Enzyme-Free Signal Amplification Strategy via Chaperone Copolymer-Accelerated Hybridization for Highly Sensitive Detection of Adenosine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Equipment
2.3. Synthesis of PLL-g-Dex
2.4. Preparation of the MNs-Apt/aDNA Complex
2.5. Fluorescence Detection of Adenosine
2.6. Statistical Analysis
3. Results and Discussion
3.1. The Detection Principle of Biosensors
3.2. Feasibility Analysis
3.3. Optimization of the Experimental Conditions
3.4. The Detection Performance of the Sensor
3.5. The Specificity of the Sensor
3.6. Performance of the Sensor for Detecting Adenosine in Complex Environments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahrestanaki, M.K.; Arasi, F.P.; Aghaei, M. Adenosine protects pancreatic beta cells against apoptosis induced by endoplasmic reticulum stress. J. Cell Biochem. 2019, 120, 7759–7770. [Google Scholar] [CrossRef]
- Churov, A.; Zhulai, G. Targeting adenosine and regulatory T cells in cancer immunotherapy. Hum. Immunol. 2021, 82, 270–278. [Google Scholar] [CrossRef]
- Porkka-Heiskanen, T.; Kalinchuk, A.V. Adenosine, energy metabolism and sleep homeostasis. Sleep. Med. Rev. 2011, 15, 123–135. [Google Scholar] [CrossRef]
- Reiss, A.B.; Grossfeld, D.; Kasselman, L.J.; Renna, H.A.; Vernice, N.A.; Drewes, W.; Konig, J.; Carsons, S.E.; DeLeon, J. Adenosine and the Cardiovascular System. Am. J. Cardiovasc. Drugs 2019, 19, 449–464. [Google Scholar] [CrossRef] [PubMed]
- Antonioli, L.; Fornai, M.; Blandizzi, C.; Pacher, P.; Hasko, G. Adenosine signaling and the immune system: When a lot could be too much. Immunol. Lett. 2019, 205, 9–15. [Google Scholar] [CrossRef]
- Hansen, P.B.; Schnermann, J. Vasoconstrictor and vasodilator effects of adenosine in the kidney. Am. J. Physiol. Ren. Physiol. 2003, 285, F590–F599. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.L.; Urade, Y.; Hayaishi, O. The role of adenosine in the regulation of sleep. Curr. Top. Med. Chem. 2011, 11, 1047–1057. [Google Scholar] [CrossRef] [PubMed]
- Sawynok, J.; Liu, X.J. Adenosine in the spinal cord and periphery: Release and regulation of pain. Prog. Neurobiol. 2003, 69, 313–340. [Google Scholar] [CrossRef]
- Palmer, T.M.; Trevethick, M.A. Suppression of inflammatory and immune responses by the A(2A) adenosine receptor: An introduction. Br. J. Pharmacol. 2008, 153 (Suppl. S1), S27–S34. [Google Scholar] [CrossRef]
- Spychala, J. Tumor-promoting functions of adenosine. Pharmacol. Ther. 2000, 87, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Leone, R.D.; Emens, L.A. Targeting adenosine for cancer immunotherapy. J. Immunother. Cancer 2018, 6, 57. [Google Scholar] [CrossRef]
- Jeon, J.S.; Lee, M.J.; Yoon, M.H.; Park, J.A.; Yi, H.; Cho, H.J.; Shin, H.C. Determination of Arbutin, Niacinamide, and Adenosine in Functional Cosmetic Products by High-Performance Liquid Chromatography. Anal. Lett. 2014, 47, 1650–1660. [Google Scholar] [CrossRef]
- Gliga, L.E.; Iacob, B.C.; Chesches, B.; Florea, A.; Barbu-Tudoran, L.; Bodoki, E.; Oprean, R. Electrochemical platform for the detection of adenosine using a sandwich-structured molecularly imprinted polymer-based sensor. Electrochim. Acta 2020, 354, 136656. [Google Scholar] [CrossRef]
- Yousefi, S.; Saraji, M. Optical aptasensor based on silver nanoparticles for the colorimetric detection of adenosine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 213, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xin, X.L.; Zhang, T.T.; Li, W.H.; Li, J.S.; Lu, R. Raspberry-like polyamide@Ag hybrid nanoarrays with flexible cores and SERS signal enhancement strategy for adenosine detection. Chem. Eng. J. 2021, 422, 129983. [Google Scholar] [CrossRef]
- Han, D.; Kim, H.M.; Chand, R.; Kim, G.; Shin, I.S.; Kim, Y.S. Rhodium Complex and Enzyme Couple Mediated Electrochemical Detection of Adenosine. Appl. Biochem. Biotechnol. 2015, 177, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, S.; Saraji, M. Developing a fluorometric aptasensor based on carbon quantum dots and silver nanoparticles for the detection of adenosine. Microchem. J. 2019, 148, 169–176. [Google Scholar] [CrossRef]
- Shen, X.; Xu, L.; Zhu, W.; Li, B.; Hong, J.; Zhou, X. A turn-on fluorescent aptasensor based on carbon dots for sensitive detection of adenosine. New J. Chem. 2017, 41, 9230–9235. [Google Scholar] [CrossRef]
- Zheng, G.; Dai, J.; Wang, H.; Li, L.; Yuan, D.; Bai, S.; Song, X.; Zhao, Y. A hairpin-mediated nicking enzymatic signal amplification for nucleic acids detection. Talanta 2021, 225, 121991. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Liu, J.; Guo, Q.; Du, Z.; Li, H.; Sun, C.; Du, W. Dual-Signal Amplification Strategy for Sensitive MicroRNA Detection Based on Rolling Circle Amplification and Enzymatic Repairing Amplification. ACS Omega 2020, 5, 32738–32743. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, D.; Li, C.; Bai, T.; Jin, H.; Suo, Z. A sensitive electrochemical sensor based on PtNPs@Cu-MOF signal probe and DNA walker signal amplification for Pb(2+) detection. Bioelectrochemistry 2022, 146, 108134. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Cho, H.; Nandhakumar, P.; Park, J.K.; Kim, K.S.; Yang, H. Wash-Free, Sandwich-Type Protein Detection Using Direct Electron Transfer and Catalytic Signal Amplification of Multiple Redox Labels. Anal. Chem. 2022, 94, 2163–2171. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.J.; Xu, P.; Zhang, P.; Qin, Z.R.; Zhang, Y.T.; Jiang, L.Y. Label-free fluorescence aptasensor based on AuNPs and CQDs for the detection of ATP. Aip Adv. 2021, 11, 015316. [Google Scholar] [CrossRef]
- Kim, W.; Ishihara, T.; Akaike, T.; Maruyama, A. Comb-Type Cationic Copolymer Expedites DNA Strand Exchange while Stabilizing DNA Duplex. Chem. Eur. J. 2007, 7, 176–180. [Google Scholar] [CrossRef]
- Choi, S.W.; Kano, A.; Maruyama, A. Activation of DNA strand exchange by cationic comb-type copolymers: Effect of cationic moieties of the copolymers. Nucleic Acids Res. 2008, 36, 342–351. [Google Scholar] [CrossRef]
- Du, J.; Wu, L.; Shimada, N.; Kano, A.; Maruyama, A. Polyelectrolyte-assisted transconformation of a stem-loop DNA. Chem. Commun. 2013, 49, 475. [Google Scholar] [CrossRef]
- Wang, J.; Shimada, N.; Maruyama, A. Cationic Copolymer-Augmented DNA Hybridization Chain Reaction. ACS Appl. Mater. Interfaces 2022, 14, 39396–39403. [Google Scholar] [CrossRef]
- Han, J.; Fang, C.; Ouyang, P.; Qing, Y.; Yang, Y.; Li, H.; Wang, Z.; Du, J. Chaperone Copolymer Assisted G-Quadruplex-Based Signal Amplification Assay for Highly Sensitive Detection of VEGF. Biosensors 2022, 12, 262. [Google Scholar] [CrossRef]
- Han, J.; Wu, J.; Du, J. Fluorescent DNA Biosensor for Single-Base Mismatch Detection Assisted by Cationic Comb-Type Copolymer. Molecules 2019, 24, 575. [Google Scholar] [CrossRef]
- Leggate, J.; Allain, R.; Isaac, L.; Blais, B.W. Microplate fluorescence assay for the quantification of double stranded DNA using SYBR Green I dye. Biotechnol. Lett. 2006, 28, 1587–1594. [Google Scholar] [CrossRef]
- Yang, H.M.; Hu, P.Y.; Tang, J.; Cheng, Y.; Wang, F.; Chen, Z.L. A bifunctional electrochemical aptasensor based on AuNPs-coated ERGO nanosheets for sensitive detection of adenosine and thrombin. J. Solid. State Electr. 2021, 25, 1383–1391. [Google Scholar] [CrossRef]
- Xu, L.; Shen, X.; Li, B.; Zhu, C.; Zhou, X. G-quadruplex based Exo III-assisted signal amplification aptasensor for the colorimetric detection of adenosine. Anal. Chim. Acta 2017, 980, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wang, X.; Sun, Y.; Dai, Y.; Sun, W.; Zhu, X.; Liu, H.; Han, R.; Gao, D.; Luo, C. A chemiluminescent biosensor for ultrasensitive detection of adenosine based on target-responsive DNA hydrogel with Au@HKUST-1 encapsulation. Sens. Actuators B Chem. 2019, 289, 56–64. [Google Scholar] [CrossRef]
- Sun, Y.; Ding, C.; Lin, Y.; Sun, W.; Liu, H.; Zhu, X.; Dai, Y.; Luo, C. Highly selective and sensitive chemiluminescence biosensor for adenosine detection based on carbon quantum dots catalyzing luminescence released from aptamers functionalized graphene@magnetic beta-cyclodextrin polymers. Talanta 2018, 186, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Lu, M.; Li, Y.; Tang, B.; Zhang, C.Y. A reusable ratiometric electrochemical biosensor on the basis of the binding of methylene blue to DNA with alternating AT base sequence for sensitive detection of adenosine. Biosens. Bioelectron. 2018, 102, 87–93. [Google Scholar] [CrossRef]
- You, J.; You, Z.; Xu, X.; Ji, J.; Lu, T.; Xia, Y.; Wang, L.; Zhang, L.; Du, S. A split aptamer-labeled ratiometric fluorescent biosensor for specific detection of adenosine in human urine. Mikrochim. Acta 2018, 186, 43. [Google Scholar] [CrossRef]
- Zhou, S.; Gan, Y.; Kong, L.; Sun, J.; Liang, T.; Wang, X.; Wan, H.; Wang, P. A novel portable biosensor based on aptamer functionalized gold nanoparticles for adenosine detection. Anal. Chim. Acta 2020, 1120, 43–49. [Google Scholar] [CrossRef]
Name | Sequence (from 5′ to 3′) |
---|---|
Aptamer (Apt) | Biotin-TTTTTTTTTACCTGGGGGAGTATTGCGGAGGAAGGT |
aDNA | ACCTTCCTCCG CAATGCATAGAGTACG |
bDNA | CGGAGGAAGG TCGTACTCTATGCATTG |
Detection Technique | Linear Range | LOD | Reference |
---|---|---|---|
Electrochemistry | 25–750 nM | 8.3 nM | [31] |
Electrochemistry | 0.37–37.4 μM | 0.21 μM | [13] |
Colorimetry | 50 nM–6 μM | 17 nM | [32] |
Fluorescence | 10–500 nM | 4.2 nM | [18] |
Fluorescence | 5–50 nM | 2.32 nM | This work |
Chemiluminescence | 0.4–150 nM | 0.104 nM | [33] |
Chemiluminescence | 0.5–5000 nM | 0.21 nM | [34] |
Electrochemistry | 0.1 nM–100 μM | 90.8 pM | [35] |
Fluorescence | 0–320 nM | 2.4 nM | [36] |
Colorimetry | 5.0–60.0 μM | 0.17 μM | [37] |
Added (nM) | Found (nM) | Recovery (%) | RSD (%, n = 3) |
---|---|---|---|
20 | 20.47 | 108.71 | 6.94 |
30 | 29.01 | 93.06 | 3.70 |
50 | 49.29 | 98.97 | 2.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Y.; Yang, Y.; Qing, Y.; Du, J. Enzyme-Free Signal Amplification Strategy via Chaperone Copolymer-Accelerated Hybridization for Highly Sensitive Detection of Adenosine. Chemosensors 2023, 11, 522. https://doi.org/10.3390/chemosensors11100522
Liao Y, Yang Y, Qing Y, Du J. Enzyme-Free Signal Amplification Strategy via Chaperone Copolymer-Accelerated Hybridization for Highly Sensitive Detection of Adenosine. Chemosensors. 2023; 11(10):522. https://doi.org/10.3390/chemosensors11100522
Chicago/Turabian StyleLiao, Yazhen, Yuxing Yang, Yang Qing, and Jie Du. 2023. "Enzyme-Free Signal Amplification Strategy via Chaperone Copolymer-Accelerated Hybridization for Highly Sensitive Detection of Adenosine" Chemosensors 11, no. 10: 522. https://doi.org/10.3390/chemosensors11100522
APA StyleLiao, Y., Yang, Y., Qing, Y., & Du, J. (2023). Enzyme-Free Signal Amplification Strategy via Chaperone Copolymer-Accelerated Hybridization for Highly Sensitive Detection of Adenosine. Chemosensors, 11(10), 522. https://doi.org/10.3390/chemosensors11100522