Fiber-Optic Nanosensors for Chemical Detection
Abstract
:1. Introduction
2. Fiber-Optic Nanotip Sensors
2.1. Fiber Nanotip Preparation
2.2. Fiber Nanotip Sensor Functionalization and Interrogation
2.3. Fiber Nanotip Chemical Sensors
Transducer | Tip Apex Diameter [nm] | Polymer | Reference | |
---|---|---|---|---|
pH | Fluoresceinamine derivative | 100 | polyacrylamide | [36,57] |
Ca2+ | Calcium green-dextran | 100 | - | [60] |
Oxygen | Ru complex 1 | 100 | polyacrylamide | [63] |
pH | BTB-Ru complex 1 | 50 and 300 | polyHEMA | [54] |
Cl− | Cl− carrier-CTAB and Chromoionophore 1 | 50 and 300 | PVC | [54] |
Cl− | Indium porphyrine and chromoionophore 2 | 300–700 | PVC | [61] |
NO2− | vitamin B12 derivative and chromoionophore 3 | 300–700 | PVC | [61] |
K+ | Valinomycin and chromoionophore 4 | 50 and 300 | PVC copolymer | [55] |
RI | - | 50 | - | [56] |
2.4. Fiber Nanotip Biosensors
2.5. Fiber-Optic Nanotip Sensors for Raman Spectroscopy
2.6. Fiber-Optic Nanotips for Electro-Optical Detection
3. Fiber-Optic Sensing Nanoarrays
3.1. Fabrication of Fiber-Optic Nanoarrays from Fiber Bundles
3.1.1. Fiber Nanoarrays Prepared by Wet Etching of Fiber Bundles
3.1.2. Fiber Nanoarrays on Single Fibers
3.2. Fiber-Optic Array Chemical Sensors and Biosensors
3.2.1. Fiber-Optic Microsensing Arrays
3.2.2. Fabrication of Fiber-Optic Sensing Nanoarrays
3.3. Fiber-Optic Sensing Nanoarrays Coated with Metallic Nanolayerss
3.3.1. SERS on Metal Arrays on Distal Faces of Single Optical Fibers
3.3.2. SERS on Nanoarrays Prepared on Imaging Fibers
3.4. Opto-Electrochemical Sensing by Fiber-Optic Nanoarrays
4. Surface Plasmon Resonance Sensors
4.1. Fabrication of Fiber-Optic SPR Sensors
4.2. Fiber-Optic SPR Sensors for Chemical Sensing
4.2.1. Fiber-Optic SPR Gas Sensors
4.2.2. Fiber-Optic SPR Sensors for Detection in Solutions
5. Novel Directions in Fiber-Optic Chemical Nanosensors
5.1. FO Chemical Sensors with 0D Sensing Nanomaterials
5.2. FO Chemical Sensors with 1D Sensing Nanomaterials
5.3. FO Chemical Sensors Based on 2D Nanomaterials
6. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors. Anal. Chem. 2002, 74, 2662–2678. [Google Scholar] [CrossRef]
- Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors. Anal. Chem. 2004, 76, 3269–3284. [Google Scholar] [CrossRef]
- Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors. Anal. Chem. 2006, 78, 3859–3874. [Google Scholar] [CrossRef]
- Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors. Anal. Chem. 2008, 80, 4269–4283. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-D.; Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors (2008−2012). Anal. Chem. 2013, 85, 487–508. [Google Scholar] [CrossRef]
- Wang, X.-D.; Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors (2013−2015). Anal. Chem. 2016, 88, 203–227. [Google Scholar] [CrossRef]
- Wang, X.-D.; Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors (2015−2019). Anal. Chem. 2020, 92, 397–430. [Google Scholar] [CrossRef] [PubMed]
- Borisov, S.M.; Wolfbeis, O.S. Optical Biosensors. Anal. Chem. 2008, 108, 423–461. [Google Scholar] [CrossRef] [PubMed]
- Abdelmalek, F.; Lacroix, M.; Chovelon, J.M.; Jaffrezic-Renault, N.; Berkova, D.; Matejec, V.; Kasik, I.; Chomat, M.; Gagnaire, H. Consequences of TiO2 doping on the optical properties of porous silica layers coated on silica optical fibers. Thin Sol. Film. 1999, 340, 280–287. [Google Scholar] [CrossRef]
- Skokankova, J.; Mrazek, J.; Matejec, V.; Hayer, M.; Kasik, I.; Chomat, M.; Berkova, D.; Barau, A.; Zaharescu, M.; Raileanu, M. Properties of xerogel layers for the detection of toluene in water. Mater. Sci. Eng. C 2006, 26, 208–213. [Google Scholar] [CrossRef]
- Abdelghani, A. Jaffrezic-Renault, N. SPR fibre sensor sensitised by fluorosiloxane polymers. Sens. Actuators B-Chem. 2001, 74, 117–123. [Google Scholar] [CrossRef]
- Snyder, A.W.; Love, J.D. Optical Waveguide Theory. Part II Electromagnetic Analysis of Optical Waveguides; Springer: New York, NY, USA, 1983; pp. 203–353. [Google Scholar] [CrossRef]
- Monro, T.M.; Belardi, W.; Furusawa, K.; Baggett, J.C.; Broderick, N.G.R.; Richardson, D.J. Sensing with microstructured optical fibres. Meas. Sci. Technol. 2001, 12, 854–858. [Google Scholar] [CrossRef]
- Matejec, V.; Mrázek, J.; Hayer, M.; Podrazký, O.; Kaňka, J.; Kašík, I. Sensitivity of microstructure fibers to gaseous oxygen. Meas. Sci. Eng. 2008, 28, 876–881. [Google Scholar] [CrossRef]
- Elsherif, M.; Salih, A.E.; Gutiérrez Munoz, M.; Alam, F.; AlQattan, B.; Antonysamy, D.S.; Fawzi Zaki, M.; KYetisen, A.; Park, S.; Wilkinson, T.D.; et al. Optical Fiber Sensors: Working Principle, Applications, and Limitations. Adv. Photonics Res. 2022, 3, 2100371. [Google Scholar] [CrossRef]
- Gupta, B.D.; Kant, R. Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures. Opt. Laser Technol. 2018, 101, 144–161. [Google Scholar] [CrossRef]
- Li, M.; Singh, R.; Wang, Y.; Marques, C.; Zhang, B.; Kumar, S. Advances in Novel Nanomaterial-Based Optical Fiber Biosensors—A Review. Biosensors 2022, 12, 843. [Google Scholar] [CrossRef]
- Boussard-Plédel, C. Chalcogenide waveguides for infrared sensing. In Chalcogenide Glasses: Preparation, Properties and Applications; Adam, J.-L., Zhang, X., Eds.; Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing Limited: Oxford, UK; Cambridge, UK; London, UK; Philadelphia, PA, USA; New Delhi, India, 2014; Volume 44, pp. 381–410. [Google Scholar] [CrossRef]
- Bureau, B.; Boussard, C.; Cui, S.; Chahal, R.; Laure Anne, M.; Nazabal, V.; Sire, O.; Loréal, O.; Lucas, P.; Monbet, V.; et al. Chalcogenide optical fibers for midinfrared sensing. Opt. Eng. 2014, 53, 027101. [Google Scholar] [CrossRef]
- Matějec, V.; Chomát, M.; Hayer, M.; Kašik, I.; Berková, D. Development of special optical fibers for evanescent-wave chemical sensing. Czech. J. Phys. 1999, 49, 883–888. [Google Scholar] [CrossRef]
- Wu, W.; Huang, J.; Ding, L.; Lin, H.; Yu, S.; Yuan, F.; Liang, B. A real-time and highly sensitive fiber optic biosensor based on the carbon quantum dots for nitric oxide detection. J. Photochem. Photobiol. A 2021, 405, 112963. [Google Scholar] [CrossRef]
- Ding, L.; Fan, C.; Zhong, Y.; Li, T.; Huang, J. A sensitive optic fiber sensor based on CdSe QDs fluorophore for nitric oxide detection. Sens. Actuators B-Chem. 2013, 185, 70–76. [Google Scholar] [CrossRef]
- Ding, L.Y.; Ruan, Y.L.; Li, T.; Huang, J.; Warren-Smith, S.C.; Ebendorff-Heidepriem, H.; Monro, T.M. Nitric oxide optical fiber sensor based on exposed core fibers and CdTe/CdS quantum dots. Sens. Actuators B-Chem. 2018, 273, 9–17. [Google Scholar] [CrossRef]
- Pathak, A.; Gupta, B.D. Fiber-Optic Plasmonic Sensor Utilizing CTAB-Functionalized ZnO Nanoparticle-Decorated Carbon Nanotubes on Silver Films for the Detection of Catechol in Wastewater. ACS Appl. Nano Mater. 2020, 3, 2582–2593. [Google Scholar] [CrossRef]
- Fallah, H.; Asadishad, T.; Parsanasab, G.-M.; Harun, S.W.; Mohammed, W.S.; Yasin, M. Optical Fiber Biosensor toward E-coli Bacterial Detection on the Pollutant Water. Eng. J. 2021, 25, 1–8. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, X.; Moreno, Y.; Sun, Q.; Yan, Z.; Zhang, L. Sensitivity adjustable biosensor based on graphene oxide coated excessively tilted fiber grating. Sens. Actuators B-Chem. 2022, 351, 130832. [Google Scholar] [CrossRef]
- Wang, R.; Ren, Z.; Kong, D.; Hu, B.; He, Z. Highly sensitive label-free biosensor based on graphene-oxide functionalized micro-tapered long period fiber grating. Opt. Mater. 2020, 109, 110253. [Google Scholar] [CrossRef]
- Cao, Z.; Yao, B.; Qin, C.; Yang, R.; Guo, Y.; Zhang, Y.; Wu, Y.; Bi, L.; Chen, Y.; Xie, Z.; et al. Biochemical sensing in graphene enhanced microfiber resonators with individual molecule sensitivity and selectivity. Light Sci. Appl. 2019, 8, 107. [Google Scholar] [CrossRef]
- Yu, H.; Chong, Y.; Zhang, P.; Ma, J.; Li, D. A D-shaped fiber SPR sensor with a composite nanostructure of MoS2-graphene for glucose detection. Talanta 2020, 219, 121324. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Miao, Y.; Guo, T.; Zhang, K.; Yao, J. Nb2CTx MXene-tilted fiber Bragg grating optofluidic system based on photothermal spectroscopy for pesticide detection. Biomed. Opt. Express 2021, 12, 7051–7063. [Google Scholar] [CrossRef]
- Yi, D.; Wang, C.; Gao, L.; Chen, Y.; Liu, F.; Geng, Y.; Zhang, H.; Li, X. Ti3CN MXene-based ultra-sensitive optical fiber salinity sensor. Opt. Lett. 2022, 47, 138–141. [Google Scholar] [CrossRef]
- Baig, N.; Kammakakam, I.; Falathabe, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Berneschi, S.; Barucci, A.; Baldini, F.; Cosi, F.; Quercioli, F.; Pelli, S.; Righini, G.C.; Tiribilli, B.; Tombelli, S.; Trono, C.; et al. Optical Fibre Micro/Nano Tips as Fluorescence-Based Sensors and Interrogation Probes. Optics 2020, 1, 213–242. [Google Scholar] [CrossRef]
- Deiss, F.; Sojic, N.; White, D.J.; Stoddart, P.R. Nanostructured optical fibre arrays for high-density biochemical sensing and remote imaging. Anal. Bioanal. Chem. 2010, 396, 53–71. [Google Scholar] [CrossRef]
- Betzig, E.; Trautman, J.K.; Harris, T.D.; Weiner, J.S.; Kostelak, R.L. Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale. Science 1991, 251, 1468–1470. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Shi, Z.-Y.; Smith, S.; Birnbaum, D.; Raoul Kopelman, R. Submicrometer Intracellular Chemical Optical Fiber Sensor. Science 1992, 258, 778–781. [Google Scholar] [CrossRef]
- Lewis, A.; Lieberman, K. The optical Near Field and Analytical Chemistry. Anal. Chem. 1991, 63, 625A–638A. [Google Scholar] [CrossRef]
- Lee, S.; Jiao, M.; Zhang, Z.; Yu, Y. Nanoparticles for Interrogation of Cell Signaling. Annu. Rev. Anal. Chem. 2023, 16, 333–351. [Google Scholar] [CrossRef]
- Clark, H.A.; Hoyer, M.; Philbert, M.A.; Kopelman, R. Optical Nanosensors for Chemical Analysis inside Single Living Cells. 1. Fabrication, Characterization, and Methods for Intracellular Delivery of PEBBLE Sensors. Anal. Chem. 1999, 71, 4831–4836. [Google Scholar] [CrossRef] [PubMed]
- Clark, H.A.; Kopelman, R.; Tjalkens, R.; Philbert, M.A. Optical Nanosensors for Chemical Analysis inside Single Living Cells. 2. Sensors for pH and Calcium and the Intracellular Application of PEBBLE. Anal. Chem. 1999, 71, 4837–4843. [Google Scholar] [CrossRef]
- Kopelman, R.; Smith, S.; Tan, W.; Zenobi, R.; Lieberman, K.; Lewis, A. Spectral analysis of surfaces at subwavelength resolution, Proc. SPIE Environ. Process Monit. Technol. 1992, 1637, 33–40. [Google Scholar]
- Paiva, J.S.; Jorge, P.A.S.; Rosa, C.C.; Cunha, J.P.S. Optical fiber tips for biological applications: From light confinement, biosensing to bioparticles manipulation—Review. Biochim. Biophys. Acta (BBA)-General. Subj. 2018, 1862, 1209–1246. [Google Scholar] [CrossRef]
- Valaskovic, G.A.; Holton, M.; Morrison, G.H. Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes. Appl. Opt. 1995, 34, 1215–1228. [Google Scholar] [CrossRef]
- Turner, D.R. Etch Procedure for Optical Fibers. US Patent 4,469,554, 4 September 1984. [Google Scholar]
- Hoffmann, P.; Dutoit, B.; Salathe, R.-P. Comparison of mechanically drawn and protection layer chemically etched optical fiber tips. Ultramicroscopy 1995, 61, 165–170. [Google Scholar] [CrossRef]
- Anderson, G.P.; Golden, J.P.; Ligler, F.S. A fiber tapered optic biosensor: Combination fibers designed for improved signal acquisition. Biosens. Bioelectr. 1993, 8, 249–256. [Google Scholar] [CrossRef]
- Muramatsu, H.; Homma, K.; Chiba, N.; Yamamoto, N.; Egawa, A. Dynamic etching method for fabricating a variety of tip shapes in the optical fibre probe of a scanning near-field optical microscope. J. Microscop. 1999, 194, 383–387. [Google Scholar] [CrossRef]
- Lazarev, A.; Fang, N.; Luo, Q.; Zhang, X. Formation of fine near-field scanning optical microscopy tips. Part I. Rev. Sci. Instrum. 2003, 74, 3679–3683. [Google Scholar] [CrossRef]
- Giannetti, A.; Barucci, A.; Cosi, F.; Pelli, S.; Tombelli, S.; Trono, C.; Baldini, F. Optical fiber nanotips coated with molecular beacons for DNA detection. Sensors 2015, 15, 9666–9680. [Google Scholar] [CrossRef] [PubMed]
- Griffini, D.; Insinna, M.; Salvadori, S.; Barucci, A.; Cosi, F.; Pelli, S.; Righini, G.C. On the CFD analysis of a stratified taylor-couette system dedicated to the fabrication of nanosensors. Fluids 2017, 2, 8. [Google Scholar] [CrossRef]
- Lambelet, P.; Sayah, A.; Pfeffer, M.; Philipona, C.; Marquis-Weible, F. Chemically etched fiber tips for near-fieldoptical microscopy: A process for smoother tips. Appl. Opt. 1998, 37, 7289–7292. [Google Scholar] [CrossRef]
- Stὅckle, R.; Fokas, C.; Deckert, V.; Zenobia, R.; Sick, B.; Hecht, B.; Wild, U.P. High-quality near-field optical probes by tube etching. Appl. Phys. 1999, 75, 160–162. [Google Scholar] [CrossRef]
- Pangaribuana, T.; Jiang, S.; Ohtsu, M. Highly Controllable Fabrication of Fiber Probe for Photon Scanning Tunneling. Scanning 1994, 16, 362–367. [Google Scholar] [CrossRef]
- Koronczi, I.; Reichert, J.; Ache, H.J.; Krause, C.; Werner, T.; Wolfbeis, O.S. Submicron sensors for ion detection based on measurement of luminescence decay time. Sens. Actuators B-Chem. 2001, 74, 47–53. [Google Scholar] [CrossRef]
- Koronczi, I.; Reichert, J.; Heinzmann, G.; Ache, H.J. Development of a submicron optochemical potassium sensor with enhanced stability due to internal reference. Sens. Actuators B-Chem. 1998, 51, 188–195. [Google Scholar] [CrossRef]
- Tai, Y.-H.; Wei, P.-K. Sensitive liquid refractive index sensors using tapered optical fiber tips. Opt. Lett. 2010, 35, 944–946. [Google Scholar] [CrossRef]
- Tan, W.; Shi, Z.Y.; Kopelman, R. Development of submicron chemical fiber optic sensors. Anal. Chem. 1992, 64, 2985–2990. [Google Scholar] [CrossRef]
- Munkholm, C.; Walt, D.R.; Milanovich, F.P.; Klainer, S.M. Polymer Modification of Fiber Optic Chemical Sensors as a Method of Enhancing Fluorescence Signal for pH Measurement. Anal. Chem. 1986, 58, 1427–1430. [Google Scholar] [CrossRef]
- Vo-Dinh, T.; Kasili, P.; Wabuyele, M. Nanoprobes and nanobiosensors for monitoring, and imaging individual living cells. Nanomed. Nanotechnol. Biol. Medic. 2006, 2, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Wanga, S.; Ye, F.; Lang, X.; Fei, D.; Ge, Y.; Turner, A.P.F. Detection of [Ca2+] changes in sub-plasma membrane microdomains in a single living cell by an optical fiber-based nanobiosensor. Austin J. Nanomed. Nanotechnol. 2014, 2, 1022. [Google Scholar]
- Barker, S.L.R.; Bjorn, A.; Thorsrud, B.A.; Kopelman, R. Nitrite- and Chloride-Selective Fluorescent Nano-Optodes and in Vitro Application to Rat Conceptuses. Anal. Chem. 1998, 70, 100–104. [Google Scholar] [CrossRef]
- Tan, W.; Shi, Z.-Y.; Kopelman, R. Miniaturized fiber-optic chemical sensors with fluorescent dye-doped polymers. Sens. Actuators B-Chem. 1995, 28, 157–165. [Google Scholar] [CrossRef]
- Rosenzweig, Z.; Kopelman, R. Development of a submicrometer optical fiber oxygen sensor. Anal. Chem. 1995, 67, 2650–2654. [Google Scholar] [CrossRef]
- Tan, W.; Kopelman, R.; Barker, S.L.R.; Miller, M.T. Peer Reviewed: Ultrasmall Optical Sensors for Cellular Measurements. Anal. Chem. 1999, 71, 606A–612A. [Google Scholar] [CrossRef]
- Hossein-Zadeha, M.; Delgado, J.; Schweizer, F.; Lieberman, R. Sub-micron Opto-Chemical Probes for Studying Living Neurons. In Proceedings of the SPIE 10051, Neural Imaging and Sensing, San Francisco, CA, USA, 8 February 2017. 100510G; paper 100510G(9pp). [Google Scholar] [CrossRef]
- Bui, J.D.; Zelles, T.; Lou, H.J.; Gallion, V.L.; Phillips, M.I.; Tan, W. Probing intracellular dynamics in living cells with near-field optics. J. Neurosc. Methods 1999, 89, 9–15. [Google Scholar] [CrossRef]
- Vo-Dinh, T.; Kasili, P. Fiber-optic nanosensors for single-cell monitoring-Review. Anal. Bioanal. Chem. 2005, 382, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Alarie, J.P.; Vo-Dinh, T. Antibody-Based Submicron Biosensor for Benzo[A]Pyrene DNA Adduct. Polycycl. Arom. Compd. 1996, 8, 45–52. [Google Scholar] [CrossRef]
- Cullum, B.M.; Griffin, G.D.; Miller, G.H.; Vo-Dinh, T. Intracellular Measurements in Mammary Carcinoma Cells Using Fiber-Optic Nanosensors. Anal. Biochem. 2000, 277, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Kasili, P.M.; Song, J.M.; Vo-Dinh, T. Optical Sensor for the Detection of Caspase-9 Activity in a Single Cell. J. Am. Chem. Soc. 2004, 126, 2799–2806. [Google Scholar] [CrossRef]
- Barker, S.L.R.; Kopelman, R. Development and Cellular Applications of Fiber Optic Nitric Oxide Sensors Based on a Gold-Adsorbed Fluorophore. Anal. Chem. 1998, 70, 4902–4906. [Google Scholar] [CrossRef]
- Cordek, J.; Wang, X.; Tan, W. Direct Immobilization of Glutamate Dehydrogenase on Optical Fiber Probes for Ultrasensitive Glutamate Detection. Anal. Chem. 1999, 71, 1529–1533. [Google Scholar] [CrossRef]
- Song, J.M.; Kasili, P.M.; Griffin, G.D.; Vo-Dinh, T. Detection of Cytochrome c in a Single Cell Using an Optical Nanobiosensor. Anal. Chem. 2004, 76, 2591–2594. [Google Scholar] [CrossRef]
- Petry, R.; Schmitt, M.; Popp, J. Raman spectroscopy—A prospective tool in the Life Sciences. Chem. Phys. Chem. 2003, 4, 14–30. [Google Scholar] [CrossRef]
- Jonathan, P.; Scaffidi, J.P.; Gregas, M.K.; Seewaldt, V.; Vo-Dinh, T. SERS-based plasmonic nanobiosensing in single living cells. Anal. Bioanal. Chem. 2009, 393, 1135–1141. [Google Scholar] [CrossRef]
- Chen, Z.; Dai, Z.; Chen, N.; Liu, S.; Pang, F.; Lu, B.; Wang, T. Gold Nanoparticles-Modified Tapered Fiber Nanoprobe for Remote SERS Detection. IEEE Phot. Technol. Lett. 2014, 26, 777–780. [Google Scholar] [CrossRef]
- Lucotti, A.; Zerbi, G. Fiber-optic SERS sensor with optimized geometry. Sens. Actuators B-Chem. 2007, 121, 356–364. [Google Scholar] [CrossRef]
- Wang, J.; Geng, Y.; Shen, Y.; Shib, W.; Xu, W.; Xu, S. SERS-active fiber tip for intracellular and extracellular pH sensing in living single cells. Sens. Actuators B-Chem. 2019, 290, 527–534. [Google Scholar] [CrossRef]
- Hutter, T.; Elliot, S.R.; Mahajan, S. Optical fibre-tip probes for SERS: Numerical study for design considerations. Opt. Express 2018, 26, 15539–15550. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.T.; Hua, W.; Wang, H.; Yang, H.; Zhoud, W.; Li, C.M. Bifunctional electro-optical nanoprobe to real-time detect local biochemical processes in single cells. Biosens. Bioelectron. 2011, 26, 4484–4490. [Google Scholar] [CrossRef]
- Walt, D.R. Fiber Optic Array Biosensors. BioTechniques 2006, 41, 529–535. [Google Scholar] [CrossRef]
- Bronk, K.S.; Michael, K.L.; Pantano, P.; Walt, D.R. Combined Imaging and Chemical Sensing Using a Single Optical Imaging Fiber. Anal. Chem. 1995, 67, 2750–2757. [Google Scholar] [CrossRef]
- Kapany, N.S. Method of Making a Fiber Optical Bundle. US Patent 3,190,735, 22 June 1965. [Google Scholar]
- Fiber Bundles. Available online: https://www.rp-photonics.com/fiber_bundles (accessed on 15 August 2023).
- Fiber Optic Technology. Available online: https://www.schott.com/en-us/expertise/technology-and-processing/fiber-optic-technology (accessed on 15 August 2023).
- Ghaemi, H.F.; Li, Y.; Thio, T.; Wang, T. Fiber image guide with subwavelength resolution. Appl. Phys. Lett. 1998, 72, 1137–1139. [Google Scholar] [CrossRef]
- White, J.; Kauer, J.S.; Dickinson, T.A.; Walt, D.R. Rapid Analyte Recognition in a Device Based on Optical Sensors and the Olfactory Systém. Anal. Chem. 1996, 68, 2191–2202. [Google Scholar] [CrossRef] [PubMed]
- Pantano, P.; Walt, D.R. Ordered Nanowell Arrays. Chem. Mater. 1996, 8, 2832–2835. [Google Scholar] [CrossRef]
- White, D.J.; Mazzolini, A.P.; Stoddart, P.R. Fabrication of a range of SERS substrates on nanostructured multicore optical fibres. J. Raman Spectrosc. 2007, 38, 377–382. [Google Scholar] [CrossRef]
- White, D.J.; Stoddart, P.R. Nanostructured optical fiber with surface-enhanced Raman scattering functionality. Opt. Lett. 2005, 30, 598–600. [Google Scholar] [CrossRef] [PubMed]
- Guieu, V.; Lagugné-Labarthet, F.; Servant, L.; Talaga, D.; Sojic, N. Ultrasharp Optical-Fiber Nanoprobe Array for Raman Local-Enhancement Imaging. Small 2008, 4, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Guieu, V.; Talaga, D.; Servant, L.; Sojic, N.; Lagugne’-Labarthet, F. Multitip-Localized Enhanced Raman Scattering from a Nanostructured Optical Fiber Array. J. Phys. Chem. C 2009, 113, 874–881. [Google Scholar] [CrossRef]
- Guieu, V.; Garrigue, P.; Lagugné-Labarthet, F.; Servant, L.; Sojic, N.; Talaga, D. Remote surface enhanced Raman spectroscopy imaging via a nanostructured optical fiber bundle. Opt. Expr. 2009, 17, 24030–24035. [Google Scholar] [CrossRef] [PubMed]
- Pantano, P.; Walt, D.R. Toward a near-field optical array. Rev. Sci. Instr. 1997, 68, 1537–1539. [Google Scholar] [CrossRef]
- Liu, Y.H.; Dam, T.H.; Pantano, P. A pH-sensitive nanotip array imaging sensor. Anal. Chim. Acta 2000, 419, 215–225. [Google Scholar] [CrossRef]
- Tam, J.M.; Song, L.; Walt, D.R. Fabrication and optical characterization of imaging fiber-based nanoarrays. Talanta 2005, 67, 498–502. [Google Scholar] [CrossRef]
- Tam, J.M.; Song, L.; Walt, D.R. DNA detection on ultrahigh-density optical fiber-based nanoarrays. Bios. Bioelectr. 2009, 24, 2488–2493. [Google Scholar] [CrossRef]
- Pisco, M.; Galeotti, F.; Quero, G.; Grisci, G.; Micco, A.; Mercaldo, L.V.; Veneri, P.D.; Cutolo, A.; Cusano, A. Nanosphere lithography for optical fiber tip nanoprobes. Light Sci. Appl. 2017, 6, e16229. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Yu, Z.; Li, L.; Xu, T. A self-assembled plasmonic opticalfiber nanoprobe for label-free biosensing. Sci. Rep. 2019, 9, 7379. [Google Scholar] [CrossRef]
- Smythe, E.J.; Dickey, M.D.; Bao, J.; Whitesides, G.M.; Capasso, F. Optical antenna arrays on a fiber facet for in situ surface enhanced Raman scattering detection. Nano Lett. 2009, 9, 1132–1138. [Google Scholar] [CrossRef]
- Kostovski, G.; White, D.J.; Mitchell, A.; Austin, M.W.; Stoddart, P.R. Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing. Biosens. Bioelectr. 2009, 24, 1531–1535. [Google Scholar] [CrossRef] [PubMed]
- Dromard, T.; Lévêque, J.-L.; Sojic, N. Remote in vivo imaging of fluorescein-stained corneocytes on human skin. Rev. Sci. Instrum. 2007, 78, 053709. [Google Scholar] [CrossRef]
- Zhao, Y.; Richman, A.; Storey, C.; Nina, B.; Radford, N.B.; Pantano, P. In Situ Fiber-Optic Oxygen Consumption Measurements from a Working Mouse Heart. Anal. Chem. 1999, 71, 3887–3893. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Walt, D.R. Dual-Analyte Fiber-Optic Sensor for the Simultaneous and Continuous Measurement of Glucose and Oxygen. Anal. Chem. 1995, 67, 3746–3752. [Google Scholar] [CrossRef]
- Ferguson, J.A.; Healey, B.G.; Bronk, K.S.; Barnard, S.M.; Walt, D.R. Simultaneous monitoring of pH, CO2 and 02 using an optical imaging fiber. Anal. Chim. Acta 1997, 340, 123–131. [Google Scholar] [CrossRef]
- Steemers, F.J.; Walt, D.R. Multi-Analyte Sensing: From Site-Selective Deposition to Randomly-Ordered Addressable Optical Fiber Sensors. Mikrochim. Acta 1999, 131, 99–105. [Google Scholar] [CrossRef]
- Czarnik, A.W. Encoding methods for combinatorial chemistry. Curr. Opin. Chem. Biol. 1997, 1, 60–66. [Google Scholar] [CrossRef]
- Venketeswaran, A.; Lalam, N.; Wuenschell, J.; Ohodnicki, P.R., Jr.; Badar, M.; Chen, K.P.; Lu, P.; Duan, Y.; Chorpening, B.; Buric, M. Recent Advances in Machine Learning for Fiber Optic Sensor Applications. Adv. Intell. Syst. 2022, 4, 2100067. [Google Scholar] [CrossRef]
- Biran, I.; Walt, D.R. Optical Imaging Fiber-Based Single Live Cell Arrays: A High-Density Cell Assay Platform. Anal. Chem. 2002, 74, 3046–3054. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Adam, K.; Sojic, N.; Schmittel, M. Photochemical functionalisation of optical nanotips with a rhodamine chemosensor for remote through-fiber detection of Hg2+. RSC Adv. 2013, 3, 24140–24145. [Google Scholar] [CrossRef]
- Hankus, M.E.; Li, H.; Gibson, G.J.; Cullum, B.M. Surface-Enhanced Raman Scattering-Based Nanoprobe for High-Resolution, Non-Scanning Chemical Imaging. Anal. Chem. 2006, 78, 7535–7546. [Google Scholar] [CrossRef]
- Descamps, E.; Duroure, N.; Deiss, F.; Leichle’, T.; Adam, C.; Mailley, P.; Aı¨t-Ikhlef, A.; Livache, T.; Nicub, L.; Sojic, N. Functionalization of optical nanotip arrays with an electrochemical microcantilever for multiplexed DNA detection. Lab. Chip. 2013, 13, 2956–2962. [Google Scholar] [CrossRef]
- Chovin, A.; Garrigue, P.; Pecastaings, G.; Saadaoui, H.; Sojic, N. Development of an ordered microarray of electrochemiluminescent nanosensors. Meas. Sci. Technol. 2006, 17, 1211–1219. [Google Scholar] [CrossRef]
- Homola, J. (Ed.) Surface Plasmon Resonance Based Sensors; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–251. [Google Scholar]
- Petryayeva, E.; Krull, U.J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Anal. Chim. Acta 2011, 706, 8–24. [Google Scholar] [CrossRef] [PubMed]
- Bardin, F.; Kašík, I.; Trouillet, A.; Matějec, V.; Gagnaire, H.; Chomát, M. Surface plasmon resonance sensor using an optical fiber with an inverted graded-index profile. Appl. Opt. 2002, 41, 2514–2520. [Google Scholar] [CrossRef]
- Bévenot, X.; Trouillet, A.; Veillas, C.; Gagnaire, H.; Cléement, M. Surface plasmon resonance hydrogen sensor using an optical fibre. Meas. Sci. Technol. 2002, 13, 118–124. [Google Scholar] [CrossRef]
- Slavík, R.; Homola, J.; Čtyroky, J. Single-mode optical fiber surface plasmon resonance sensor. Sens. Actuators B-Chem. 1999, 54, 74–79. [Google Scholar] [CrossRef]
- Mishra, S.K.; Tripathi, S.N.; Choudhary, V.; Gupta, B.D. SPR based fiber optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sens. Actuators B-Chem. 2014, 199, 190–200. [Google Scholar] [CrossRef]
- Raj, D.R.; Prasanth, S.; Vineeshkumar, T.V.; Sudarsanakumar, C. Ammonia sensing properties of tapered plastic optical fiber coated with silver nanoparticles/PVP/PVA hybrid. Opt. Commun. 2015, 340, 86–92. [Google Scholar] [CrossRef]
- Mishra, S.K.; Tripathi, S.N.; Choudhary, V.; Gupta, B.D. Surface plasmon resonance–based fiber optic methane gas sensor utilizing graphene–carbon nanotubes–poly(methyl methacrylate) hybrid nanocomposite. Plasmonics 2015, 10, 1147–1157. [Google Scholar] [CrossRef]
- Shrivastav, A.M.; Mishra, S.K.; Gupta, B.D. Fiber optic SPR sensor for the detection of melamine using molecular imprinting. Sens. Actuators B-Chem. 2015, 212, 404–410. [Google Scholar] [CrossRef]
- Shrivastav, A.M.; Usha, S.P.; Gupta, B.D. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting. Biosens. Bioelectron. 2017, 79, 150–157. [Google Scholar] [CrossRef]
- Cennamo, N.; D’Agostino, G.; Pesavento, M.; Zeni, L. High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of L-nicotine. Sens. Actuators B-Chem. 2014, 191, 529–536. [Google Scholar] [CrossRef]
- Cennamo, N.; D’Agostino, G.; Galatus, R.; Bibbòa, L.; Pesavento, M.; Zeni, L. Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene. Sens. Actuators B-Chem. 2013, 188, 221–226. [Google Scholar] [CrossRef]
- Pesavento, M.; Zeni, L.; De Maria, L.; Alberti, G.; Cennamo, N. SPR-Optical Fiber-Molecularly Imprinted Polymer Sensor for the Detection of Furfural in Wine. Biosens. 2021, 11, 72. [Google Scholar] [CrossRef]
- Shrivastav, A.M.; Usha, S.P.; Gupta, B.D. Highly sensitive and selective erythromycin nanosensor employing fiber optic SPR/ERY imprinted nanostructure: Application in milk and honey. Biosens. Bioelectron. 2017, 90, 516–524. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Sun, T.; Grattan, K.T.V. Surface plasmon resonance based fibre-optic chemical sensor for the detection of cocaine. In Proceedings of the SPIE 9916, Sixth European Workshop on Optical Fibre Sensors, Limerick, Ireland, 30 May 2016; Volume 991612, pp. 146–149. [Google Scholar] [CrossRef]
- Verma, R.; Gupta, B.D. Optical fiber sensor for the detection of tetracycline using surface plasmon resonance and molecular imprinting. Analyst 2013, 138, 7254–7263. [Google Scholar] [CrossRef]
- Verma, R.; Gupta, B.D. Fiber optic SPR sensor for the detection of 3-pyridinecarboxamide (vitamin B3) using molecularly imprinted hydrogel. Sens. Actuators B-Chem. 2013, 177, 279–285. [Google Scholar] [CrossRef]
- Cennamo, N.; D’Agostino, G.; Perri, C.; Arcadio, F.; Chiaretti, G.; Parisio, E.M.; Camarlinghi, G.; Vettori, C.; Di Marzo, F.; Cennamo, R.; et al. Proof of Concept for a Quick and Highly Sensitive On-Site Detection of SARS-CoV-2 by Plasmonic Optical Fibers and Molecularly Imprinted Polymers. Sensors 2021, 21, 1681. [Google Scholar] [CrossRef] [PubMed]
- Shrivastav, A.M.; Usha, S.P.; Gupta, B.D. A localized and propagating SPR, and molecular imprinting based fiber-optic ascorbic acid sensor using an in situ polymerized polyaniline–Ag nanocomposite. Nanotechnology 2016, 27, 345501. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, R.; Kant, R. Recent trends in surface plasmon resonance based fiber–optic gas sensors. Sens. Actuators B-Chemical 2020, 310, 127813. [Google Scholar] [CrossRef]
- Bhatia, P.; Gupta, B.D. Surface plasmon resonance based fiber optic ammonia sensor utilizing bromocresol purple. Plasmonics 2013, 8, 779–784. [Google Scholar] [CrossRef]
- Mishra, S.K.; Bhardwaj, S.; Gupta, B.D. Surface plasmon resonance–based fiber optic sensor for the detection of low concentrations of ammonia gas. IEEE Sens. J. 2015, 15, 1235–1239. [Google Scholar] [CrossRef]
- Mishra, S.K.; Kumari, D.; Gupta, B.D. Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline. Sens. Actuators B-Chem. 2012, 171–172, 976–983. [Google Scholar] [CrossRef]
- Pathak, A.; Mishra, S.K.; Gupta, B.D. Fiber–optic ammonia sensor using Ag/SnO2 thin films: Optimization of thickness of SnO2 film using electric field distribution and reaction factor. Appl. Opt. 2015, 54, 8712–8721. [Google Scholar] [CrossRef]
- Shobin, L.R.; Sastikumar, D.; Manivannan, S. Glycerol mediated synthesis of silver nanowires for room temperature ammonia vapor sensing. Sens. Actuators A-Physical 2014, 214, 74–80. [Google Scholar] [CrossRef]
- Mishra, S.K.; Gupta, B.D. Surface plasmon resonance–based fiber optic chlorine gas sensor utilizing indium–oxide–doped tin oxide film. IEEE J. Lightwave Technol. 2015, 33, 2770–2776. [Google Scholar] [CrossRef]
- Usha, S.P.; Mishra, S.K.; Gupta, B.D. Fabrication and characterization of a SPR based fiber optic sensor for the detection of chlorine gas using silver and zinc oxide. Materials 2015, 8, 2204–2216. [Google Scholar] [CrossRef]
- Tabassum, R.; Mishra, S.K.; Gupta, B.D. Surface plasmon resonance–based fiber optic hydrogen sulphide gas sensor utilizing Cu–ZnO thin films. Phys. Chem. Chem. Phys. 2013, 15, 11868–11874. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.K.; Rani, S.; Gupta, B.D. Surface plasmon resonance based fiber optic hydrogen sulphide gas sensor utilizing nickel oxide doped ITO thin film. Sens. Actuators B-Chem. 2014, 195, 215–222. [Google Scholar] [CrossRef]
- Paul, D.; Datta, S.; Biswas, R. LSPR enhanced gasoline sensing with a U–bent optical fiber. J. Phys. D Appl. Phys. 2016, 49, 305104. [Google Scholar] [CrossRef]
- Mishra, S.K.; Gupta, B.D. Surface plasmon resonance–based fiber–optic hydrogen gas sensor utilizing indium–tin oxide (ITO) thin films. Plasmonics 2012, 7, 627–632. [Google Scholar] [CrossRef]
- Hosoki, A.; Nishiyama, M.; Igawa, H.; Seki, A.; Choi, Y.; Watanabe, K. A surface plasmon resonance hydrogen sensor using Au/Ta2O5/Pd multi–layers on hetero–core optical fiber structures. Sens. Actuators B-Chem. 2013, 185, 53–58. [Google Scholar] [CrossRef]
- Hosoki, A.; Nishiyama, M.; Igawa, H.; Seki, A.; Watanabe, K. A hydrogen curing effect on surface plasmon resonance fiber optic hydrogen sensors using an annealed Au/Ta2O5/Pd multi-layers film. Opt. Express 2014, 2, 18556–18563. [Google Scholar] [CrossRef]
- Tabassum, R.; Gupta, B.D. Fiber optic hydrogen gas sensor utilizing surface plasmon resonance and native defects of zinc oxide by palladium. J. Opt. 2016, 18, 015004. [Google Scholar] [CrossRef]
- Ayivi, R.D.; Adesanmi, B.O.; McLamore, E.S.; Wei, J.; Obare, S.O. Molecularly Imprinted Plasmonic Sensors as Nano-Transducers: An Effective Approach for Environmental Monitoring Applications. Chemosensors 2023, 11, 203. [Google Scholar] [CrossRef]
- Lofgreen, J.E.; Ozin, G.A. Controlling morphology and porosity to improve performance of molecularly imprinted sol–gel silica. Chem. Soc. Rev. 2014, 43, 911–933. [Google Scholar] [CrossRef]
- Chauhan, S.K.; Punjabi, N.; Sharma, D.K.; Mukherji, S. A silicon nitride coated LSPR based fiber-optic probe for possible continuous monitoring of sucrose content in fruit juices. Sens. Acuators. B-Chem. 2016, 222, 1240–1250. [Google Scholar] [CrossRef]
- Tabassum, R.; Kaur, P.; Gupta, B.D. Tuning the field distribution and fabrication of an Al@ZnO core–shell nanostructure for a SPR-based fiber optic phenyl hydrazine sensor. Nanotechnol. 2016, 27, 215501. [Google Scholar] [CrossRef]
- Sharma, S.; Gupta, B.D. Fiber optic surface-plasmon-resonance-based highly sensitive arsenic sensor prepared using α-Fe2O3/SnO2 core-shell nanostructure with optimized probe parameters. Appl. Opt. 2018, 57, 10466–10473. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, R.; Gupta, B.D. Surface plasmon resonance based fiber optic detection of chlorine utilizing polyvinylpyrolidone supported zinc oxide thin films. Analyst 2015, 140, 1863–1870. [Google Scholar] [CrossRef] [PubMed]
- Antohe, I.; Spasic, D.; Delport, F.; Li, J.; Lammertyn, J. Nanoscale patterning of gold-coated optical fibers for improved plasmonic sensing. Nanotechnology 2017, 28, 215301. [Google Scholar] [CrossRef]
- Raj, D.R.; Prasanth, S.; Vineeshkumar, T.V.; Sadarsanakumar, C. Surface plasmon resonance based fiber optic sensor for mercury detection using gold nanoparticles PVA hybrid. Opt. Commun. 2016, 367, 102–107. [Google Scholar] [CrossRef]
- Samavati, Z.; Borhani, T.N.; Samavati, A.; Ismail, A.F.; Rahman, M.A.; Othman, M.H.D.; Soleymani, M. Optical fiber sensor based on magneto-plasmonic features of Ag-Co nanostructure for ppm ammonium detection in aqueous solutions. Opt. Fiber Technol. 2021, 67, 102730. [Google Scholar] [CrossRef]
- Wolfbeis, O.S. Editorial: Probes, Sensors, and Labels: Why is Real Progress Slow? Ang. Chem. Int. Ed. 2013, 52, 9864–9865. [Google Scholar] [CrossRef]
- Nagel, B.; Dellweg, H.; Gierasch, L.M. Glossary for chemists of terms used in biotechnology (IUPAC Recommendations 1992). Pure Appl. Chem. 1992, 64, 143–168. [Google Scholar] [CrossRef]
- Pathak, A.; Gupta, B.D. Ultra-selective fiber optic SPR platform for the sensing of dopamine in synthetic cerebrospinal fluid incorporating permselective nafion membrane and surface imprinted MWCNTs-PPy matrix. Biosens. Bioelectron. 2019, 133, 205–214. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, B.; Hu, E.T.; Wei, W. Cu/ITO-Coated Uncladded Fiber-Optic Biosensor Based on Surface Plasmon Resonance. IEEE Photonics Technol. Lett. 2019, 31, 1159–1162. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Z.; Liu, F.; Fu, Q.; Chen, X.; Xu, J.; Zhang, Z.; Huang, Y.; Tang, Y.; Guo, T.; et al. Hydrogen peroxide and glucose concentration measurement using optical fiber grating sensors with corrodible plasmonic nanocoatings. Biomed. Opt. Express 2018, 9, 1735–1744. [Google Scholar] [CrossRef] [PubMed]
- Bi, M.; Miao, Y.; Li, W.; Fei, C.; Zhang, K. Ultrasensitive BOD Detection of Fiber Integrated with Nb2CTx MXene for Water Pollution. J. Light. Technol. 2022, 40, 2173–2180. [Google Scholar] [CrossRef]
- Kasik, I.; Mrazek, J.; Martan, T.; Pospisilova, M.; Podrazky, O.; Matejec, V.; Hoyerova, K.; Kaminek, M. Fiber-optic pH detection in small volumes of biosamples. Anal. Bioanal. Chem. 2010, 398, 1883–1889. [Google Scholar] [CrossRef]
- Mayr, T.; Igel, C.; Liebsch, G.; Klimant, I.; Wolfbeis, O.S. Cross-Reactive Metal Ion Sensor Array in a MicroTiter Plate Format. Anal. Chem. 2003, 75, 4389–4396. [Google Scholar] [CrossRef] [PubMed]
Analyte | Transducer | Tip Apex Diameter [nm] | Linear Range | Reference |
---|---|---|---|---|
BPT | BPT antibody | 25–60 | 0.06–1.6 nM | [69] |
NO2 | Cytochrome c’ | 200 | 0.02–1 mM | [71] |
Glutamate | Glutamate dehydrogenase | 30–500 | 15–30 µM | [72] |
DNA | Molecular beacon | 30 | 0.57–10,000 nM | [49] |
Analyte | Fiber | Layer for SPR Excitation | Sensing Layer | Sensitivity | Ref. |
---|---|---|---|---|---|
NH3 | PCS600 | Ag/Si | BCP | 0.45 nm/ppm | [134] |
PCS600 | Cu | BCP | 1.59 nm/ppm | [135] | |
PCS600 | ITO | BCP | 1.82 nm/ppm | [135] | |
PCS600 | ITO | PAni | 0.12 nm/ppm | [136] | |
PCS600 | Cu | rGO in PMMA | 0.90 nm/ppm | [119] | |
PCS600 | Ag | SnO2 | 2.15 nm/ppm | [137] | |
Taper POF | Ag NPs | PVP + PVA | 0.88.count/ppm | [120] | |
POF | Ag NWs | - | 0.17 count/ppm | [138] | |
Cl2 | PCS600 | Ag | In2O3 + SnO2 | 0.15 nm/ppm | [139] |
PCS600 | Ag | ZnO | 1.40 nm/ppm | [140] | |
H2S | PCS600 | Cu | ZnO | 0.65 nm/ppm | [141] |
PCS600 | Ag | ITO + NiO | 2.70 nm/ppm | [142] | |
CH4 | PCS600 | Ag | rGOGCNT in PMMA | 0.60 nm/ppm | [121] |
C2HCl3 | PCS400 | Ag | SAM/Fsil | 19.2 μV/ppm | [11] |
Gasoline | PCS800 U-bent | Au NPs | - | 0.12 mV/ppm | [143] |
Ag NPs | - | 0.08 mV/ppm | [143] |
Fiber | Layer for SPR Excitation | Sensing Layer | Response Difference | Reference |
---|---|---|---|---|
PCS600 | Ag | ZnO + Pd | 80 nm | [147] |
PCS600 | ITO | (ITO) | 1.28 dB | [144] |
HetCore | Au/Ta2O5 | Pd | 0.38 dB | [145] |
HetCore | Au/Ta2O5 | Pd | 0.42 dB | [146] |
PCS400SE | Pd (12 nm) | (Pd) | 30% | [117] |
Analyte | Fiber | Layer for SP Excitation | Sensing Layer | Sensitivity | Reference |
---|---|---|---|---|---|
Melanin | PCS600 | Ag | MIP1 | 10 nm/log(M) | [122] |
Profenofos | PCS600 | Ag | MIP1 | 12 nm/log(M) | [123] |
Nicotinamide | POF980 tape | Au | MIP1 | 1.3 × 104 nm/M | [124] |
TNT | POF980 D-shape | PhtR/Au | MIP1 | 2.7 × 104 nm/M | [125] |
Furfural in wine | POF980 D-shape | PhtR/Au | MIP1 | 255 nm/(mg/L) | [126] |
Erythromycin | PCS600 | Ag | MIP2 | 205 nM/μM | [127] |
Cocaine | PCS1000 | Au | MIP2 | 0.5 nm/(mg/L) | [128] |
Tetracycline | PCS600 | Ag | MIP3 | 700 nm/µM | [129] |
Oxytetracycline | PCS600 | Ag | MIP3 | 150 nm/µM | [129] |
Vitamin B3 | PCS600 | Ag | MIP3 | 1.48 nm/(mg/L) | [130] |
BSA | POF980 D-shape | PhtR/Au | MIP3 | 1.95 nm/µM | [131] |
S1-subunit | POF980 D-shape | Pt/Au | MIP3 | 6.483 nm/µM | [131] |
Ascorbic acid | PCS600 | Ag | MIP4 | 30 nm/m | [132] |
Sucrose | PCS400 U-bend | AuNPs | SiNx | 0.032 (%wgt.)−1 | [150] |
Phenylhydrazine | PCS600 | Ag | Al@ZnO NPs | 0.12 nm/(µg/L) | [151] |
As3+ | PCS600 | Ag | α-Fe2O3@SnO2NPs | 2.06 nm/(µg/L) | [152] |
Cl2 solution | PCS6000 | Ag/ZnO | PVP | 4 nm/ppm | [153] |
RI-sensing | PCS400-face | Au | Au triangles | 1795 nm/RIU | [154] |
Hg2+ | PCS600 | Ag | AuNPs in PVA | 0.7 nm/(µM] | [155] |
NH3 solution | MMF62.5 | Co | Ag | 0.131 nm/ppm | [156] |
Analyte | Fiber | Principle | Sensing Layer | Sensitivity and LOD | Ref. |
---|---|---|---|---|---|
NO solution | PCS600 face | FluQe | CQDs-PhDam/CA | 0.006 ppm−1 and 9 nM | [21] |
NO solution | POF bundle face | FluQe | CdSeQDs/CA | 0.0006 deg/M and 0.1 nM | [22] |
NO solution | ECMSF | FluQe | CdTe@CdS QDs | 0.34 (log(M))−1 and 0.01 nM | [23] |
Catechol | PCS600/Ag | SPR | ZnONP-MWCNTs-CTAB | 5.5 nm/µM and 0.1 µM | [24] |
E-coli | POF125/Cr/Au, face | SPR | ZnO NR | 4.4 × 10−4 unit (CFU/mL)−1 and <1000 CFU/mL | [25] |
Dopamine | PCS400/Au | SPR | MIP MWCNT PPy/nafion | 68 nm/log(M) and 18.9 pM | [159] |
Hemoglobin | SMF8-TFG | RI sensing | GO | 8.2 nm/(mg/mL) and <0.1 mg/mL | [26] |
Hemoglobin | SM8, taper, LPG680 | RI sensing | rGO | 2 nm/(mg/mL) and 0.02 mg/mL | [27] |
Dopamine | FP interferometer | Interferom. | rGO | 0.51 kHz/µM and 200 nM | [28] |
Nicotine | FP interferometer | Interferom. | rGO | 0.2 kHz/µM and 10 nM | [28] |
Glucose | SMF8 D-shape/Cr/Au | SPR | MoS2/G-PBA | 6709 nm/RIU and <0.1 mM | [29] |
Pesticide | SMF-TFG | Phototermal | Nb2CTx | 1.8 pm/ppm and 0.35 ppm | [30] |
Salinity | MZ-FO interferometer | Interferometry | Ti3CN | −5.3 nm/% and <1% | [31] |
BSA | PCS400/Cu/ITO | SPR | (ITO) | 1.9 nm/(mg/mL) and 0.57 µg/mL | [160] |
H2O2 | SMF8-TFG/Ag | SPR-Ag etching | (Ag) | ~1.9 dB/µM and <0.2 µM | [161] |
BOD | SMF8 taper | RI sensing | Nb2CTx | 35 nm/(mg/mL) and 5.7 × 10−4 mg/mL | [162] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matějec, V.; Kašík, I.; Bartoň, I. Fiber-Optic Nanosensors for Chemical Detection. Chemosensors 2023, 11, 521. https://doi.org/10.3390/chemosensors11100521
Matějec V, Kašík I, Bartoň I. Fiber-Optic Nanosensors for Chemical Detection. Chemosensors. 2023; 11(10):521. https://doi.org/10.3390/chemosensors11100521
Chicago/Turabian StyleMatějec, Vlastimil, Ivan Kašík, and Ivo Bartoň. 2023. "Fiber-Optic Nanosensors for Chemical Detection" Chemosensors 11, no. 10: 521. https://doi.org/10.3390/chemosensors11100521
APA StyleMatějec, V., Kašík, I., & Bartoň, I. (2023). Fiber-Optic Nanosensors for Chemical Detection. Chemosensors, 11(10), 521. https://doi.org/10.3390/chemosensors11100521