Laser-Induced Graphene on Optical Fibre: Towards Simple and Cost-Effective Electrochemical/Optical Lab-on-Fibre Bioplatforms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis Apparatus and Electrode Fabrication
2.3. Morphological, Structural and Elemental Characterization
2.4. Electrochemical Characterization and Dopamine Electroanalysis
3. Results and Discussion
3.1. Morphological, Structural and Electrochemical Characterization
3.2. Dopamine (DA) Electroanalysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coroş, M.; Pruneanu, S.; Staden, R.-I.S. Review—Recent Progress in the Graphene-Based Electrochemical Sensors and Biosensors. J. Electrochem. Soc. 2019, 167, 037528. [Google Scholar] [CrossRef] [Green Version]
- Santos, N.F.; Pereira, S.O.; Fernandes, A.J.S.; Vasconcelos, T.L.; Fung, C.M.; Archanjo, B.S.; Achete, C.A.; Teixeira, S.R.; Silva, R.F.; Costa, F.M. Physical Structure and Electrochemical Response of Diamond–Graphite Nanoplatelets: From CVD Synthesis to Label-Free Biosensors. ACS Appl. Mater. Interfaces 2019, 8470–8482. [Google Scholar] [CrossRef] [PubMed]
- Georgakilas, V.; Perman, J.A.; Tucek, J.; Zboril, R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015, 115, 4744–4822. [Google Scholar] [CrossRef] [PubMed]
- Ambrosi, A.; Chua, C.K.; Latiff, N.M.; Loo, A.H.; Wong, C.H.A.; Eng, A.Y.S.; Bonanni, A.; Pumera, M. Graphene and Its Electrochemistry-an Update. Chem. Soc. Rev. 2016, 45, 2458–2493. [Google Scholar] [CrossRef] [Green Version]
- Santos, N.F.; Pereira, S.O.; Moreira, A.; Girão, A.V.; Carvalho, A.F.; Fernandes, A.J.S.; Costa, F.M. IR and UV Laser-Induced Graphene: Application as Dopamine Electrochemical Sensors. Adv. Mater. Technol. 2021, 6, 2100007. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, S.; Wu, J.; Yu, Y.; Li, R.; Eda, S.; Chen, J.; Feng, G.; Lawrie, B.; Hu, A. Bisphenol A Sensors on Polyimide Fabricated by Laser Direct Writing for Onsite River Water Monitoring at Attomolar Concentration. ACS Appl. Mater. Interfaces 2016, 8, 17784–17792. [Google Scholar] [CrossRef]
- Ye, R.; James, D.K.; Tour, J.M. Laser-Induced Graphene: From Discovery to Translation. Adv. Mater. 2019, 31, 1803621. [Google Scholar] [CrossRef]
- Carvalho, A.F.; Fernandes, A.J.S.; Martins, R.; Fortunato, E.; Costa, F.M. Laser-Induced Graphene Piezoresistive Sensors Synthesized Directly on Cork Insoles for Gait Analysis. Adv. Mater. Technol. 2020, 5, 2000630. [Google Scholar] [CrossRef]
- Kulyk, B.; Pereira, S.O.; Fernandes, A.J.S.; Fortunato, E.; Costa, F.M.; Santos, N.F. Laser-Induced Graphene from Paper for Non-Enzymatic Uric Acid Electrochemical Sensing in Urine. Carbon 2022, 197, 253–263. [Google Scholar] [CrossRef]
- Chyan, Y.; Ye, R.; Li, Y.; Singh, S.P.; Arnusch, C.J.; Tour, J.M. Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food. ACS Nano 2018, 12, 2176–2183. [Google Scholar] [CrossRef]
- Simsek, M.; Wongkaew, N. Carbon Nanomaterial Hybrids via Laser Writing for High-Performance Non-Enzymatic Electrochemical Sensors: A Critical Review. Anal. Bioanal. Chem. 2021, 413, 6079–6099. [Google Scholar] [CrossRef] [PubMed]
- Li, G. Direct Laser Writing of Graphene Electrodes. J. Appl. Phys. 2020, 127, 010901. [Google Scholar] [CrossRef] [Green Version]
- Pereira, S.O.; Santos, N.F.; Carvalho, A.F.; Fernandes, A.J.S.; Costa, F.M. Electrochemical Response of Glucose Oxidase Adsorbed on Laser-Induced Graphene. Nanomater 2021, 11, 1893. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.S.; Silva, L.C.B.; Vidal, M.; Loyez, M.; Facão, M.; Caucheteur, C.; Segatto, M.E.V.; Costa, F.M.; Leitão, C.; Pereira, S.O.; et al. Label-Free Plasmonic Immunosensor for Cortisol Detection in a D-Shaped Optical Fiber. Biomed. Opt. Express 2022, 13, 3259. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.S.; Vidal, M.; Santos, N.F.; Costa, F.M.; Marques, C.; Pereira, S.O.; Leitão, C. Immunosensing Based on Optical Fiber Technology: Recent Advances. Biosensors 2021, 11, 305. [Google Scholar] [CrossRef] [PubMed]
- Si, Y.; Lao, J.; Zhang, X.; Liu, Y.; Cai, S.; Gonzalez-Vila, A.; Li, K.; Huang, Y.; Yuan, Y.; Caucheteur, C.; et al. Electrochemical Plasmonic Fiber-Optic Sensors for Ultra-Sensitive Heavy Metal Detection. J. Light. Technol. 2019, 37, 3495–3502. [Google Scholar] [CrossRef]
- Liu, X.; Singh, R.; Li, M.; Li, G.; Min, R.; Marques, C.; Zhang, B.; Zhang, B.; Kumar, S. Plasmonic Sensor Based on Offset-Splicing and Waist-Expanded Taper Using Multicore Fiber for Detection of Aflatoxins B1 in Critical Sectors. Opt. Express 2023, 31, 4783–4802. [Google Scholar] [CrossRef]
- Tramarin, L.; Casquel, R.; Gil-Rostra, J.; González-Martínez, M.Á.; Herrero-Labrador, R.; Murillo, A.M.M.; Laguna, M.F.; Bañuls, M.J.; González-Elipe, A.R.; Holgado, M. Design and Characterization of ITO-Covered Resonant Nanopillars for Dual Optical and Electrochemical Sensing. Chemosensors 2022, 10, 393. [Google Scholar] [CrossRef]
- Niedziałkowski, P.; Białobrzeska, W.; Burnat, D.; Sezemsky, P. Study on Combined Optical and Electrochemical Analysis Using Indium-Tin-Oxide-Coated Optical Fiber Sensor. Electroanalysis 2019, 31, 398–404. [Google Scholar] [CrossRef]
- Hou, M.; Wang, N.; Chen, Y.; Ou, Z.; Chen, X.; Shen, F.; Jiang, H. Laser-Induced Graphene Coated Hollow-Core Fiber for Humidity Sensing. Sens. Actuators B Chem. 2022, 359, 131530. [Google Scholar] [CrossRef]
- Martins, L.; Kulyk, B.; Theodosiou, A.; Ioannou, A.; Moreirinha, C.; Kalli, K.; Santos, N.; Costa, F.; Pereira, S.O.; Marques, C. Laser-Induced Graphene from Commercial Polyimide Coated Optical Fibers for Sensor Development. Opt. Laser Technol. 2023, 160, 109047. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J. Biosensors and Sensors for Dopamine Detection. View 2021, 2, 20200102. [Google Scholar] [CrossRef]
- Duy, L.X.; Peng, Z.; Li, Y.; Zhang, J.; Ji, Y.; Tour, J.M. Laser-Induced Graphene Fibers. Carbon 2018, 126, 472–479. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, A.C. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef] [Green Version]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: New York, NY, USA, 1980. [Google Scholar]
- Konopka, S.J.; McDuffie, B. Diffusion Coefficients of Ferri- and Ferrocyanide Ions in Aqueous Media, Using Twin-Electrode Thin-Layer Electrochemistry. Anal. Chem. 1970, 42, 1741–1746. [Google Scholar] [CrossRef]
- Davidson, D.F. Elevated Urinary Dopamine in Adults and Children. Ann. Clin. Biochem. 2005, 42 Pt 3, 200–207. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, R.D. Microvoltammetric Techniques and Sensors for Monitoring Neurochemical Dynamics in Vivo. A Review. Analyst 1994, 119, 767–779. [Google Scholar] [CrossRef]
- Hong, Q.; Yang, L.; Ge, L.; Liu, Z.; Li, F. Direct-Laser-Writing of Three-Dimensional Porous Graphene Frameworks on Indium-Tin Oxide for Sensitive Electrochemical Biosensing. Analyst 2018, 143, 3327–3334. [Google Scholar] [CrossRef]
- Nayak, P.; Kurra, N.; Xia, C.; Alshareef, H.N. Highly Efficient Laser Scribed Graphene Electrodes for On-Chip Electrochemical Sensing Applications. Adv. Electron. Mater. 2016, 2, 1600185. [Google Scholar] [CrossRef]
- Xu, G.; Jarjes, Z.A.; Desprez, V.; Kilmartin, P.A.; Travas-Sejdic, J. Sensitive, Selective, Disposable Electrochemical Dopamine Sensor Based on PEDOT-Modified Laser Scribed Graphene. Biosens. Bioelectron. 2018, 107, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.K.; Singh, E.; Singh, P.; Meyyappan, M.; Nalwa, H.S. A Review on Graphene-Based Nanocomposites for Electrochemical and Fluorescent Biosensors. RSC Adv. 2019, 9, 8778–8781. [Google Scholar] [CrossRef]
- Gao, F.; Cai, X.; Wang, X.; Gao, C.; Liu, S.; Gao, F.; Wang, Q. Highly Sensitive and Selective Detection of Dopamine in the Presence of Ascorbic Acid at Graphene Oxide Modified Electrode. Sens. Actuators B Chem. 2013, 186, 380–387. [Google Scholar] [CrossRef]
- Li, S.M.; Yang, S.Y.; Wang, Y.S.; Lien, C.H.; Tien, H.W.; Hsiao, S.T.; Liao, W.H.; Tsai, H.P.; Chang, C.L.; Ma, C.C.M.; et al. Controllable Synthesis of Nitrogen-Doped Graphene and Its Effect on the Simultaneous Electrochemical Determination of Ascorbic Acid, Dopamine, and Uric Acid. Carbon 2013, 59, 418–429. [Google Scholar] [CrossRef]
- Ding, X.; Bai, J.; Xu, T.; Li, C.; Zhang, H.M.; Qu, L. A Novel Nitrogen-Doped Graphene Fiber Microelectrode with Ultrahigh Sensitivity for the Detection of Dopamine. Electrochem. Commun. 2016, 72, 122–125. [Google Scholar] [CrossRef]
- Xu, T.Q.; Zhang, Q.L.; Zheng, J.N.; Lv, Z.Y.; Wei, J.; Wang, A.J.; Feng, J.J. Simultaneous Determination of Dopamine and Uric Acid in the Presence of Ascorbic Acid Using Pt Nanoparticles Supported on Reduced Graphene Oxide. Electrochim. Acta 2014, 115, 109–115. [Google Scholar] [CrossRef]
- Randviir, E.P. A Cross Examination of Electron Transfer Rate Constants for Carbon Screen-Printed Electrodes Using Electrochemical Impedance Spectroscopy and Cyclic Voltammetry. Electrochim. Acta 2018, 286, 179–186. [Google Scholar] [CrossRef]
- Yue, H.Y.; Huang, S.; Chang, J.; Heo, C.; Yao, F.; Adhikari, S.; Gunes, F.; Liu, L.C.; Lee, T.H.; Oh, E.S.; et al. ZnO Nanowire Arrays on 3D Hierachical Graphene Foam: Biomarker Detection of Parkinson’s Disease. ACS Nano 2014, 8, 1639–1646. [Google Scholar] [CrossRef]
- Mundaca-Uribe, R.; Bustos-Ramírez, F.; Zaror-Zaror, C.; Aranda-Bustos, M.; Neira-Hinojosa, J.; Peña-Farfal, C. Development of a Bienzymatic Amperometric Biosensor to Determine Uric Acid in Human Serum, Based on Mesoporous Silica (MCM-41) for Enzyme Immobilization. Sens. Actuators B Chem. 2014, 195, 58–62. [Google Scholar] [CrossRef]
- Singh, S.P.; Li, Y.; Be’Er, A.; Oren, Y.; Tour, J.M.; Arnusch, C.J. Laser-Induced Graphene Layers and Electrodes Prevents Microbial Fouling and Exerts Antimicrobial Action. ACS Appl. Mater. Interfaces 2017, 9, 18238–18247. [Google Scholar] [CrossRef] [PubMed]
- Jan, H.; Gul, R.; Andleeb, A.; Ullah, S.; Shah, M.; Khanum, M.; Ullah, I.; Hano, C.; Abbasi, B.H. A Detailed Review on Biosynthesis of Platinum Nanoparticles (PtNPs), Their Potential Antimicrobial and Biomedical Applications. J. Saudi Chem. Soc. 2021, 25, 101297. [Google Scholar] [CrossRef]
- Kim, G.; Kim, H.; Kim, I.J.; Kim, J.R.; Lee, J.I.; Ree, M. Bacterial Adhesion, Cell Adhesion and Biocompatibility of Nafion Films. J. Biomater. Sci. Polym. Ed. 2009, 20, 1687–1707. [Google Scholar] [CrossRef] [PubMed]
DPV#1 | DPV#2 | |
---|---|---|
Preconcentration time/potential | 3 min/−0.3 V vs. SCE | |
Initial; Final Potential (V) | −0.2; 0.6 | −0.2; 0.6 |
Scanning Speed (mV s−1) | 10 | 10 |
Pulse: height (mV); width (s) | 45; 0.03 | 30; 0.15 |
Step: height (mV); width (s) | 2; 0.2 | 3.5; 0.35 |
Electrode | Linear Range, µM | LoD, µM | Sensitivity, µA µM−1 cm−2 | [AA]; [UA], µM | mV | [Ref] | |
---|---|---|---|---|---|---|---|
LIG on OF (CO2 laser) | LIG | 0.1–5 | 0.1 (measured) | 4.4 | AA—100; UA—100 | 134/168 | This work |
LIG/Pt NPs | 0.1–5 | 0.1 (measured) | 5.0 | 137/N.A. | |||
LIG/Pt NPs/Nafion | 0.1–5 | 0.1 (measured) | 2.6 | 133/N.A. | |||
ITO/LIG (CO2 laser) | 0.2–24 | 0.20 (measured) | 2.1 | AA—10; UA—10 | 135/155 | [31] | |
LIG (CO2 laser)/Pt NPs | 0–30 | 0.07 (extrapolated) | 7.0 | AA—30; UA—4 | 143/236; 134/234 (without Pt NPs) | [32] | |
LIG (CO2 Laser) | 0.5–3 | 0.50 (measured); 0.10 (extrapolated) | 93 | AA—100; UA—100 | 175/190 | [5] | |
LIG (UV laser) | 0.5–4 | 0.50 (measured); 0.13 (extrapolated) | 58 | AA—100; UA—100 | 160/190 | [5] | |
LIG (CO2 laser)/ PEDOT | 1–150 | 0.33 (extrapolated) | ~2.0 | AA—30; UA—4 | 150/250; 144/171 (without PEDOT) | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, L.L.; Ribeiro, R.A.; Fernandes, A.J.S.; Costa, F.M.; Marques, C.; Santos, N.F. Laser-Induced Graphene on Optical Fibre: Towards Simple and Cost-Effective Electrochemical/Optical Lab-on-Fibre Bioplatforms. Chemosensors 2023, 11, 338. https://doi.org/10.3390/chemosensors11060338
Ferreira LL, Ribeiro RA, Fernandes AJS, Costa FM, Marques C, Santos NF. Laser-Induced Graphene on Optical Fibre: Towards Simple and Cost-Effective Electrochemical/Optical Lab-on-Fibre Bioplatforms. Chemosensors. 2023; 11(6):338. https://doi.org/10.3390/chemosensors11060338
Chicago/Turabian StyleFerreira, Laura L., Rafael A. Ribeiro, António J. S. Fernandes, Florinda M. Costa, Carlos Marques, and Nuno F. Santos. 2023. "Laser-Induced Graphene on Optical Fibre: Towards Simple and Cost-Effective Electrochemical/Optical Lab-on-Fibre Bioplatforms" Chemosensors 11, no. 6: 338. https://doi.org/10.3390/chemosensors11060338
APA StyleFerreira, L. L., Ribeiro, R. A., Fernandes, A. J. S., Costa, F. M., Marques, C., & Santos, N. F. (2023). Laser-Induced Graphene on Optical Fibre: Towards Simple and Cost-Effective Electrochemical/Optical Lab-on-Fibre Bioplatforms. Chemosensors, 11(6), 338. https://doi.org/10.3390/chemosensors11060338