Overview of Various Components of Lateral-Flow Immunochromatography Assay for the Monitoring of Aflatoxin and Limit of Detection in Food Products: A Systematic Review
Abstract
:1. Introduction
1.1. Detection of Aflatoxin
1.2. Principle of LFIA
1.3. Components of LFIA
1.4. Role of Signal Indicators and Antibody Conjugation in Nanoparticle-Based LFIA
2. Research Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shabeer, S.; Asad, S.; Jamal, A.; Ali, A. Aflatoxin Contamination, Its Impact and Management Strategies: An Updated Review. Toxins 2022, 14, 307. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; You, L.; Wu, W.; Long, M.; Kuca, K. Mycotoxins: Emerging toxic mechanisms, and unanswered research questions. Food Chem. Toxicol. 2023, 174, 113673. [Google Scholar] [CrossRef]
- Janik, E.; Niemcewicz, M.; Ceremuga, M.; Stela, M.; Saluk-Bijak, J.; Siadkowski, A.; Bijak, M. Molecular aspects of mycotoxins—A serious problem for human health. Int. J. Mol. Sci. 2020, 21, 8187. [Google Scholar] [CrossRef] [PubMed]
- Cvak, B.; Warth, B.; Atehnkeng, J.; Parich, A.; Moritz, A.; Sulyok, M.; Krska, R. Evaluating the performance of lateral flow devices for total aflatoxins with special emphasis on their robustness under sub-saharan conditions. Toxins 2021, 13, 742. [Google Scholar] [CrossRef]
- Mwakinyali, S.E.; Ming, Z.; Xie, H.; Zhang, Q.; Li, P. Investigation and Characterization of Myroides odoratimimus Strain 3J2MO Aflatoxin B 1 Degradation. J. Agric. Food Chem. 2019, 67, 4595–4602. [Google Scholar] [CrossRef]
- Orlov, A.V.; Malkerov, J.A.; Novichikhin, D.O.; Znoyko, S.L.; Nikitin, P.I. Express high-sensitive detection of ochratoxin A in food by a lateral flow immunoassay based on magnetic biolabels. Food Chem. 2022, 383, 132427. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Liu, L.; Song, S.; Suryoprabowo, S.; Li, A.; Kuang, H.; Wang, L.; Xu, C. A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins. Nanoscale 2016, 8, 5245–5253. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, X.; Wang, X.; Sun, C.; Wang, X.; Zhang, P.; Qiu, J.; Yang, R.; Zhou, L. Development and evaluation of an up-converting phosphor technology-based lateral flow assay for rapid and quantitative detection of aflatoxin B1 in crops. Talanta 2016, 161, 297–303. [Google Scholar] [CrossRef]
- Bahadır, E.B.; Sezgintürk, M.K. Lateral flow assays: Principles, designs and labels. TrAC—Trends Anal. Chem. 2016, 82, 286–306. [Google Scholar] [CrossRef]
- Low, S.C.; Shaimi, R.; Thandaithabany, Y.; Lim, J.K.; Ahmad, A.L.; Ismail, A. Electrophoretic interactions between nitrocellulose membranes and proteins: Biointerface analysis and protein adhesion properties. Colloids Surf. B Biointerfaces 2013, 110, 248–253. [Google Scholar] [CrossRef]
- Sajid, M.; Kawde, A.N.; Daud, M. Designs, formats and applications of lateral flow assay: A literature review. J. Saudi Chem. Soc. 2015, 19, 689–705. [Google Scholar] [CrossRef]
- Xing, K.Y.; Shan, S.; Liu, D.F.; Lai, W.H. Recent advances of lateral flow immunoassay for mycotoxins detection. TrAC—Trends Anal. Chem. 2020, 133, 116087. [Google Scholar] [CrossRef]
- Mirica, A.C.; Stan, D.; Chelcea, I.C.; Mihailescu, C.M.; Ofiteru, A.; Bocancia-Mateescu, L.A. Latest Trends in Lateral Flow Immunoassay (LFIA) Detection Labels and Conjugation Process. Front. Bioeng. Biotechnol. 2022, 10, 922772. [Google Scholar] [CrossRef]
- Dong, J.; Carpinone, P.L.; Pyrgiotakis, G.; Demokritou, P.; Moudgil, B.M. Synthesis of precision gold nanoparticles using Turkevich method. KONA Powder Part. J. 2020, 37, 224–232. [Google Scholar] [CrossRef]
- Conrad, M.; Proll, G.; Builes-Münden, E.; Dietzel, A.; Wagner, S.; Gauglitz, G. Tools to compare antibody gold nanoparticle conjugates for a small molecule immunoassay. Microchim. Acta 2023, 190, 62. [Google Scholar] [CrossRef]
- Koczula, K.M.; Gallotta, A. Lateral flow assays. Essays Biochem. 2016, 60, 111–120. [Google Scholar] [CrossRef]
- Zhang, L.; Mazouzi, Y.; Salmain, M.; Liedberg, B.; Boujday, S. Antibody-Gold Nanoparticle Bioconjugates for Biosensors: Synthesis, Characterization and Selected Applications. Biosens. Bioelectron. 2020, 165, 112370. [Google Scholar] [CrossRef]
- Razo, S.C.; Elovenkova, A.I.; Safenkova, I.V.; Drenova, N.V.; Varitsev, Y.A.; Zherdev, A.V.; Dzantiev, B.B. Comparative study of four coloured nanoparticle labels in lateral flow immunoassay. Nanomaterials 2021, 11, 3277. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.P.; Prado, A.R.; Keijok, W.J.; Antunes, P.W.P.; Yapuchura, E.R.; Guimarães, M.C.C. Impact of conjugation strategies for targeting of antibodies in gold nanoparticles for ultrasensitive detection of 17β-estradiol. Sci. Rep. 2019, 9, 13859. [Google Scholar] [CrossRef]
- Sojinrin, T.; Liu, K.; Wang, K.; Cui, D.; Byrne, H.J.; Curtin, J.F.; Tian, F. Developing gold nanoparticles-conjugated aflatoxin B1 antifungal strips. Int. J. Mol. Sci. 2019, 20, 6260. [Google Scholar] [CrossRef]
- Thornton, C.R. Lateral-Flow Device for Diagnosis of Fungal Infection. Curr. Fungal Infect. Rep. 2013, 7, 244–251. [Google Scholar] [CrossRef]
- Liu, D.; Huang, Y.; Wang, S.; Liu, K.; Chen, M.; Xiong, Y.; Yang, W.; Lai, W. A modified lateral flow immunoassay for the detection of trace aflatoxin M1 based on immunomagnetic nanobeads with different antibody concentrations. Food Control 2015, 51, 218–224. [Google Scholar] [CrossRef]
- Liu, B.H.; Chu, K.C.; Yu, F.Y. Novel monoclonal antibody-based sensitive enzyme-linked immunosorbent assay and rapid immunochromatographic strip for detecting aflatoxin M1 in milk. Food Control 2016, 66, 1–7. [Google Scholar] [CrossRef]
- Zhang, X.; Wen, K.; Wang, Z.; Jiang, H.; Beier, R.C.; Shen, J. An ultra-sensitive monoclonal antibody-based fluorescent microsphere immunochromatographic test strip assay for detecting aflatoxin M1 in milk. Food Control 2015, 60, 588–595. [Google Scholar] [CrossRef]
- Wang, C.; Peng, J.; Liu, D.F.; Xing, K.Y.; Zhang, G.G.; Huang, Z.; Cheng, S.; Zhu, F.F.; Duan, M.L.; Zhang, K.Y.; et al. Lateral flow immunoassay integrated with competitive and sandwich models for the detection of aflatoxin M1 and Escherichia coli O157:H7 in milk. J. Dairy Sci. 2018, 101, 8767–8777. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Gong, L.; Wang, J.; Zhang, X.; Jin, Y.; Zhao, R.; Yang, C.; He, L.; Feng, X.; Chen, Y. An octuplex lateral flow immunoassay for rapid detection of antibiotic residues, aflatoxin M1 and melamine in milk. Sens. Actuators B Chem. 2019, 292, 94–104. [Google Scholar] [CrossRef]
- Mwanza, M.; Abdel-Hadi, A.; Ali, A.M.; Egbuta, M. Evaluation of analytical assays efficiency to detect aflatoxin M1 in milk from selected areas in Egypt and South Africa. J. Dairy Sci. 2015, 98, 6660–6667. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Li, M.; Xing, F.; Wang, H.; Zhang, Y.; Sun, X. Novel dual immunochromatographic test strip based on double antibodies and biotin-streptavidin system for simultaneous sensitive detection of aflatoxin M1 and ochratoxin A in milk. Food Chem. 2021, 375, 131682. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Q.; Jin, Y.; Zhang, X.; He, L.; Zhang, W.; Chen, Y. Surface enhanced Raman scattering-based lateral flow immunosensor for sensitive detection of aflatoxin M1 in urine. Anal. Chim. Acta 2020, 1128, 184–192. [Google Scholar] [CrossRef]
- Singh, H.; Singh, S.; Bhardwaj, S.K.; Kaur, G.; Khatri, M.; Deep, A.; Bhardwaj, N. Development of carbon quantum dot-based lateral flow immunoassay for sensitive detection of aflatoxin M1 in milk. Food Chem. 2022, 393, 133374. [Google Scholar] [CrossRef]
- Liu, J.W.; Lu, C.C.; Liu, B.H.; Yu, F.Y. Development of novel monoclonal antibodies-based ultrasensitive enzyme-linked immunosorbent assay and rapid immunochromatographic strip for aflatoxin B1 detection. Food Control 2016, 59, 700–707. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Q.; Han, M.; Zhou, J.; Gong, L.; Niu, Y.; Zhang, Y.; He, L.; Zhang, L. Development and optimization of a multiplex lateral flow immunoassay for the simultaneous determination of three mycotoxins in corn, rice and peanut. Food Chem. 2016, 213, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Urusov, A.E.; Petrakova, A.V.; Zherdev, A.V.; Dzantiev, B.B. ‘Multistage in one touch’ design with a universal labelling conjugate for high-sensitive lateral flow immunoassays. Biosens. Bioelectron. 2016, 86, 575–579. [Google Scholar] [CrossRef]
- Hu, S.; Dou, X.; Zhang, L.; Xie, Y.; Yang, S.; Yang, M. Rapid detection of aflatoxin B1 in medicinal materials of radix and rhizome by gold immunochromatographic assay. Toxicon 2018, 150, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Mwalwayo, D.S.; Thole, B. Prevalence of aflatoxin and fumonisins (B1+B2) in maize consumed in rural Malawi. Toxicol. Rep. 2016, 3, 173–179. [Google Scholar] [CrossRef]
- Yu, L.; Li, P.; Ding, X.; Zhang, Q. Graphene oxide and carboxylated graphene oxide: Viable two-dimensional nanolabels for lateral flow immunoassays. Talanta 2017, 165, 167–175. [Google Scholar] [CrossRef]
- Ji, Y.; Ren, M.; Li, Y.; Huang, Z.; Shu, M.; Yang, H.; Xiong, Y.; Xu, Y. Detection of aflatoxin B1 with immunochromatographic test strips: Enhanced signal sensitivity using gold nanoflowers. Talanta 2015, 142, 206–212. [Google Scholar] [CrossRef]
- Liu, D.; Huang, Y.; Chen, M.; Wang, S.; Liu, K.; Lai, W. Rapid detection method for aflatoxin B1 in soybean sauce based on fluorescent microspheres probe. Food Control 2015, 50, 659–662. [Google Scholar] [CrossRef]
- Yu, S.; He, L.; Yu, F.; Liu, L.; Qu, C.; Qu, L.; Liu, J.; Wu, Y.; Wu, Y. A lateral flow assay for simultaneous detection of Deoxynivalenol, Fumonisin B1 and Aflatoxin B1. Toxicon 2018, 156, 23–27. [Google Scholar] [CrossRef]
- Di Nardo, F.; Alladio, E.; Baggiani, C.; Cavalera, S.; Giovannoli, C.; Spano, G.; Anfossi, L. Colour-encoded lateral flow immunoassay for the simultaneous detection of aflatoxin B1 and type-B fumonisins in a single Test line. Talanta 2018, 192, 288–294. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, G.; Huang, Y.; Yang, S.; Ren, S.; Gao, Z.; Chen, A. Dual-competitive lateral flow aptasensor for detection of aflatoxin B1 in food and feedstuffs. J. Hazard. Mater. 2018, 344, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhou, Y.; Huang, H.; Chen, X.; Leng, Y.; Lai, W.; Huang, X.; Xiong, Y. Engineered gold nanoparticles as multicolor labels for simultaneous multi-mycotoxin detection on the immunochromatographic test strip nanosensor. Sens. Actuators B Chem. 2020, 316, 128107. [Google Scholar] [CrossRef]
- Liu, Z.; Hua, Q.; Wang, J.; Liang, Z.; Li, J.; Wu, J.; Shen, X.; Lei, H.; Li, X. A smartphone-based dual detection mode device integrated with two lateral flow immunoassays for multiplex mycotoxins in cereals. Biosens. Bioelectron. 2020, 158, 112178. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, S.; Jin, Y.; Yang, C.; He, L.; Wang, J.; Chen, Y. Multiplex SERS-based lateral flow immunosensor for the detection of major mycotoxins in maize utilizing dual Raman labels and triple test lines. J. Hazard. Mater. 2020, 393, 122348. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Wang, H.; Sun, C.; Zhao, Y.; He, Y.; Nisar, M.S.; Wei, W.; Kang, H.; Xie, X.; Du, C.; et al. Au@SiO2 SERS nanotags based lateral flow immunoassay for simultaneous detection of aflatoxin B1 and ochratoxin A. Talanta 2023, 258, 124401. [Google Scholar] [CrossRef]
- Singh, P.; Cotty, P.J. Aflatoxin contamination of dried red chilies: Contrasts between the United States and Nigeria, two markets differing in regulation enforcement. Food Control 2017, 80, 374–379. [Google Scholar] [CrossRef]
- Bu, T.; Bai, F.; Sun, X.; Tian, Y.; Zhang, M.; Zhao, S.; He, K.; Wang, X.; Jia, P.; Wang, L. An innovative prussian blue nanocubes decomposition-assisted signal amplification strategy suitable for competitive lateral flow immunoassay to sensitively detect aflatoxin B1. Food Chem. 2021, 344, 128711. [Google Scholar] [CrossRef] [PubMed]
- Xing, C.; Dong, X.; Xu, T.; Yuan, J.; Yan, W.; Sui, X.; Zhao, X. Analysis of multiple mycotoxins-contaminated wheat by a smart analysis platform. Anal. Biochem. 2020, 610, 113928. [Google Scholar] [CrossRef]
- He, K.; Bu, T.; Zhao, S.; Bai, F.; Zhang, M.; Tian, Y.; Sun, X.; Dong, M.; Wang, L. Well-orientation strategy for direct binding of antibodies: Development of the immunochromatographic test using the antigen modified Fe2O3 nanoprobes for sensitive detection of aflatoxin B1. Food Chem. 2021, 364, 129583. [Google Scholar] [CrossRef] [PubMed]
- Charlermroj, R.; Phuengwas, S.; Makornwattana, M.; Sooksimuang, T.; Sahasithiwat, S.; Panchan, W.; Sukbangnop, W.; Elliott, C.T.; Karoonuthaisiri, N. Development of a microarray lateral flow strip test using a luminescent organic compound for multiplex detection of five mycotoxins. Talanta 2021, 233, 122540. [Google Scholar] [CrossRef]
- Cai, X.; Liang, M.; Ma, F.; Zhang, Z.; Tang, X.; Jiang, J.; Guo, C.; Mohamed, S.R.; Goda, A.A.; Dawood, D.H.; et al. Nanozyme-strip based on MnO2 nanosheets as a catalytic label for multi-scale detection of aflatoxin B1 with an ultrabroad working range. Food Chem. 2022, 377, 131965. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Deng, C.; Qian, S.; Li, H.; Fu, P.; Zhou, H.; Zheng, J. An ultrasensitive lateral flow immunoassay platform for foodborne biotoxins and pathogenic bacteria based on carbon-dots embedded mesoporous silicon nanoparticles fluorescent reporter probes. Food Chem. 2023, 399, 133970. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Zhang, Y.; Wang, S.; Guo, J.; Wang, J. A highly sensitive photothermal immunochromatographic sensor for detection of aflatoxin B1 based on Cu2-xSe-Au nanoparticles. Food Chem. 2023, 401, 134065. [Google Scholar] [CrossRef] [PubMed]
- Vijitvarasan, P.; Cheunkar, S.; Oaew, S. A point-of-use lateral flow aptasensor for naked-eye detection of aflatoxin B1. Food Control 2021, 134, 108767. [Google Scholar] [CrossRef]
- Chen, J.; Luo, P.; Liu, Z.; He, Z.; Pang, Y.; Lei, H.; Xu, Z.; Wang, H.; Li, X. Rainbow latex microspheres lateral flow immunoassay with smartphone-based device for simultaneous detection of three mycotoxins in cereals. Anal. Chim. Acta 2022, 1221, 340138. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, P.; Wang, D.; Jiang, J.; Chen, X.; Liu, Y.; Zhang, Z.; Tang, B.Z.; Li, P. AIEgens enabled ultrasensitive point-of-care test for multiple targets of food safety: Aflatoxin B1 and cyclopiazonic acid as an example. Biosens. Bioelectron. 2021, 182, 113188. [Google Scholar] [CrossRef]
- Mousivand, M.; Javan-Nikkhah, M.; Anfossi, L.; Di Nardo, F.; Salina, M.; Bagherzadeh, K. High performance aptasensing platform development through in silico aptamer engineering for aflatoxin B1 monitoring. Food Control 2023, 145, 109418. [Google Scholar] [CrossRef]
- Chen, W.; Cai, F.; Wu, Q.; Wu, Y.; Yao, B.; Xu, J. Prediction, evaluation, confirmation, and elimination of matrix effects for lateral flow test strip based rapid and on-site detection of aflatoxin B1 in tea soups. Food Chem. 2020, 328, 127081. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Zhang, L.; Li, J.; Ouyang, H.; Fu, Z. Pressure/colorimetric dual-readout immunochromatographic test strip for point-of-care testing of aflatoxin B1. Talanta 2021, 227, 122203. [Google Scholar] [CrossRef]
- Jia, B.; Liao, X.; Sun, C.; Fang, L.; Zhou, L.; Kong, W. Development of a quantum dot nanobead-based fluorescent strip immunosensor for on-site detection of aflatoxin B1 in lotus seeds. Food Chem. 2021, 356, 129614. [Google Scholar] [CrossRef]
- Zheng, S.; Wu, T.; Li, J.; Jin, Q.; Xiao, R.; Wang, S.; Wang, C. Difunctional immunochromatographic assay based on magnetic quantum dot for ultrasensitive and simultaneous detection of multiple mycotoxins in foods. Sens. Actuators B Chem. 2022, 359, 131528. [Google Scholar] [CrossRef]
- Lu, Y.N.; Shan, Y.; Huang, H.; Zhu, L.; Li, B.; Wang, S.; Liu, F. Quantum dot microsphere-based immunochromatography test strip enabled sensitive and quantitative on-site detections for multiple mycotoxins in grains. Food Chem. 2021, 376, 131868. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sun, J.; Ye, J.; Wang, L.; Sun, X. One-step extraction and simultaneous quantitative fluorescence immunochromatography strip for AFB1 and Cd detection in grain. Food Chem. 2021, 374, 131684. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Yu, B.; Li, Z.; Li, Z.; Shi, G. Comparison of lateral flow immunoassays based on oriented and nonoriented immobilization of antibodies for the detection of aflatoxin B1. Anal. Chim. Acta 2022, 1221, 340135. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, H.; Sun, J.; Ji, J.; Ye, Y.; Lu, X.; Zhang, Y.; Sun, X. Rapid, on-site, and sensitive detection of aflatoxin M1 in milk products by using time-resolved fluorescence microsphere test strip. Food Control 2020, 121, 107616. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, J.; Xie, J.; Huang, Z. Development of two immunochromatographic test strips based on gold nanospheres and gold nanoflowers for the rapid and simultaneous detection of aflatoxin B1 and aristolochic acid a in dual-use medicinal and food ingredients. Microchem. J. 2023, 186, 108307. [Google Scholar] [CrossRef]
- Jiang, H.; Su, H.; Wu, K.; Dong, Z.; Li, X.; Nie, L.; Leng, Y.; Xiong, Y. Multiplexed lateral flow immunoassay based on inner filter effect for mycotoxin detection in maize. Sens. Actuators B Chem. 2023, 374, 132793. [Google Scholar] [CrossRef]
- Shi, H.; Stroshine, R.L.; Ileleji, K. Determination of the relative effectiveness of four food additives in degrading aflatoxin in distillers wet grains and condensed distillers solubles. J. Food Prot. 2017, 80, 90–95. [Google Scholar] [CrossRef]
- Kachapulula, P.W.; Akello, J.; Bandyopadhyay, R.; Cotty, P.J. Aflatoxin contamination of dried insects and fish in Zambia. J. Food Prot. 2018, 81, 1508–1518. [Google Scholar] [CrossRef]
Type of Aflatoxin | Particle | Size nm | Shape | Year | Detection Method | LOD ng/mL | COV % | Sensitive Toxins | Reference |
---|---|---|---|---|---|---|---|---|---|
AFM1 | Magnetic | 180 | - | 2015 | ELISA | 0.02 | - | - | [21] |
GNPs | 40 | - | 2016 | Lateral-flow assay | 0.1 | - | - | [22] | |
Fluorescent microsphere | - | - | 2016 | FM-ICTS assay | 0.0044 | 4–14.7 | AFM2,AFB1, AFB2, AFG1 and AFG2 | [23] | |
GNP | 24 | - | 2018 | Lateral-flow assay | 0.05 | 3.9–8.5 | AFB1 | [24] | |
GNP | 35 | - | 2019 | Lateral-flow assay | 0.016 | - | - | [25] | |
GNP | - | - | 2015 | ELISA, HPLC | 0.50 | - | - | [26] | |
Fluorescent microspheres (TRFMs) | 329 | Sphere | 2022 | Dual ICTS/UPLC-MS | 0.018 | 2.84–7.48 | OTA | [27] | |
Au@Ag core-shell NPs | 38–98 | - | 2020 | SERS immune-assay | 0.0017 | 11.4–16.7 | - | [28] | |
Carbon quantum dots | 8 | Quasi-Sphere | 2022 | Lateral-flow assay | 0.07 | - | - | [29] | |
AFB1 | Gold nanoparticle | - | - | 2016 | ELISA, Lateral-flow assay | 1.0 | - | - | [30] |
GNP | 32 | - | 2016 | Multiplex lateral-flow assay | 0.0001–0.00013 | <16.7 | ZEN, OTA | [31] | |
GNP | - | - | 2016 | Multistage ICTS | 0.6 | <8 | ZEN | [32] | |
GNP | 17.4 | - | 2018 | LC-MS/MS | 0.1 | - | - | [33] | |
Phosphors (UCPs) | 50 | - | 2016 | Lateral-flow assay | 0.0001–0.005 | 1.0–9.4 | - | [34] | |
Graphene | - | - | 2017 | Lateral-flow assay | 0.3 | - | - | [35] | |
GNP | 75 ± 5 | Flower | 2015 | ICTS | 0.00032 ng/mL | 4.8 | AFG1, AFG2, AFM1, AFB2, ZEN, OTA, DON | [36] | |
Fluorescent microsphere | - | - | 2015 | ICTS/LC-MS | 0.0025 | - | - | [37] | |
GNP | 20–60 | - | 2018 | Lateral-flow assay | 0.1 | - | DON, FB1 | [38] | |
Multicolour GNP + phone | 30/75 | Sphere Rose | 2019 | Lateral-flow assay | 1 | - | FB | [39] | |
Cy5-aptamer | - | - | 2018 | Dual lateral-flow assay | 0.1 | >5 | AFM1, AFM2 AFG1 | [40] | |
GNPs | 36/120 | Sphere/flower- | 2020 | ICTS | 0.06 | <13.0 | AFB1, ZEN, OTA | [41] | |
Fluorescent microspheresPhone | TRFMs- 200 | - | 2020 | Lateral-flow assay | 0.00004 | 8.7–15.8 | ZEN, DON, T-2, FB1 | [42] | |
Ag GNPs | Au 52 Ag 91 | - | 2020 | SERS–lateral-flow assay | 0.00096 | 9.9–15.6 | ZEN; FB1, DON, OTA, T-2 toxin | [43] | |
Nanotags GNPs | 61.34 | Sphere | 2023 | Lateral-flow assay | 0.00024 | - | OTA | [44] | |
GNPs | - | - | 2017 | Lateral-flow assay | 0.002 | - | - | [45] | |
Prussian nlue nanocubes (PBNs) | 950 | Cubic | 2021 | Lateral-flow assay | 0.023 | - | AFB2, AFG2 | [46] | |
GNP + phone | - | - | 2020 | Multiplex ICTS | 0.004 | - | FB1, T-2, DON, ZEN | [47] | |
Iron | 79.5/3 | Cubic | 2021 | ICTS | 0.0125 | - | FB2, AFG1 | [48] | |
Luminescent compound (LOC) | - | - | 2021 | Lateral-flow assay | 1.3 | - | DON, FB1, T-2 T-2, ZON | [49] | |
MnO2 nanosheets | 100/300 | Sheet | 2022 | Enzyme-based LFA | 0.015 | <9.7 | - | [50] | |
Fluorescent nanobeads | 247 | Uniform | 2023 | Lateral-flow assay | 0.05 | - | - | [51] | |
Cu2-xSe- GNP | 46.3 /7.7 | Flower | 2023 | Optical camera, thermal imager | 0.00842 | 5.62 | AFB2, AFM1, AFG1, AFG2 | [52] | |
Dyed particles | - | - | 2022 | Lateral-flow assay | 4.56 | - | - | [53] | |
Latex microspheres (LMs) | 200 | Sphere | 2022 | Lateral-flow assay | 0.00004 | 3.0–5.2 | T-2, ZEN | [54] | |
Luminogens (AIEgens) | 60 | Sphere | 2021 | UPLC-MS/MS | 0.003 | 4.6–6.7 | - | [55] | |
GNP | 30 | - | 2023 | Computational, RPI platform | 0.1–0.5 | - | - | [56] | |
GNP | - | - | 2020 | Lateral-flow assay | 0.05 | - | - | [57] | |
Dendritic platinum nanoparticles (DPNs) | 30 | Crystalline | 2021 | ICTS | 0.03 | - | [58] | ||
Quantum-dot nanobeads (QBs) | 50–100 | Quasi-sphere | 2021 | LC-MS/MS | 1 | - | - | [59] | |
Magnetic quantum dot (QD) | 220 | - | 2022 | ICTS | 0.00042 | - | OTA, FB1 | [60] | |
Quantum -dot microsphere (QDM) | 164 | - | 2022 | ICTS | 0.01 | 10.4 | OTA, ZEN | [61] | |
Fluorescent microsphere | - | - | 2022 | ICTS | 0.021 | <8 | - | [62] | |
Fluorescent microsphere | - | - | 2022 | Lateral-flow assay | 0.035 | <8 | - | [63] | |
Fluorescent microsphere | 310.8 | - | 2021 | ICTS | 0.019 | 4.91–8.31 | - | [64] | |
GNP | 30/ 15 | Sphere Flower | 2023 | ICTS | 0.1 | - | - | [65] | |
GNP Red-emitting quantum dots | 74 | Flower | 2023 | Lateral-flow assay | 0.005 | 15.43 | OTA, ZEN | [66] | |
- | - | - | 2017 | Commercial lateral-flow device | <3 | <10.7 | - | [67] | |
Total aflatoxins (B1, B2, G1, G2) | GNPs | - | - | 2018 | Lateral = flow assay | 0.002 | - | - | [68] |
GNPs | - | - | 2016 | Lateral-flow assay | 0.002–0.15 | - | FA and FB | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahjahan, T.; Javed, B.; Sharma, V.; Tian, F. Overview of Various Components of Lateral-Flow Immunochromatography Assay for the Monitoring of Aflatoxin and Limit of Detection in Food Products: A Systematic Review. Chemosensors 2023, 11, 520. https://doi.org/10.3390/chemosensors11100520
Shahjahan T, Javed B, Sharma V, Tian F. Overview of Various Components of Lateral-Flow Immunochromatography Assay for the Monitoring of Aflatoxin and Limit of Detection in Food Products: A Systematic Review. Chemosensors. 2023; 11(10):520. https://doi.org/10.3390/chemosensors11100520
Chicago/Turabian StyleShahjahan, Thasmin, Bilal Javed, Vinayak Sharma, and Furong Tian. 2023. "Overview of Various Components of Lateral-Flow Immunochromatography Assay for the Monitoring of Aflatoxin and Limit of Detection in Food Products: A Systematic Review" Chemosensors 11, no. 10: 520. https://doi.org/10.3390/chemosensors11100520
APA StyleShahjahan, T., Javed, B., Sharma, V., & Tian, F. (2023). Overview of Various Components of Lateral-Flow Immunochromatography Assay for the Monitoring of Aflatoxin and Limit of Detection in Food Products: A Systematic Review. Chemosensors, 11(10), 520. https://doi.org/10.3390/chemosensors11100520