Quantum Dots-Sensitized High Electron Mobility Transistor (HEMT) for Sensitive NO2 Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Materials
2.2. Sensor Fabrication
2.3. Sensor Measurement
2.4. Sensor Characterization
3. Results and Discussion
3.1. Operation Principle and Characterization of the Gas Sensor
3.2. The Equivalent Circuit of the Gas Sensor
3.3. Sensing Properties of the Gas Sensor
3.4. Investigation of the Capacitance Response of PbS CQDs
3.5. The Capacitance Response Mechanism of PbS CQD
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Potyrailo, R.A. Multivariable Sensors for Ubiquitous Monitoring of Gases in the Era of Internet of Things and Industrial Internet. Chem. Rev. 2016, 116, 11877–11923. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, Y.; Cai, Z.; Dou, X. A Colorimetric Artificial Olfactory System for Airborne Improvised Explosive Identification. Adv. Mater. 2020, 32, 1907043. [Google Scholar] [CrossRef] [PubMed]
- Machado, R.F.; Laskowski, D.; Deffenderfer, O.; Burch, T.; Zheng, S.; Mazzone, P.J.; Mekhail, T.; Jennings, C.; Stoller, J.K.; Pyle, J.; et al. Detection of Lung Cancer by Sensor Array Analyses of Exhaled Breath. Am. J. Respir. Crit. Care Med. 2005, 171, 1286–1291. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Wang, T.; Wu, Z.; Wang, J.; Wang, M.; Cui, Z.; Ji, S.; Cai, J.; Xu, C.; Chen, X. Portable Food-Freshness Prediction Platform Based on Colorimetric Barcode Combinatorics and Deep Convolutional Neural Networks. Adv. Mater. 2020, 32, 2004805. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Berean, K.J.; Ha, N.; Chrimes, A.F.; Xu, K.; Grando, D.; Ou, J.Z.; Pillai, N.; Campbell, J.L.; Brkljača, R.; et al. A Human Pilot Trial of Ingestible Electronic Capsules Capable of Sensing Different Gases in the Gut. Nat. Electron. 2018, 1, 79–87. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators B Chem. 2014, 192, 607–627. [Google Scholar] [CrossRef]
- Potyrailo, R.A.; Go, S.; Sexton, D.; Li, X.; Alkadi, N.; Kolmakov, A.; Amm, B.; St-Pierre, R.; Scherer, B.; Nayeri, M.; et al. Extraordinary performance of semiconducting metal oxide gas sensors using dielectric excitation. Nat. Electron. 2020, 3, 280–289. [Google Scholar] [CrossRef]
- Feng, Q.; Zeng, Y.; Xu, P.; Lin, S.; Feng, C.; Li, X.; Wang, J. Tuning the electrical conductivity of amorphous carbon/reduced graphene oxide wrapped-Co3O4 ternary nanofibers for highly sensitive chemical sensors. J. Mater. Chem. A 2019, 7, 27522–27534. [Google Scholar] [CrossRef]
- Mirzaei, A.; Kordrostami, Z.; Shahbaz, M.; Kim, J.; Kim, H.W.; Kim, S.S. Resistive-Based Gas Sensors Using Quantum Dots: A Review. Sensors 2022, 22, 4369. [Google Scholar] [CrossRef]
- Hong, S.; Huang, Q.; Wu, T. The Room Temperature Highly Sensitive Ammonia Gas Sensor Based on Polyaniline and Nitrogen-Doped Graphene Quantum Dot-Coated Hollow Indium Oxide Nanofiber Composite. Polymers 2021, 13, 3676. [Google Scholar] [CrossRef]
- Carbone, M. CQDs@NiO: An Efficient Tool for CH4 Sensing. Appl. Sci. 2020, 10, 6251. [Google Scholar] [CrossRef]
- Galstyan, V. “Quantum dots: Perspectives in next-generation chemical gas sensors”—A review. Anal. Chim. Acta 2021, 1152, 238192. [Google Scholar] [CrossRef] [PubMed]
- Mitri, F.; De Iacovo, A.; De Luca, M.; Pecora, A.; Colace, L. Lead sulphide colloidal quantum dots for room temperature NO2 gas sensors. Sci. Rep. 2020, 10, 12556. [Google Scholar] [CrossRef]
- Liu, J.; Hu, Z.; Zhang, Y.; Li, H.; Gao, N.; Tian, Z.; Zhou, L.; Zhang, B.; Tang, J.; Zhang, J.; et al. MoS2 Nanosheets Sensitized with Quantum Dots for Room-Temperature Gas Sensors. Nano-Micro Lett. 2020, 12, 59. [Google Scholar] [CrossRef]
- Chen, R.; Wang, J.; Xia, Y.; Xiang, L. Near Infrared Light Enhanced Room-temperature NO2 Gas Sensing by Hierarchical ZnO Nanorods Functionalized with PbS Quantum Dots. Sens. Actuators B Chem. 2018, 255, 2538–2545. [Google Scholar] [CrossRef]
- Liu, H.; Li, M.; Voznyy, O.; Hu, L.; Fu, Q.; Zhou, D.; Xia, Z.; Sargent, E.H.; Tang, J. Physically Flexible, Rapid-Response Gas Sensor Based on Colloidal Quantum Dot Solids. Adv. Mater. 2014, 26, 2718–2724. [Google Scholar] [CrossRef]
- Martin-Pozas, T.; Sanchez-Moral, S.; Cuezva, S.; Jurado, V.; Saiz-Jimenez, C.; Perez-Lopez, R.; Carrey, R.; Otero, N.; Giesemann, A.; Well, R.; et al. Biologically Mediated Release of Endogenous N2O and NO2 Gases in a Hydrothermal, Hypoxic Subterranean Environment. Sci. Total Environ. 2020, 747, 141218. [Google Scholar] [CrossRef]
- Russ, T.; Hu, Z.; Junker, B.; Liu, H.; Weimar, U.; Barsan, N. Operando Investigation of the Aging Mechanism of Lead Sulfide Colloidal Quantum Dots in an Oxidizing Background. J. Phys. Chem. C 2021, 125, 19847–19857. [Google Scholar] [CrossRef]
- Liu, M.; Yazdani, N.; Yarema, M.; Jansen, M.; Wood, V.; Sargent, E.H. Colloidal Quantum Dot Electronics. Nat. Electron. 2021, 4, 548–558. [Google Scholar] [CrossRef]
- Radhakrishnan, K.; Ranjan, A.; Lingaparthi, R.; Dharmarasu, N. Enhanced NO2 Gas Sensing Performance of Multigate Pt/AlGaN/GaN High Electron Mobility Transistors. J. Electrochem. Soc. 2021, 168, 047502. [Google Scholar] [CrossRef]
- Fahad, H.M.; Gupta, N.; Han, R.; Desai, S.B.; Javey, A. Highly Sensitive Bulk Silicon Chemical Sensors with Sub-5 nm Thin Charge Inversion Layers. ACS Nano 2018, 12, 2948–2954. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Baik, K.H.; Ren, F.; Pearton, S.J.; Jang, S. Detection of Ammonia at Low Concentrations (0.1–2 ppm) with ZnO Nanorod-Functionalized AlGaN/GaN High Electron Mobility Transistors. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. 2017, 35, 42201. [Google Scholar] [CrossRef]
- Bishop, C.; Halfaya, Y.; Soltani, A.; Sundaram, S.; Li, X.; Streque, J.; El Gmili, Y.; Voss, P.L.; Salvestrini, J.P.; Ougazzaden, A. Experimental Study and Device Design of NO, NO2, and NH3 Gas Detection for a Wide Dynamic and Large Temperature Range Using Pt/AlGaN/GaN HEMT. IEEE Sens. J. 2016, 16, 6828–6838. [Google Scholar] [CrossRef]
- Ayadi, Y.; Rahhal, L.; Vilquin, B.; Chevalier, C.; Ambriz Vargas, F.; Ecoffey, S.; Ruediger, A.; Sarkissian, A.; Monfray, S.; Cloarec, J.; et al. Novel Concept of Gas Sensitivity Characterization of Materials Suited for Implementation in FET-Based Gas Sensors. Nanoscale Res. Lett. 2016, 11, 481. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Wu, M.; Hong, Y.; Jeong, Y.; Jung, G.; Shin, W.; Park, J.; Kim, D.; Jang, D.; Lee, J. FET-type gas sensors: A review. Sens. Actuators B Chem. 2021, 330, 129240. [Google Scholar] [CrossRef]
- Zhang, P.; Xiao, Y.; Zhang, J.; Liu, B.; Ma, X.; Wang, Y. Highly Sensitive Gas Sensing Platforms based on Field effect Transistor-A Review. Anal. Chim. Acta 2021, 1172, 338575. [Google Scholar] [CrossRef]
- Mukherjee, A.; Rosenwaks, Y. Recent Advances in Silicon FET Devices for Gas and Volatile Organic Compound Sensing. Chemosensors 2021, 9, 260. [Google Scholar] [CrossRef]
- Lundstrom, I.; Sundgren, H.; Winquist, F.; Eriksson, M.; Krantzrulcker, C.; Lloydspetz, A. Twenty-five Years of Field Effect Gas Sensor Research in Linköping. Sens. Actuators B Chem. 2007, 121, 247–262. [Google Scholar] [CrossRef]
- Wilbertz, C.; Frerichs, H.P.; Freund, I.; Lehmann, M. Suspended-Gate- and Lundstrom-FET Integrated on a CMOS-chip. Sens. Actuators A Phys. 2005, 123–124, 2–6. [Google Scholar] [CrossRef]
- Gergintschew, Z.; Kornetzky, P.; Schipanski, D. The Capacitively Controlled Field Effect Transistor (CCFET) as a New Low Power Gas Sensor. Sens. Actuators B Chem. 1996, 36, 285–289. [Google Scholar] [CrossRef]
- Burgmair, M.; Frerichs, H.P.; Zimmer, M.; Lehmann, M.; Eisele, I. Field Effect Transducers for Work Function Gas Measurements: Device Improvements and Comparison of Performance. Sens. Actuators B Chem. 2003, 95, 183–188. [Google Scholar] [CrossRef]
- Hong, S.; Shin, J.; Hong, Y.; Wu, M.; Jang, D.; Jeong, Y.; Jung, G.; Bae, J.; Jang, H.W.; Lee, J. Observation of Physisorption in a High-performance FET-type Oxygen Gas Sensor Operating at Room Temperature. Nanoscale 2018, 10, 18019–18027. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.; Hong, S.; Jeong, Y.; Jung, G.; Park, J.; Kim, D.; Lee, C.; Park, B.G.; Lee, J.H. Effect of Charge Storage Engineering on the NO2 Gas Sensing Properties of a WO3 FET-type Gas Sensor with a Horizontal Floating-gate. Nanoscale 2021, 13, 9009–9017. [Google Scholar] [CrossRef] [PubMed]
- Jung, G.; Shin, W.; Hong, S.; Jeong, Y.; Park, J.; Kim, D.; Bae, J.; Park, B.; Lee, J. Comparison of The Characteristics of Semiconductor Gas Sensors with Different Transducers Fabricated on the Same Substrate. Sens. Actuators B Chem. 2021, 335, 129661. [Google Scholar] [CrossRef]
- Hong, Y.; Wu, M.; Bae, J.; Hong, S.; Jeong, Y.; Jang, D.; Kim, J.S.; Hwang, C.S.; Park, B.; Lee, J. A New Sensing Mechanism of Si FET-based Gas Sensor Using Pre-bias. Sens. Actuators B Chem. 2020, 302, 127147. [Google Scholar] [CrossRef]
- Shin, W.; Jung, G.; Hong, S.; Jeong, Y.; Park, J.; Kim, D.; Jang, D.; Kwon, D.; Bae, J.H.; Park, B.G.; et al. Proposition of Deposition and Bias Conditions for Optimal Signal-to-noise-ratio in Resistor- and FET-type Gas Sensors. Nanoscale 2020, 12, 19768–19775. [Google Scholar] [CrossRef]
- Kim, C.H.; Cho, I.T.; Shin, J.M.; Choi, K.B.; Lee, J.K.; Lee, J.H. A New Gas Sensor Based on MOSFET Having a Horizontal Floating-Gate. IEEE Electron Device Lett. 2014, 35, 265–267. [Google Scholar] [CrossRef]
- Liu, M.; Voznyy, O.; Sabatini, R.; García De Arquer, F.P.; Munir, R.; Balawi, A.H.; Lan, X.; Fan, F.; Walters, G.; Kirmani, A.R.; et al. Hybrid Organic–inorganic Inks Flatten the Energy Landscape in Colloidal Quantum Dot Solids. Nat. Mater. 2017, 16, 258–263. [Google Scholar] [CrossRef]
- Xu, M.; Guan, M.; Cui, N.; Zhao, C.; Zhang, Y.; Zeng, Y.; Li, S. The GaAs/AlGaAs-Based Extended Gate HEMT Cardiac Troponin-I Biosensor: Design, Mechanism and Clinical Detection. IEEE Sens. J. 2021, 21, 18410–18416. [Google Scholar] [CrossRef]
- Ning, Z.; Voznyy, O.; Pan, J.; Hoogland, S.; Adinolfi, V.; Xu, J.; Li, M.; Kirmani, A.R.; Sun, J.; Minor, J.; et al. Air-stable n-type Colloidal Quantum Dot Solids. Nat. Mater. 2014, 13, 822–828. [Google Scholar] [CrossRef]
- Owen, J. The Coordination Chemistry of Nanocrystal Surfaces. Science 2015, 347, 614–615. [Google Scholar] [CrossRef] [PubMed]
- Childers, A. EPA Announces First One-Hour Standard for Nitrogen Dioxide at 0.10 Part per Million. Environ. Rep. 2010, 41, 197–198. [Google Scholar]
- Snow, E.S.; Perkins, F.K.; Houser, E.J.; Badescu, S.C.; Reinecke, T.L. Chemical Detection with a Single-walled Carbon Nanotube Capacitor. Science 2005, 307, 1942–1945. [Google Scholar] [CrossRef] [PubMed]
- Hanlumyuang, Y.; Sharma, P. Quantum Capacitance: A Perspective from Physics to Nanoelectronics. Jom 2014, 66, 660–663. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Zhou, L.; Li, L.; Ying, B.; Zhao, Y.; Wang, P.; Li, H.; Zhang, Y.; Liu, H. Quantum Dots-Sensitized High Electron Mobility Transistor (HEMT) for Sensitive NO2 Detection. Chemosensors 2023, 11, 252. https://doi.org/10.3390/chemosensors11040252
Hu Z, Zhou L, Li L, Ying B, Zhao Y, Wang P, Li H, Zhang Y, Liu H. Quantum Dots-Sensitized High Electron Mobility Transistor (HEMT) for Sensitive NO2 Detection. Chemosensors. 2023; 11(4):252. https://doi.org/10.3390/chemosensors11040252
Chicago/Turabian StyleHu, Zhixiang, Licheng Zhou, Long Li, Binzhou Ying, Yunong Zhao, Peng Wang, Huayao Li, Yang Zhang, and Huan Liu. 2023. "Quantum Dots-Sensitized High Electron Mobility Transistor (HEMT) for Sensitive NO2 Detection" Chemosensors 11, no. 4: 252. https://doi.org/10.3390/chemosensors11040252
APA StyleHu, Z., Zhou, L., Li, L., Ying, B., Zhao, Y., Wang, P., Li, H., Zhang, Y., & Liu, H. (2023). Quantum Dots-Sensitized High Electron Mobility Transistor (HEMT) for Sensitive NO2 Detection. Chemosensors, 11(4), 252. https://doi.org/10.3390/chemosensors11040252