Fabrication of Large-Area Ordered Au Nano-Ring Arrays for the Electrochemical Removal and Sensing of Rhodamine 6G Molecules
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication Process
2.2. Characterization and Testing Techniques
3. Results
3.1. Etchant Gas
3.2. Chamber Pressure
3.3. RF Power
3.4. Etchant Gas Flow Rate
3.5. R-6G Removal and Sensing
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ranjbari, E.; Hadjmohammadi, M.R. Optimization of magnetic stirring assisted dispersive liquid–liquid microextraction of rhodamine B and rhodamine 6G by response surface methodology: Application in water samples, soft drink, and cosmetic products. Talanta 2015, 139, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Biparva, P.; Ranjbari, E.; Hadjmohammadi, M.R. Application of dispersive liquid–liquid microextraction and spectrophotometric detection to the rapid determination of rhodamine 6G in industrial effluents. Anal. Chim. Acta 2010, 674, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Xiao, N.; Deng, J.; Huang, K.; Ju, S.; Hu, C.; Liang, J. Application of derivative and derivative ratio spectrophotometry to simultaneous trace determination of rhodamine B and rhodamine 6G after dispersive liquid–liquid microextraction. Spectrochim. Acta Part A 2014, 128, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Beija, M.; Afonso, C.A.M.; Martinho, J.M.G. Synthesis and applications of Rhodamine derivatives as fluorescent probes. Chem. Soc. Rev. 2009, 38, 2410–2433. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Alam, R.; Ali, M. Rhodamine 6G-based efficient chemosensor for trivalent metal ions (Al3+, Cr3+ and Fe3+) upon single excitation with applications in combinational logic circuits and memory devices. Analyst 2022, 147, 471–479. [Google Scholar] [CrossRef]
- Zhang, E.; Ju, P.; Li, Q.; Hou, X.; Yang, H.; Yang, X.; Zou, Y.; Zhang, Y. A novel rhodamine 6G-based fluorescent and colorimetric probe for Bi3+: Synthesis, selectivity, sensitivity and potential applications. Sens. Actuators B Chem. 2018, 260, 204–212. [Google Scholar] [CrossRef]
- Fu, Y.; Jiang, X.-J.; Zhu, Y.-Y.; Zhou, B.-J.; Zang, S.-Q.; Tang, M.-S.; Zhang, H.-Y.; Mak, T.C.W. A new fluorescent probe for Al3+ based on rhodamine 6G and its application to bioimaging. Dalton Trans. 2014, 43, 12624–12632. [Google Scholar] [CrossRef]
- Alam, R.; Bhowmick, R.; Islam, A.S.M.; Katarkar, A.; Chaudhuri, K.; Ali, M. A rhodamine based fluorescent trivalent sensor (Fe3+, Al3+, Cr3+) with potential applications for live cell imaging and combinational logic circuits and memory devices. New J. Chem. 2017, 41, 8359–8369. [Google Scholar] [CrossRef]
- Smith, W.E.; Rodger, C. Surface-Enhanced Raman Scattering (SERS), Applications. In Encyclopedia of Spectroscopy and Spectrometry, 2nd ed.; Academic Press: Cambridge, MA, USA, 1999; pp. 2822–2827. [Google Scholar]
- Nestmann, E.R.; Douglas, G.R.; Matula, T.I.; Grant, C.E.; Kowbel, D.J. Mutagenic Activity of Rhodamine Dyes and Their Impurities as Detected by Mutation Induction in Salmonella and DNA Damage in Chinese Hamster Ovary Cells. Cancer Res. 1979, 39, 4412–4417. [Google Scholar]
- Sulistina, D.R.; Martini, S. The Effect of Rhodamine B on the Cerebellum and Brainstem Tissue of Rattus Norvegicus. J. Public Health Res. 2020, 9, 101–104. [Google Scholar] [CrossRef]
- Gusain, R.; Gupta, K.; Joshi, P.; Khatri, O.P. Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Adv. Colloid Interface Sci. 2019, 272, 102009. [Google Scholar] [CrossRef] [PubMed]
- Brillas, E.; Sirés, I.; Oturan, M.A. Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chem. Rev. 2009, 109, 6570–6631. [Google Scholar] [CrossRef]
- Uddin, M.J.; Ampiaw, R.E.; Lee, W. Adsorptive removal of dyes from wastewater using a metal-organic framework: A review. Chemosphere 2021, 284, 131314. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Jiang, X.; Liu, X.; Zhou, W.; Garba, Z.N.; Lawan, I.; Wang, L.; Yuan, Z. Adsorption of organic dyes from wastewater by metal-doped porous carbon materials. J. Clean. Prod. 2021, 284, 124773. [Google Scholar] [CrossRef]
- Wang, S.; Sun, H.; Ang, H.M.; Tadé, M.O. Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem. Eng. J. 2013, 226, 336–347. [Google Scholar] [CrossRef]
- Yunus, R.F.; Zheng, Y.-M.; Nadeeshani Nanayakkara, K.G.; Chen, J.P. Electrochemical Removal of Rhodamine 6G by Using RuO2 Coated Ti DSA. Ind. Eng. Chem. Res. 2009, 48, 7466–7473. [Google Scholar]
- Zheng, Y.-M.; Yunus, R.F.; Nadeeshani Nanayakkara, K.G.; Chen, J.P. Electrochemical Decoloration of Synthetic Wastewater Containing Rhodamine 6G: Behaviors and Mechanism. Ind. Eng. Chem. Res. 2012, 51, 5953–5960. [Google Scholar] [CrossRef]
- Liu, H.; Khoo, C.Y.; Yadian, B.; Liu, Q.; Gan, C.L.; Tang, X.; Huang, Y. The role of metal layers in the formation of metal-silicon hybrid nanoneedle arrays. Nanoscale 2014, 6, 3078–3082. [Google Scholar] [CrossRef]
- Liu, H.; Yadian, B.; Liu, Q.; Gan, C.L.; Huang, Y. A hybrid nanostructure array for gas sensing with ultralow field ionization voltage. Nanotechnology 2013, 24, 175301. [Google Scholar] [CrossRef]
- Liu, H.; Wu, J.; Wang, Y.; Chow, C.L.; Liu, Q.; Gan, C.L.; Tang, X.; Rawat, R.S.; Tan, O.K.; Ma, J.; et al. Self-Organization of a Hybrid Nanostructure consisting of a Nanoneedle and Nanodot. Small 2012, 8, 2807–2811. [Google Scholar] [CrossRef]
- Cao, X.; Li, C.; Lu, Y.; Zhang, B.; Wu, Y.; Liu, Q.; Wu, J.; Teng, J.; Yan, W.; Huang, Y. Catalysis of Au nano-pyramids formed across the surfaces of ordered Au nano-ring arrays. J. Catal. 2019, 377, 389–399. [Google Scholar] [CrossRef]
- Cao, X.; Peng, D.; Wu, C.; He, Y.; Li, C.; Zhang, B.; Han, C.; Wu, J.; Liu, Z.; Huang, Y. Flexible Au micro-array electrode with atomic-scale Au thin film for enhanced ethanol oxidation reaction. Nano Res. 2021, 14, 311–319. [Google Scholar] [CrossRef]
- Raut, H.K.; Ganesh, V.A.; Nair, A.S.; Ramakrishna, S. Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 2011, 4, 3779–3804. [Google Scholar] [CrossRef]
- Sun, C.-H.; Jiang, P.; Jiang, B. Broadband moth-eye antireflection coatings on silicon. Appl. Phys. Lett. 2008, 92, 061112. [Google Scholar] [CrossRef]
- Oh, J.; Yuan, H.-C.; Branz, H.M. An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat. Nanotechnol. 2012, 7, 743–748. [Google Scholar] [CrossRef]
- Krunks, M.; Katerski, A.; Dedova, T.; Oja Acik, I.; Mere, A. Nanostructured solar cell based on spray pyrolysis deposited ZnO nanorod array. Sol. Energy Mater. Sol. Cells 2008, 92, 1016–1019. [Google Scholar] [CrossRef]
- Yadian, B.; Liu, H.; Wei, Y.; Wu, J.; Zhang, S.; Sun, L.; Zhao, C.; Liu, Q.; Ramanujan, R.V.; Zhou, K.; et al. Towards Perfectly Ordered Novel ZnO/Si Nano-Heterojunction Arrays. Small 2014, 10, 344–348. [Google Scholar] [CrossRef]
- Li, L.; Li, Y.; Gao, S.; Koshizaki, N. Ordered Co3O4 hierarchical nanorod arrays: Tunable superhydrophilicity without UV irradiation and transition to superhydrophobicity. J. Mater. Chem. 2009, 19, 8366–8371. [Google Scholar] [CrossRef]
- Yue, K.; Trujillo-de Santiago, G.; Alvarez, M.M.; Tamayol, A.; Annabi, N.; Khademhosseini, A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 2015, 73, 254–271. [Google Scholar] [CrossRef]
- Li, C.; Rao, Y.; Zhang, B.; Huang, K.; Cao, X.; Peng, D.; Wu, J.; Xiao, L.; Huang, Y. Extraordinary catalysis induced by titanium foil cathode plasma for degradation of water pollutant. Chemosphere 2019, 214, 341–348. [Google Scholar] [CrossRef]
- Rao, Y.; Cao, X.; Li, C.; Xiao, L. Bifunctional copper cathode induced oxidation of glycerol with liquid plasma discharge. Sep. Purif. Technol. 2019, 220, 328–333. [Google Scholar] [CrossRef]
- Zheng, M.; Zhu, X.; Chen, Y.; Xiang, Q.; Duan, H. Three-dimensional donut-like gold nanorings with multiple hot spots for surface-enhanced raman spectroscopy. Nanotechnology 2017, 28, 045303. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Xiang, Y.; Yan, W.; Li, M.; Yang, L.; Chen, Z.; Cai, W.; Chen, J.; Li, Y.; Wu, Q.; et al. Excitation of the Tunable Longitudinal Higher-Order Multipole SPR Modes by Strong Coupling in Large-Area Metal Sub-10 nm-Gap Array Structures and Its Application. J. Phys. Chem. C 2016, 120, 24932–24940. [Google Scholar] [CrossRef]
- Yang, Y. SERS enhancement dependence on the diameter of Au nanoparticles. J. Phys. Conf. Ser. 2017, 844, 012030. [Google Scholar] [CrossRef]
- Chan, T.-Y.; Liu, T.-Y.; Wang, K.-S.; Tsai, K.-T.; Chen, Z.-X.; Chang, Y.-C.; Tseng, Y.-Q.; Wang, C.-H.; Wang, J.-K.; Wang, Y.-L. SERS Detection of Biomolecules by Highly Sensitive and Reproducible Raman-Enhancing Nanoparticle Array. Nanoscale Res. Lett. 2017, 12, 344. [Google Scholar] [CrossRef] [PubMed]
- Aroca, R.F. Plasmon enhanced spectroscopy. Phys. Chem. Chem. Phys. 2013, 15, 5355–5363. [Google Scholar] [CrossRef] [PubMed]
- Navaratnam, S.; Parsons, B.J. Kinetic and spectral properties of rhodamine 6G free radicals: A pulse radiolysis study. J. Photochem. Photobiol. A 2002, 153, 153–162. [Google Scholar] [CrossRef]
- Kaoru, I.; Mitsuo, M.; Takayuki, T.; Yuji, O.; Hideaki, K. Dominant Factors of Preventing Rhodamine 6G from Dimer Formation in Aqueous Solutions. Bull. Chem. Soc. Jpn. 1999, 72, 1197–1202. [Google Scholar]
- Vogel, R.; Harvey, M.; Edwards, G.; Meredith, P.; Heckenberg, N.; Trau, M.; Rubinsztein-Dunlop, H. Dimer-to-Monomer Transformation of Rhodamine 6G in Aqueous PEO−PPO−PEO Block Copolymer Solutions. Macromolecules 2002, 35, 2063–2070. [Google Scholar] [CrossRef]
- Rajoriya, S.; Bargole, S.; Saharan, V.K. Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: Reaction mechanism and pathway. Ultrason. Sonochem. 2017, 34, 183–194. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, L.; Huang, K.; Zhang, B.; Wu, J.; Huang, Y. Strained carbon steel as a highly efficient catalyst for seawater electrolysis. Energy Mater. 2022, 2, 200010. [Google Scholar] [CrossRef]
- Kitching, H.; Kenyon, A.J.; Parkin, I.P. The interaction of gold and silver nanoparticles with a range of anionic and cationic dyes. Phys. Chem. Chem. Phys. 2014, 16, 6050–6059. [Google Scholar] [CrossRef] [PubMed]
- Barzan, M.; Hajiesmaeilbaigi, F. Effect of gold nanoparticles on the optical properties of Rhodamine 6G. Eur. Phys. J. D 2016, 70, 121. [Google Scholar] [CrossRef]
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef] [PubMed]
- Kladnik, G.; Cvetko, D.; Batra, A.; Dell’Angela, M.; Cossaro, A.; Kamenetska, M.; Venkataraman, L.; Morgante, A. Ultrafast Charge Transfer through Noncovalent Au–N Interactions in Molecular Systems. J. Phys. Chem. C 2013, 117, 16477–16482. [Google Scholar] [CrossRef]
- Zang, Y.; Pinkard, A.; Liu, Z.-F.; Neaton, J.B.; Steigerwald, M.L.; Roy, X.; Venkataraman, L. Electronically Transparent Au–N Bonds for Molecular Junctions. J. Am. Chem. Soc. 2017, 139, 14845–14848. [Google Scholar] [CrossRef]
- Kryachko, E.S.; Remacle, F. Complexes of DNA Bases and Gold Clusters Au3 and Au4 Involving Nonconventional N−H···Au Hydrogen Bonding. Nano Lett. 2005, 5, 735–739. [Google Scholar] [CrossRef]
- Wang, X.; Ham, S.; Zhou, W.; Qiao, R. Adsorption of rhodamine 6G and choline on gold electrodes: A molecular dynamics study. Nanotechnology 2023, 34, 025501. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, C.; Mu, X.; Pang, H.; Chen, X.; Liu, D. Ultrasensitive SERS detection of rhodamine 6G and p-nitrophenol based on electrochemically roughened nano-Au film. Talanta 2020, 210, 120631. [Google Scholar] [CrossRef]
- Han, X.X.; Rodriguez, R.S.; Haynes, C.L.; Ozaki, Y.; Zhao, B. Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Primers 2022, 1, 87. [Google Scholar] [CrossRef]
- Mayerhöfer, T.G.; Pahlow, S.; Popp, J. The Bouguer-Beer-Lambert Law: Shining Light on the Obscure. ChemPhysChem 2020, 21, 2029–2046. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X. Fabrication of Large-Area Ordered Au Nano-Ring Arrays for the Electrochemical Removal and Sensing of Rhodamine 6G Molecules. Chemosensors 2023, 11, 539. https://doi.org/10.3390/chemosensors11100539
Cao X. Fabrication of Large-Area Ordered Au Nano-Ring Arrays for the Electrochemical Removal and Sensing of Rhodamine 6G Molecules. Chemosensors. 2023; 11(10):539. https://doi.org/10.3390/chemosensors11100539
Chicago/Turabian StyleCao, Xun. 2023. "Fabrication of Large-Area Ordered Au Nano-Ring Arrays for the Electrochemical Removal and Sensing of Rhodamine 6G Molecules" Chemosensors 11, no. 10: 539. https://doi.org/10.3390/chemosensors11100539
APA StyleCao, X. (2023). Fabrication of Large-Area Ordered Au Nano-Ring Arrays for the Electrochemical Removal and Sensing of Rhodamine 6G Molecules. Chemosensors, 11(10), 539. https://doi.org/10.3390/chemosensors11100539