Anodic Stripping Voltammetric Determination of Copper Ions in Cell Culture Media: From Transwell® to Organ-on-Chip Systems
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Solution Preparation
2.3. Single Working Electrode and Three-Electrode-Integrated Sensors: Fabrication Details
2.4. Anodic Stripping Voltammetry Measurements in Different Cell Culture Media
2.5. Copper Detection in Transwell: Cell Culture, Copper Exposure and MTT Viability Assay
2.6. Microfluidic Chip with Three-Electrode-Integrated Sensor and ASV Measurements in Chip
2.7. Efficient Medium Acidification in the Chip: FEA Simulations
3. Results and Discussion
3.1. ASV Measurements of Copper in Different Cell Culture Media
3.2. Copper Detection in Caco-2 Cell Transwell® Culture Model
3.3. Efficient Medium Acidification in the Adapted Commercial Platform: FEA Predictions
3.4. Copper Measurements in a Microfluidic Device
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Der Meer, A.D.; Van Den Berg, A. Organs-on-chips: Breaking the in vitro impasse. Integr. Biol. 2012, 4, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Liu, J.; Wang, X.; Feng, L.; Wu, J.; Zhu, X.; Wen, W.; Gong, X. Organ-on-a-chip: Recent breakthroughs and future prospects. Biomed. Eng. Online 2020, 19, 9. [Google Scholar] [CrossRef] [PubMed]
- Bhagat, S.; Singh, S. Cultivating Human Tissues and Organs over Lab-on-a-Chip Models: Recent Progress and Applications, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2022; Volume 187, ISBN 9780323853033. [Google Scholar]
- Fuchs, S.; Johansson, S.; Tjell, A.; Werr, G.; Mayr, T.; Tenje, M. In-line analysis of organ-on-chip systems with sensors: Integration, fabrication, challenges, and potential. ACS Biomater. Sci. Eng. 2021, 7, 2926–2948. [Google Scholar] [CrossRef]
- Signore, M.A.; De Pascali, C.; Giampetruzzi, L.; Siciliano, P.A.; Francioso, L. Gut-on-Chip microphysiological systems: Latest advances in the integration of sensing strategies and adoption of mature detection mechanisms. Sens. Bio-Sens. Res. 2021, 33, 100443. [Google Scholar] [CrossRef]
- van den Berghe, P.V.E.; Klomp, L.W.J. New developments in the regulation of intestinal copper absorption. Nutr. Rev. 2009, 67, 658–672. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, H.; Janicka-Klos, A.; Brasun, J.; Gaggelli, E.; Valensin, D.; Valensin, G. Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coord. Chem. Rev. 2009, 253, 2665–2685. [Google Scholar] [CrossRef]
- Bost, M.; Houdart, S.; Oberli, M.; Kalonji, E.; Huneau, J.F.; Margaritis, I. Dietary copper and human health: Current evidence and unresolved issues. J. Trace Elem. Med. Biol. 2016, 35, 107–115. [Google Scholar] [CrossRef]
- Desai, V.; Kaler, S.G. Role of copper in human neurological disorders1. Am. J. Clin. Nutr. 2008, 88, 855S–858S. [Google Scholar] [CrossRef]
- Liu, Y.; Miao, J. An Emerging Role of Defective Copper Metabolism in Heart Disease. Nutrients 2022, 14, 700. [Google Scholar] [CrossRef] [PubMed]
- Ferruzza, S.; Sambuy, Y.; Ciriolo, M.R.; De Martino, A.; Santaroni, P.; Rotilio, G.; Scarino, M.L. Copper uptake and intracellular distribution in the human intestinal Caco-2 cell line. Biomet. Int. J. Role Met. Ions Biol. Biochem. Med. 2000, 13, 179–185. [Google Scholar] [CrossRef]
- Lönnerdal, B. Intestinal regulation of copper homeostasis: A developmental perspective. Am. J. Clin. Nutr. 2008, 88, 846S–850S. [Google Scholar] [CrossRef] [PubMed]
- Reznik, N.; Gallo, A.D.; Rush, K.W.; Javitt, G.; Fridmann-Sirkis, Y.; Ilani, T.; Nairner, N.A.; Fishilevich, S.; Gokhman, D.; Chacón, K.N.; et al. Intestinal mucin is a chaperone of multivalent copper. Cell 2022, 185, 4206–4215.e11. [Google Scholar] [CrossRef] [PubMed]
- Planeta, K.; Kubala-Kukus, A.; Drozdz, A.; Matusiak, K.; Setkowicz, Z.; Chwiej, J. The assessment of the usability of selected instrumental techniques for the elemental analysis of biomedical samples. Sci. Rep. 2021, 11, 3704. [Google Scholar] [CrossRef] [PubMed]
- Gerdan, Z.; Saylan, Y.; Denizli, A. Recent Advances of Optical Sensors for Copper Ion Detection. Micromachines 2022, 13, 1298. [Google Scholar] [CrossRef] [PubMed]
- Falcone, E.; Okafor, M.; Vitale, N.; Raibaut, L.; Sour, A.; Faller, P. Extracellular Cu2+ pools and their detection: From current knowledge to next-generation probes. Coord. Chem. Rev. 2021, 433, 213727. [Google Scholar] [CrossRef]
- Zagurskaya-Sharaevskaya, O.; Povar, I. Determination of Cu (II) ions using sodium salt of 4-phenylsemicarbazone 1,2-naphthoquinone-4-sulfonic acid in natural and industrial environments. Ecol. Process. 2015, 4, 1–5. [Google Scholar] [CrossRef]
- Alford, R.; Simpson, H.M.; Duberman, J.; Hill, G.C.; Ogawa, M.; Regino, C.; Kobayashi, H.; Choyke, P.L. Toxicity of organic fluorophores used in molecular imaging: Literature review. Mol. Imaging 2009, 8, 341–354. [Google Scholar] [CrossRef]
- Borrill, A.J.; Reily, N.E.; Macpherson, J.V. Addressing the practicalities of anodic stripping voltammetry for heavy metal detection: A tutorial review. Analyst 2019, 144, 6834–6849. [Google Scholar] [CrossRef]
- Celante, V.G.; Freitas, M.B.J.G. Electrodeposition of copper from spent Li-ion batteries by electrochemical quartz crystal microbalance and impedance spectroscopy techniques. J. Appl. Electrochem. 2010, 40, 233–239. [Google Scholar] [CrossRef]
- Rosati, G.; Scaramuzza, M.; Rotilio, V.; Monaco, L.; Pasqualotto, E.; Campolo, F.; De Toni, A.; Reggiani, C.; Naro, F.; Paccagnella, A. Culture Mediums and Buffer Effect on Screen-printed Carbon Electrodes for Continuous Voltammetric Monitoring of in vitro Cell Cultures Lactate Production. Procedia Technol. 2017, 27, 246–247. [Google Scholar] [CrossRef]
- Sadok, I.; Tyszczuk-Rotko, K.; Mroczka, R.; Staniszewska, M. Simultaneous voltammetric analysis of tryptophan and kynurenine in culture medium from human cancer cells. Talanta 2020, 209, 120574. [Google Scholar] [CrossRef] [PubMed]
- Orság, P.; Havran, L.; Fojt, L.; Coufal, J.; Brázda, V.; Fojta, M. Voltammetric behavior of a candidate anticancer drug roscovitine at carbon electrodes in aqueous buffers and a cell culture medium. Monatshefte Fur Chem. 2019, 150, 461–467. [Google Scholar] [CrossRef]
- Tang, Y.; Petropoulos, K.; Kurth, F.; Gao, H.; Migliorelli, D.; Guenat, O.; Generelli, S. Screen-Printed Glucose Sensors Modified with Cellulose Nanocrystals (CNCs) for Cell Culture Monitoring. Biosensors 2020, 10, 125. [Google Scholar] [CrossRef] [PubMed]
- Romih, T.; Hočevar, S.B.; Kononenko, V.; Drobne, D. The application of bismuth film electrode for measuring Zn(II) under less acidic conditions in the presence of cell culture medium and ZnO nanoparticles. Sens. Actuators B Chem. 2017, 238, 1277–1282. [Google Scholar] [CrossRef]
- Baldisserri, C.; Costa, A.L. Electrochemical detection of copper ions leached from CuO nanoparticles in saline buffers and biological media using a gold wire working electrode. J. Nanopart. Res. 2016, 18, 96. [Google Scholar] [CrossRef]
- Biscaglia, F.; Caroppo, A.; Prontera, C.T.; Sciurti, E.; Signore, M.A.; Kuznetsova, I.; Leone, A.; Siciliano, P.; Francioso, L. A Comparison between Different Machine Learning Approaches Combined with Anodic Stripping Voltammetry for Copper Ions and pH Detection in Cell Culture Media. Chemosensors 2023, 11, 61. [Google Scholar] [CrossRef]
- Available online: https://www.microfluidic-chipshop.com/catalogue/microfluidic-chips/polymer-chips/membrane-chips/membrane-chips-fluidic-653/ (accessed on 3 May 2023).
- Chen, Z.; Wang, Y.; Zhou, S. Numerical Analysis of Mixing Performance in an Electroosmotic Micromixer with Cosine Channel Walls. Micromachines 2022, 13, 1933. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.M.; Powell, B.A.; Brumaghim, J.L. Stability constants of bio-relevant, redox-active metals with amino acids: The challenges of weakly binding ligands. Coord. Chem. Rev. 2020, 412, 213253. [Google Scholar] [CrossRef]
- Hakimi, M.; Hakimi Tahereh Saberi Aliabadi, M. Coordination Chemistry of Copper α-Amino Acid Complexes. World Appl. Program. 2012, 2, 431–443. [Google Scholar]
- Cerchiaro, G.; Sant’Ana, A.C.; Arruda Temperini, M.L.; Da Costa Ferreira, A.M. Investigations of different carbohydrate anomers in copper(II) complexes with D-glucose, D-fructose, and D-galactose by Raman and EPR spectroscopy. Carbohydr. Res. 2005, 340, 2352–2359. [Google Scholar] [CrossRef]
- Hamed, E.; Attia, M.S.; Bassiouny, K. Synthesis, spectroscopic and thermal characterization of copper(II) and iron(III) complexes of folic acid and their absorption efficiency in the blood. Bioinorg. Chem. Appl. 2009, 2009, 979680. [Google Scholar] [CrossRef]
- Fahrni, C.J. Synthetic fluorescent probes for monovalent copper. Curr. Opin. Chem. Biol. 2013, 17, 656–662. [Google Scholar] [CrossRef]
- Gabryel-Skrodzka, M.; Nowak, M.; Stachowiak, K.; Zabiszak, M.; Ogawa, K.; Jastrzab, R. The Influence of pH on Complexation Process of Copper(II) Phosphoethanolamine to Pyrimidine Nucleosides. Materials 2021, 14, 4309. [Google Scholar] [CrossRef]
- Hu, X.; Pan, D.; Han, H.; Wang, C. Anodic stripping voltammetric analysis of different species of copper in seawater using an electrochemical sensor. J. Oceanogr. 2019, 75, 149–156. [Google Scholar] [CrossRef]
- Pain, A.J.; Martin, J.B.; Young, C.R.; Huang, L.; Valle-Levinson, A. Organic matter quantity and quality across salinity gradients in conduit- vs. diffuse flow-dominated subterranean estuaries. Limnol. Oceanogr. 2019, 64, 1386–1402. [Google Scholar] [CrossRef]
- Tan, H.-Y.; Trier, S.; Rahbek, U.L.; Dufva, M.; Kutter, J.P.; Andresen, T.L. A multi-chamber microfluidic intestinal barrier model using Caco-2 cells for drug transport studies. PLoS ONE 2018, 13, e0197101. [Google Scholar] [CrossRef]
- Natoli, M.; Leoni, B.D.; D’Agnano, I.; Zucco, F.; Felsani, A. Good Caco-2 cell culture practices. Toxicol. Vitr. 2012, 26, 1243–1246. [Google Scholar] [CrossRef] [PubMed]
- Sciurti, E.; Blasi, L.; Prontera, C.T.; Barca, A.; Giampetruzzi, L.; Verri, T.; Siciliano, P.A.; Francioso, L. TEER and Ion Selective Transwell-Integrated Sensors System for Caco-2 Cell Model. Micromachines 2023, 14, 496. [Google Scholar] [CrossRef]
- Poon, C. Measuring the density and viscosity of culture media for optimized computational fluid dynamics analysis of in vitro devices. J. Mech. Behav. Biomed. Mater. 2022, 126, 105024. [Google Scholar] [CrossRef] [PubMed]
- Zdovc, B.; Jaklin, M.; Hribar-Lee, B.; Lukšič, M. Influence of Low Molecular Weight Salts on the Viscosity of Aqueous-Buffer Bovine Serum Albumin Solutions. Molecules 2022, 27, 999. [Google Scholar] [CrossRef]
- Suzuki, H.; Hiratsuka, A.; Sasaki, S.; Karube, I. Problems associated with the thin-film Ag/AgCl reference electrode and a novel structure with improved durability. Sens. Actuators B Chem. 1998, 46, 104–113. [Google Scholar] [CrossRef]
Case | Flow Rates (µL/min) | Mixing Time (s) | Mixing Efficiency |
---|---|---|---|
#1 | FRM = 0.8 FRB = 0.8 | 4000 | 0.99 |
#2 | FRM = 1.5 FRB = 1.6 | 2000 | 0.97 |
#3 | FRM = 2.7 FRB = 3.2 | 1000 | 0.89 |
#4 | FRM = 5.1 FRB = 7.2 | 540 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prontera, C.T.; Sciurti, E.; De Pascali, C.; Giampetruzzi, L.; Biscaglia, F.; Blasi, L.; Esposito, V.; Casino, F.; Siciliano, P.A.; Francioso, L.N. Anodic Stripping Voltammetric Determination of Copper Ions in Cell Culture Media: From Transwell® to Organ-on-Chip Systems. Chemosensors 2023, 11, 466. https://doi.org/10.3390/chemosensors11080466
Prontera CT, Sciurti E, De Pascali C, Giampetruzzi L, Biscaglia F, Blasi L, Esposito V, Casino F, Siciliano PA, Francioso LN. Anodic Stripping Voltammetric Determination of Copper Ions in Cell Culture Media: From Transwell® to Organ-on-Chip Systems. Chemosensors. 2023; 11(8):466. https://doi.org/10.3390/chemosensors11080466
Chicago/Turabian StyleProntera, Carmela Tania, Elisa Sciurti, Chiara De Pascali, Lucia Giampetruzzi, Francesco Biscaglia, Laura Blasi, Vanessa Esposito, Flavio Casino, Pietro Aleardo Siciliano, and Luca Nunzio Francioso. 2023. "Anodic Stripping Voltammetric Determination of Copper Ions in Cell Culture Media: From Transwell® to Organ-on-Chip Systems" Chemosensors 11, no. 8: 466. https://doi.org/10.3390/chemosensors11080466
APA StyleProntera, C. T., Sciurti, E., De Pascali, C., Giampetruzzi, L., Biscaglia, F., Blasi, L., Esposito, V., Casino, F., Siciliano, P. A., & Francioso, L. N. (2023). Anodic Stripping Voltammetric Determination of Copper Ions in Cell Culture Media: From Transwell® to Organ-on-Chip Systems. Chemosensors, 11(8), 466. https://doi.org/10.3390/chemosensors11080466