Preparation and Optimization of Mesoporous SnO2 Quantum Dot Thin Film Gas Sensors for H2S Detection Using XGBoost Parameter Importance Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructural, Morphological and Compositional Properties
3.2. Gas-Sensing Properties
3.3. Feature Importance Analysis of Technical Preparation Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, S.; Zhang, Y.; Wu, M.; Fang, W.; Yang, Y. Study on methanethiol synthesis from H2S and dimethyl sulfide over Al2O3 catalysts promoted with phosphorus. Appl. Catal. A Gen. 2012, 431, 151–156. [Google Scholar] [CrossRef]
- Morishita, T.; Matsuyama, H.; Matsui, M.; Tonomura, S.; Wakihara, M. Distribution of luminescent centers in electroluminescent SrS: Ce films prepared by post-annealing in H2S. Appl. Surf. Sci. 2000, 157, 61–66. [Google Scholar] [CrossRef]
- Cheroff, G.; Keller, S.P. Optical transmission and photoconductive and photovoltaic effects in activated and unactivated single crystals of ZnS. Phys. Rev. 1958, 111, 98. [Google Scholar] [CrossRef]
- Keefe, A.D.; Miller, S.L.; Mcdonald, G.; Bada, J. Investigation of the prebiotic synthesis of amino acids and RNA bases from CO2 using FeS/H2S as a reducing agent. Proc. Natl. Acad. Sci. USA 1995, 92, 11904–11906. [Google Scholar] [CrossRef]
- Dernehl, C.U.; Stead, F.M.; Nau, C.A. Arsine, Stibine, and Hydrogen Sulfide: Accidental Generation in a Metal Refinery. Am. Ind. Hyg. Assoc. Q. 1944, 5, 361–362. [Google Scholar]
- Jacob, C.; Anwar, A.; Burkholz, T. Perspective on recent developments on sulfur-containing agents and hydrogen sulfide signaling. Planta Medica 2008, 74, 1580–1592. [Google Scholar] [CrossRef]
- Wachter, P.; Gaber, C.; Raic, J.; Demuth, M.; Hochenauer, C. Experimental investigation on H2S and SO2 sulphur poisoning and regeneration of a commercially available Ni-catalyst during methane tri-reforming. Int. J. Hydrog. Energy 2021, 46, 3437–3452. [Google Scholar] [CrossRef]
- Sarfraz, J.; Rosqvist, E.; Ihalainen, P.; Peltonen, J. Electro-Optical Gas Sensor Consisting of Nanostructured Paper Coating and an Ultrathin Sensing Element. Chemosensors 2019, 7, 23. [Google Scholar] [CrossRef]
- Jensen, A.R.; Drucker, N.A.; Khaneki, S.; Ferkowicz, M.J.; Yoder, M.C.; Deleon, E.R.; Olson, K.R.; Markel, T.A. Hydrogen sulfide: A potential novel therapy for the treatment of ischemia. Shock Inj. Inflamm. Sepsis Lab. Clin. Approaches 2017, 48, 511–524. [Google Scholar] [CrossRef]
- Motaung, D.E.; Mhlongo, G.H.; Bolokang, A.S.; Dhonge, B.P.; Swart, H.C.; Ray, S.S. Improved sensitivity and selectivity of pristine zinc oxide nanostructures to H2S gas: Detailed study on the synthesis reaction time. Appl. Surf. Sci. 2016, 386, 210–223. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, C.; Wang, Y.; Chen, X.; Jing, R.; Song, T.; Zhang, Z.; Wang, H.; Fu, C.; Wang, J.; et al. Black phosphorus nanodot incorporated tin oxide hollow-spherical heterojunction for enhanced properties of room-temperature gas sensors. Ceram. Int. 2023, 49, 8248–8258. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Tian, X.; Hong, Y.; Nie, Y.; Su, N.; Jin, G.; Zhai, Z.; Fu, C. Highly efficient photocatalytic degradation of oil pollutants by oxygen deficient SnO2 quantum dots for water remediation. Chem. Eng. J. 2021, 404, 127146. [Google Scholar] [CrossRef]
- Seiyama, T.; Kato, A.; Fujiishi, K.; Nagatani, M. A new detector for gaseous components using semiconductive thin films. Anal. Chem. 1962, 34, 1502–1503. [Google Scholar] [CrossRef]
- Matsuura, Y.; Takahata, K.; Ihokura, K. Mechanism of gas sensitivity change with time of SnO2 gas sensors. Sens. Actuators 1988, 14, 223–232. [Google Scholar] [CrossRef]
- Wang, X.; Fan, H.; Ren, P. Self-assemble flower-like SnO2/Ag heterostructures: Correlation among composition, structure and photocatalytic activity. Colloids Surf. A Physicochem. Eng. Asp. 2013, 419, 140–146. [Google Scholar] [CrossRef]
- Chen, J.S.; Lou, X.W. SnO2-based nanomaterials: Synthesis and application in lithium-ion batteries. Small 2013, 9, 1877–1893. [Google Scholar] [CrossRef]
- Liu, J.; Lv, J.; Shi, J.; Wu, L.; Su, N.; Fu, C.; Zhang, Q. Size effects of tin oxide quantum dot gas sensors: From partial depletion to volume depletion. J. Mater. Res. Technol. 2020, 9, 16399–16409. [Google Scholar] [CrossRef]
- Chen, X.; Liu, T.; Wu, R.; Yu, J.; Yin, X. Gas sensors based on Pd-decorated and Sb-doped SnO2 for hydrogen detection. J. Ind. Eng. Chem. 2022, 115, 491–499. [Google Scholar] [CrossRef]
- Mao, L.-W.; Zhu, L.-Y.; Tao Wu, T.; Xu, L.; Jin, X.-H.; Lu, H.-L. Excellent long-term stable H2S gas sensor based on Nb2O5/SnO2 core-shell heterostructure nanorods. Appl. Surf. Sci. 2022, 602, 154339. [Google Scholar] [CrossRef]
- Keshtkar, S.; Rashidi, A.; Kooti, M.; Askarieh, M.; Pourhashem, S.; Ghasemy, E.; Izadi, N. A novel highly sensitive and selective H2S gas sensor at low temperatures based on SnO2 quantum dots-C(60) nanohybrid: Experimental and theory study. Talanta Int. J. Pure Appl. Anal. Chem. 2018, 188, 531–539. [Google Scholar]
- Xia, Z.; Zheng, C.; Hu, J.; Yuan, Q.; Zhang, C.; Zhang, J.; He, L.; Gao, H.; Jin, L.; Chu, X.; et al. Synthesis of SnO2 quantum dot sensitized LaFeO3 for conductometric formic acid gas sensors. Sens. Actuators B Chem. 2023, 379, 133198. [Google Scholar] [CrossRef]
- Wang, L.; Fei, T.; Deng, J.; Lou, Z.; Wang, R.; Zhang, T. Synthesis of rattle-type SnO2 structures with porous shells. J. Mater. Chem. 2012, 22, 18111–18114. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, L. Hollow micro/nanomaterials with multilevel interior structures. Adv. Mater. 2009, 21, 3621–3638. [Google Scholar] [CrossRef]
- Liu, J.; Lu, Y.; Cui, X.; Geng, Y.; Jin, G.; Zhai, Z. Gas-sensing properties and sensitivity promoting mechanism of Cu-added SnO2 thin films deposited by ultrasonic spray pyrolysis. Sens. Actuators B Chem. 2017, 248, 862–867. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, X.; Lian, D.; Yang, J.; Wang, S.; Li, Y.; Song, H. Enhanced selective acetone gas sensing performance by fabricating ZnSnO3/SnO2 concave microcube. Appl. Surf. Sci. 2021, 542, 148555. [Google Scholar] [CrossRef]
- Lian, X.X.; Li, Y.; Zhu, J.; Zou, Y.; Liu, X.; An, D.; Wang, Q. Synthesis of coryphantha elephantidens-like SnO2 nanospheres and their gas sensing properties. Curr. Appl. Phys. 2019, 19, 849–855. [Google Scholar] [CrossRef]
- Sakai, G.; Matsunaga, N.; Shimanoe, K.; Yamazoe, N. Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sens. Actuators B Chem. 2001, 80, 125–131. [Google Scholar] [CrossRef]
- Liu, J.; Gong, S.; Xia, J.; Quan, L.; Liu, H.; Zhou, D. The sensor response of tin oxide thin films to different gas concentration and the modification of the gas diffusion theory. Sens. Actuators B Chem. 2009, 138, 289–295. [Google Scholar] [CrossRef]
- Yang, T.; Yang, Q.; Xiao, Y.; Sun, P.; Wang, Z.; Gao, Y.; Ma, J.; Sun, Y.; Lu, G. A pulse-driven sensor based on ordered mesoporous Ag2O/SnO2 with improved H2S-sensing performance. Sens. Actuators B Chem. 2016, 228, 529–538. [Google Scholar] [CrossRef]
- Song, B.; Zhang, M.; Teng, Y.; Zhang, X.; Deng, Z.; Huo, L.; Gao, S. Highly selective ppb-level H2S sensor for spendable detection of exhaled biomarker and pork freshness at low temperature: Mesoporous SnO2 hierarchical architectures derived from waste scallion root. Sens. Actuators B Chem. 2020, 307, 127662. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, Y.; Sun, H.; Jia, F.; Kumar, P.; Liu, B. Synthesis and room-temperature H2S sensing of Pt nanoparticle-functionalized SnO2 mesoporous nanoflowers. J. Alloys Compd. 2020, 842, 155813. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14 August 2022. [Google Scholar]
- Husain, A.; Salem, A.; Jim, C.; Dimitoglou, G. Development of an Efficient Network Intrusion Detection Model Using Extreme Gradient Boosting (XGBoost) on the UNSW-NB15 Dataset. In Proceedings of the 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Ajman, United Arab Emirates, 1 December 2019. [Google Scholar]
- Wan, Y.; Chen, F.; Fan, L.; Sun, D.; He, H.; Dai, Y.; Li, L.; Chen, Y. Conversion of surface CH4 concentrations from GOSAT satellite observations using XGBoost algorithm. Atmos. Environ. 2023, 301, 119694. [Google Scholar] [CrossRef]
- Dong, J.; Zeng, W.; Wu, L.; Huang, J.; Gaiser, T.; Srivastava, A.K. Enhancing short-term forecasting of daily precipitation using numerical weather prediction bias correcting with XGBoost in different regions of China. Eng. Appl. Artif. Intell. 2023, 117, 105579. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Xue, W.; Zhang, H.; Bai, Y.; Wu, L.; Zhai, Z.; Jin, G. Fluorescence Characteristics of Aqueous Synthesized Tin Oxide Quantum Dots for the Detection of Heavy Metal Ions in Contaminated Water. Nanomaterials 2019, 9, 1294. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Wu, C.; Jiang, S.; Li, Y.J.; Wu, D.; Li, M.; Cheng, P.; Yang, W.; Cheng, C.; Li, L. Field comparison of electrochemical gas sensor data correction algorithms for ambient air measurements. Sens. Actuators B Chem. 2021, 327, 128897. [Google Scholar] [CrossRef]
- Liu, J.; Lv, J.; Xiong, H.; Wang, Y.; Jin, G.; Zhai, Z.; Fu, C.; Zhang, Q. Size effect and comprehensive mathematical model for gas-sensing mechanism of SnO2 thin film gas sensors. J. Alloys Compd. 2022, 898, 162875. [Google Scholar] [CrossRef]
- Liu, J.; Hu, J.; Liu, C.; Tan, Y.; Peng, X.; Zhang, Y. Mechanically exfoliated MoS2 nanosheets decorated with SnS2 nanoparticles for high-stability gas sensors at room temperature. Rare Met. 2021, 40, 1536–1544. [Google Scholar] [CrossRef]
- Barreca, D.; Garon, S.; Tondello, E.; Zanella, P. SnO2 Nanocrystalline Thin Films by XPS. Surf. Sci. Spectra 2000, 7, 81–85. [Google Scholar]
- Cox, D.F.; Fryberger, T.B. Preferential isotopic labeling of lattice oxygen positions on the SnO2 (110) surface. Surf. Sci. 1990, 227, L105–L108. [Google Scholar] [CrossRef]
- Matthews, H.; Kohnke, E. Effect of chemisorbed oxygen on the electrical conductivity of Zn-doped polycrystalline SnO2. J. Phys. Chem. Solids 1968, 29, 653–661. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, L.; Yang, C.; Zheng, W.; Liu, X.; Zhang, J. Oxygen Vacancies Enabled Porous SnO2 Thin Films for Highly Sensitive Detection of Triethylamine at Room Temperature. ACS Appl. Mater. Interfaces 2020, 12, 20704–20713. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, X.; Zhai, Z.; Jin, G.; Jiang, Q.; Zhao, Y.; Luo, C.; Quan, L. Evaluation of depletion layer width and gas-sensing properties of antimony-doped tin oxide thin film sensors. Sens. Actuators B Chem. 2015, 220, 1354–1360. [Google Scholar] [CrossRef]
- Xu, C.; Tamaki, J.; Miura, N.; Yamazoe, N. Grain size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuators B Chem. 1991, 3, 147–155. [Google Scholar] [CrossRef]
- Yamazoe, N.; Shimanoe, K. New Perspectives of Gas Sensor Technology. Sens. Actuators B Chem. 2009, 138, 100–107. [Google Scholar] [CrossRef]
- Yamazoe, N.; Shimanoe, K. Theory of power laws for semiconductor gas sensors. Sens. Actuators B Chem. 2008, 128, 566–573. [Google Scholar]
- Inyawilert, K.; Punginsang, M.; Wisitsoraat, A.; Tuantranont, A.; Liewhiran, C. Graphene/Rh-doped SnO2 nanocomposites synthesized by electrochemical exfoliation and flame spray pyrolysis for H2S sensing. J. Alloys Compd. 2022, 916, 165431. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Zhao, Y.; Wu, Q.; Nie, H.; Si, H.; Huang, H.; Liu, Y.; Shao, M.; Kang, Z. Highly efficient metal-free catalyst from cellulose for hydrogen peroxide photoproduction instructed by machine learning and transient photovoltage technology. Nano Res. 2022, 15, 4000–4007. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, Y.; Sun, Y.; Zhang, K.; Ding, Y.; Fu, C.; Wang, J. Preparation and Optimization of Mesoporous SnO2 Quantum Dot Thin Film Gas Sensors for H2S Detection Using XGBoost Parameter Importance Analysis. Chemosensors 2023, 11, 525. https://doi.org/10.3390/chemosensors11100525
Liu J, Wang Y, Sun Y, Zhang K, Ding Y, Fu C, Wang J. Preparation and Optimization of Mesoporous SnO2 Quantum Dot Thin Film Gas Sensors for H2S Detection Using XGBoost Parameter Importance Analysis. Chemosensors. 2023; 11(10):525. https://doi.org/10.3390/chemosensors11100525
Chicago/Turabian StyleLiu, Jianqiao, Yujia Wang, Yue Sun, Kuanguang Zhang, Yang Ding, Ce Fu, and Junsheng Wang. 2023. "Preparation and Optimization of Mesoporous SnO2 Quantum Dot Thin Film Gas Sensors for H2S Detection Using XGBoost Parameter Importance Analysis" Chemosensors 11, no. 10: 525. https://doi.org/10.3390/chemosensors11100525
APA StyleLiu, J., Wang, Y., Sun, Y., Zhang, K., Ding, Y., Fu, C., & Wang, J. (2023). Preparation and Optimization of Mesoporous SnO2 Quantum Dot Thin Film Gas Sensors for H2S Detection Using XGBoost Parameter Importance Analysis. Chemosensors, 11(10), 525. https://doi.org/10.3390/chemosensors11100525