.; Confalonieri, F.; Bakker, E. In Situ Detection of Species Relevant to the Carbon Cycle in Seawater with Submersible Potentiometric Probes. Environ. Sci. Technol. Lett. 2017, 4, 410–415. [Google Scholar] [CrossRef]
- Rousseau, C.R.; Bühlmann, P. Calibration-free potentiometric sensing with solid-contact ion-selective electrodes. TrAC Trends Anal. Chem. 2021, 140, 116277. [Google Scholar] [CrossRef]
- Calvo-López, A.; Puyol, M.; Casalta, J.; Alonso-Chamarro, J. Multi-parametric polymer-based potentiometric analytical mi-crosystem for future manned space missions. Anal. Chim. Acta 2017, 995, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Ceresa, A.; Sokalski, T.; Pretsch, E. Influence of key parameters on the lower detection limit and response function of solvent polymeric membrane ion-selective electrodes. J. Electroanal. Chem. 2001, 501, 70–76. [Google Scholar] [CrossRef]
- Lindner, E.; Gyurcsányi, R.; Buck, R. Tailored Transport Through Ion-Selective Membranes for Improved Detection Limits and Selectivity Coefficients. Electroanalysis 1999, 11, 695–702. [Google Scholar] [CrossRef]
- Zhang, Z.; Papautsky, I. Solid Contact Ion-selective Electrodes on Printed Circuit Board with Membrane Displacement. Electroanalysis 2022. [Google Scholar] [CrossRef]
- Goodger, J.Q.D.; Sharp, R.E.; Marsh, E.L.; Schachtman, D.P. Relationships between xylem sap constituents and leaf conductance of well-watered and water-stressed maize across three xylem sap sampling techniques. J. Exp. Bot. 2005, 56, 2389–2400. [Google Scholar] [CrossRef] [Green Version]
- Thermo Fisher Scientific. Potassium Ion Selective Electrode User Guide. Available online: www.thermofisher.com (accessed on 31 December 2022).
- Laser, D.; Santiago, J. A review of micropumps. J. Micromech. Microeng. 2004, 14, R35–R64. [Google Scholar] [CrossRef]
- Oh, K.; Ahn, C. A review of microvalves. J. Micromech. Microeng. 2006, 16, R13–R39. [Google Scholar] [CrossRef]
- Zhang, Z.; Papautsky, I. Miniature Ion-selective Electrodes with Mesoporous Carbon Black as Solid Contact. Electroanalysis 2021, 33, 2143–2151. [Google Scholar] [CrossRef]
- Merkel, T.; Graeber, M.; Pagel, L. A new technology for fluidic microsystems based on PCB technology. Sens. Actuators A Phys. 1999, 77, 98–105. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Dong, E.; Chen, H. USB-driven microfluidic chips on printed circuit boards. Lab Chip 2013, 14, 860–864. [Google Scholar] [CrossRef]
- Kontakis, K.; Petropoulos, A.; Kaltsas, G.; Speliotis, T.; Gogolides, E. A novel microfluidic integration technology for PCB-based devices: Application to microflow sensing. Microelectron. Eng. 2009, 86, 1382–1384. [Google Scholar] [CrossRef]
- Burdallo, I.; Jimenez-Jorquera, C.; Fernández-Sánchez, C.; Baldi, A. Integration of microelectronic chips in microfluidic systems on printed circuit board. J. Micromech. Microeng. 2012, 22, 105022. [Google Scholar] [CrossRef]
- Ghanim, M.H.; Abdullah, M.Z. Design of disposable DNA biosensor microchip with amperometric detection featuring PCB substrate. BioChip J. 2013, 7, 51–56. [Google Scholar] [CrossRef]
- Marshall, L.A.; Wu, L.L.; Babikian, S.; Bachman, M.; Santiago, J.G. Integrated Printed Circuit Board Device for Cell Lysis and Nucleic Acid Extraction. Anal. Chem. 2012, 84, 9640–9645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nath, P.; Fung, D.; Kunde, Y.A.; Zeytun, A.; Branch, B.; Goddard, G. Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes. Lab Chip 2010, 10, 2286–2291. [Google Scholar] [CrossRef]
- Bhattacharjee, N.; Urrios, A.; Kang, S.; Folch, A. The upcoming 3D-printing revolution in microfluidics. Lab Chip 2016, 16, 1720–1742. [Google Scholar] [CrossRef] [Green Version]
- Moschou, D.; Trantidou, T.; Regoutz, A.; Carta, D.; Morgan, H.; Prodromakis, T. Surface and Electrical Characterization of Ag/AgCl Pseudo-Reference Electrodes Manufactured with Commercially Available PCB Technologies. Sensors 2015, 15, 18102–18113. [Google Scholar] [CrossRef] [Green Version]
- Papamatthaiou, S.; Zupancic, U.; Kalha, C.; Regoutz, A.; Estrela, P.; Moschou, D. Ultra stable, inkjet-printed pseudo reference electrodes for lab-on-chip integrated electrochemical biosensors. Sci. Rep. 2020, 10, 17152. [Google Scholar] [CrossRef]
- Bühlmann, P.; Amemiya, S.; Yajima, S.; Umezawa, Y. Co-Ion Interference for Ion-Selective Electrodes Based on Charged and Neutral Ionophores: A Comparison. Anal. Chem. 1998, 70, 4291–4303. [Google Scholar] [CrossRef]
- Bahrun, A.; Jensen, C.; Asch, F.; Mogensen, V. Drought-induced changes in xylem pH, ionic composition, and ABA concentration act as early signals in field-grown maize (Zea mays L.). J. Exp. Bot. 2002, 53, 251–263. [Google Scholar] [CrossRef]
Sample | K + _Our Sensor (mM) | K + _Commercial (mM) | NO3−_Our Sensor (mM) | NO3−_Commercial (mM) |
---|---|---|---|---|
1 | 9.59 ± 0.48 (n = 16) | 10.98 ± 0.15 (n = 3) | 1.63 ± 0.57 (n = 16) | 0.62 ± 0.19 (n = 3) |
2 | 14.37 ± 0.98 (n = 16) | 14.94 ± 0.34 (n = 3) | 4.76 ± 0.56 (n = 16) | 3.01 ± 0.2 (n = 3) |
3 | 17.46 ± 1.5 (n = 4) | 14.17 ± 1.59 (n = 4) | 1.9 ± 0.52 (n = 4) | 0.63 ± 0.23 (n = 4) |
4 | 24.02 ± 1.52 (n = 8) | 20.64 ± 0.92 (n = 8) | 15.59 ± 1.05 (n = 12) | 14.07 ± 1.03 (n = 8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Boselli, E.; Papautsky, I. Potentiometric Sensor System with Self-Calibration for Long-Term, In Situ Measurements. Chemosensors 2023, 11, 48. https://doi.org/10.3390/chemosensors11010048
Zhang Z, Boselli E, Papautsky I. Potentiometric Sensor System with Self-Calibration for Long-Term, In Situ Measurements. Chemosensors. 2023; 11(1):48. https://doi.org/10.3390/chemosensors11010048
Chicago/Turabian StyleZhang, Zhehao, Elena Boselli, and Ian Papautsky. 2023. "Potentiometric Sensor System with Self-Calibration for Long-Term, In Situ Measurements" Chemosensors 11, no. 1: 48. https://doi.org/10.3390/chemosensors11010048
APA StyleZhang, Z., Boselli, E., & Papautsky, I. (2023). Potentiometric Sensor System with Self-Calibration for Long-Term, In Situ Measurements. Chemosensors, 11(1), 48. https://doi.org/10.3390/chemosensors11010048